| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * bio-integrity.c - bio data integrity extensions |
| * |
| * Copyright (C) 2007, 2008, 2009 Oracle Corporation |
| * Written by: Martin K. Petersen <martin.petersen@oracle.com> |
| */ |
| |
| #include <linux/blk-integrity.h> |
| #include <linux/mempool.h> |
| #include <linux/export.h> |
| #include <linux/bio.h> |
| #include <linux/workqueue.h> |
| #include <linux/slab.h> |
| #include "blk.h" |
| |
| static struct kmem_cache *bip_slab; |
| static struct workqueue_struct *kintegrityd_wq; |
| |
| void blk_flush_integrity(void) |
| { |
| flush_workqueue(kintegrityd_wq); |
| } |
| |
| /** |
| * bio_integrity_free - Free bio integrity payload |
| * @bio: bio containing bip to be freed |
| * |
| * Description: Free the integrity portion of a bio. |
| */ |
| void bio_integrity_free(struct bio *bio) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| struct bio_set *bs = bio->bi_pool; |
| |
| if (bs && mempool_initialized(&bs->bio_integrity_pool)) { |
| if (bip->bip_vec) |
| bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, |
| bip->bip_max_vcnt); |
| mempool_free(bip, &bs->bio_integrity_pool); |
| } else { |
| kfree(bip); |
| } |
| bio->bi_integrity = NULL; |
| bio->bi_opf &= ~REQ_INTEGRITY; |
| } |
| |
| /** |
| * bio_integrity_alloc - Allocate integrity payload and attach it to bio |
| * @bio: bio to attach integrity metadata to |
| * @gfp_mask: Memory allocation mask |
| * @nr_vecs: Number of integrity metadata scatter-gather elements |
| * |
| * Description: This function prepares a bio for attaching integrity |
| * metadata. nr_vecs specifies the maximum number of pages containing |
| * integrity metadata that can be attached. |
| */ |
| struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, |
| gfp_t gfp_mask, |
| unsigned int nr_vecs) |
| { |
| struct bio_integrity_payload *bip; |
| struct bio_set *bs = bio->bi_pool; |
| unsigned inline_vecs; |
| |
| if (WARN_ON_ONCE(bio_has_crypt_ctx(bio))) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { |
| bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask); |
| inline_vecs = nr_vecs; |
| } else { |
| bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); |
| inline_vecs = BIO_INLINE_VECS; |
| } |
| |
| if (unlikely(!bip)) |
| return ERR_PTR(-ENOMEM); |
| |
| memset(bip, 0, sizeof(*bip)); |
| |
| /* always report as many vecs as asked explicitly, not inline vecs */ |
| bip->bip_max_vcnt = nr_vecs; |
| if (nr_vecs > inline_vecs) { |
| bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool, |
| &bip->bip_max_vcnt, gfp_mask); |
| if (!bip->bip_vec) |
| goto err; |
| } else if (nr_vecs) { |
| bip->bip_vec = bip->bip_inline_vecs; |
| } |
| |
| bip->bip_bio = bio; |
| bio->bi_integrity = bip; |
| bio->bi_opf |= REQ_INTEGRITY; |
| |
| return bip; |
| err: |
| if (bs && mempool_initialized(&bs->bio_integrity_pool)) |
| mempool_free(bip, &bs->bio_integrity_pool); |
| else |
| kfree(bip); |
| return ERR_PTR(-ENOMEM); |
| } |
| EXPORT_SYMBOL(bio_integrity_alloc); |
| |
| static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs, |
| bool dirty) |
| { |
| int i; |
| |
| for (i = 0; i < nr_vecs; i++) { |
| if (dirty && !PageCompound(bv[i].bv_page)) |
| set_page_dirty_lock(bv[i].bv_page); |
| unpin_user_page(bv[i].bv_page); |
| } |
| } |
| |
| static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip) |
| { |
| unsigned short nr_vecs = bip->bip_max_vcnt - 1; |
| struct bio_vec *copy = &bip->bip_vec[1]; |
| size_t bytes = bip->bip_iter.bi_size; |
| struct iov_iter iter; |
| int ret; |
| |
| iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes); |
| ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter); |
| WARN_ON_ONCE(ret != bytes); |
| |
| bio_integrity_unpin_bvec(copy, nr_vecs, true); |
| } |
| |
| /** |
| * bio_integrity_unmap_user - Unmap user integrity payload |
| * @bio: bio containing bip to be unmapped |
| * |
| * Unmap the user mapped integrity portion of a bio. |
| */ |
| void bio_integrity_unmap_user(struct bio *bio) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| |
| if (bip->bip_flags & BIP_COPY_USER) { |
| if (bio_data_dir(bio) == READ) |
| bio_integrity_uncopy_user(bip); |
| kfree(bvec_virt(bip->bip_vec)); |
| return; |
| } |
| |
| bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, |
| bio_data_dir(bio) == READ); |
| } |
| |
| /** |
| * bio_integrity_add_page - Attach integrity metadata |
| * @bio: bio to update |
| * @page: page containing integrity metadata |
| * @len: number of bytes of integrity metadata in page |
| * @offset: start offset within page |
| * |
| * Description: Attach a page containing integrity metadata to bio. |
| */ |
| int bio_integrity_add_page(struct bio *bio, struct page *page, |
| unsigned int len, unsigned int offset) |
| { |
| struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| |
| if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) > |
| queue_max_hw_sectors(q)) |
| return 0; |
| |
| if (bip->bip_vcnt > 0) { |
| struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1]; |
| bool same_page = false; |
| |
| if (bvec_try_merge_hw_page(q, bv, page, len, offset, |
| &same_page)) { |
| bip->bip_iter.bi_size += len; |
| return len; |
| } |
| |
| if (bip->bip_vcnt >= |
| min(bip->bip_max_vcnt, queue_max_integrity_segments(q))) |
| return 0; |
| |
| /* |
| * If the queue doesn't support SG gaps and adding this segment |
| * would create a gap, disallow it. |
| */ |
| if (bvec_gap_to_prev(&q->limits, bv, offset)) |
| return 0; |
| } |
| |
| bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset); |
| bip->bip_vcnt++; |
| bip->bip_iter.bi_size += len; |
| |
| return len; |
| } |
| EXPORT_SYMBOL(bio_integrity_add_page); |
| |
| static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec, |
| int nr_vecs, unsigned int len, |
| unsigned int direction, u32 seed) |
| { |
| bool write = direction == ITER_SOURCE; |
| struct bio_integrity_payload *bip; |
| struct iov_iter iter; |
| void *buf; |
| int ret; |
| |
| buf = kmalloc(len, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| if (write) { |
| iov_iter_bvec(&iter, direction, bvec, nr_vecs, len); |
| if (!copy_from_iter_full(buf, len, &iter)) { |
| ret = -EFAULT; |
| goto free_buf; |
| } |
| |
| bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); |
| } else { |
| memset(buf, 0, len); |
| |
| /* |
| * We need to preserve the original bvec and the number of vecs |
| * in it for completion handling |
| */ |
| bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1); |
| } |
| |
| if (IS_ERR(bip)) { |
| ret = PTR_ERR(bip); |
| goto free_buf; |
| } |
| |
| if (write) |
| bio_integrity_unpin_bvec(bvec, nr_vecs, false); |
| else |
| memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec)); |
| |
| ret = bio_integrity_add_page(bio, virt_to_page(buf), len, |
| offset_in_page(buf)); |
| if (ret != len) { |
| ret = -ENOMEM; |
| goto free_bip; |
| } |
| |
| bip->bip_flags |= BIP_COPY_USER; |
| bip->bip_iter.bi_sector = seed; |
| bip->bip_vcnt = nr_vecs; |
| return 0; |
| free_bip: |
| bio_integrity_free(bio); |
| free_buf: |
| kfree(buf); |
| return ret; |
| } |
| |
| static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec, |
| int nr_vecs, unsigned int len, u32 seed) |
| { |
| struct bio_integrity_payload *bip; |
| |
| bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs); |
| if (IS_ERR(bip)) |
| return PTR_ERR(bip); |
| |
| memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec)); |
| bip->bip_iter.bi_sector = seed; |
| bip->bip_iter.bi_size = len; |
| bip->bip_vcnt = nr_vecs; |
| return 0; |
| } |
| |
| static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages, |
| int nr_vecs, ssize_t bytes, ssize_t offset) |
| { |
| unsigned int nr_bvecs = 0; |
| int i, j; |
| |
| for (i = 0; i < nr_vecs; i = j) { |
| size_t size = min_t(size_t, bytes, PAGE_SIZE - offset); |
| struct folio *folio = page_folio(pages[i]); |
| |
| bytes -= size; |
| for (j = i + 1; j < nr_vecs; j++) { |
| size_t next = min_t(size_t, PAGE_SIZE, bytes); |
| |
| if (page_folio(pages[j]) != folio || |
| pages[j] != pages[j - 1] + 1) |
| break; |
| unpin_user_page(pages[j]); |
| size += next; |
| bytes -= next; |
| } |
| |
| bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset); |
| offset = 0; |
| nr_bvecs++; |
| } |
| |
| return nr_bvecs; |
| } |
| |
| int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes, |
| u32 seed) |
| { |
| struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
| unsigned int align = blk_lim_dma_alignment_and_pad(&q->limits); |
| struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages; |
| struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec; |
| unsigned int direction, nr_bvecs; |
| struct iov_iter iter; |
| int ret, nr_vecs; |
| size_t offset; |
| bool copy; |
| |
| if (bio_integrity(bio)) |
| return -EINVAL; |
| if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q)) |
| return -E2BIG; |
| |
| if (bio_data_dir(bio) == READ) |
| direction = ITER_DEST; |
| else |
| direction = ITER_SOURCE; |
| |
| iov_iter_ubuf(&iter, direction, ubuf, bytes); |
| nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1); |
| if (nr_vecs > BIO_MAX_VECS) |
| return -E2BIG; |
| if (nr_vecs > UIO_FASTIOV) { |
| bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL); |
| if (!bvec) |
| return -ENOMEM; |
| pages = NULL; |
| } |
| |
| copy = !iov_iter_is_aligned(&iter, align, align); |
| ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset); |
| if (unlikely(ret < 0)) |
| goto free_bvec; |
| |
| nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset); |
| if (pages != stack_pages) |
| kvfree(pages); |
| if (nr_bvecs > queue_max_integrity_segments(q)) |
| copy = true; |
| |
| if (copy) |
| ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes, |
| direction, seed); |
| else |
| ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed); |
| if (ret) |
| goto release_pages; |
| if (bvec != stack_vec) |
| kfree(bvec); |
| |
| return 0; |
| |
| release_pages: |
| bio_integrity_unpin_bvec(bvec, nr_bvecs, false); |
| free_bvec: |
| if (bvec != stack_vec) |
| kfree(bvec); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(bio_integrity_map_user); |
| |
| /** |
| * bio_integrity_prep - Prepare bio for integrity I/O |
| * @bio: bio to prepare |
| * |
| * Description: Checks if the bio already has an integrity payload attached. |
| * If it does, the payload has been generated by another kernel subsystem, |
| * and we just pass it through. Otherwise allocates integrity payload. |
| * The bio must have data direction, target device and start sector set priot |
| * to calling. In the WRITE case, integrity metadata will be generated using |
| * the block device's integrity function. In the READ case, the buffer |
| * will be prepared for DMA and a suitable end_io handler set up. |
| */ |
| bool bio_integrity_prep(struct bio *bio) |
| { |
| struct bio_integrity_payload *bip; |
| struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); |
| unsigned int len; |
| void *buf; |
| gfp_t gfp = GFP_NOIO; |
| |
| if (!bi) |
| return true; |
| |
| if (!bio_sectors(bio)) |
| return true; |
| |
| /* Already protected? */ |
| if (bio_integrity(bio)) |
| return true; |
| |
| switch (bio_op(bio)) { |
| case REQ_OP_READ: |
| if (bi->flags & BLK_INTEGRITY_NOVERIFY) |
| return true; |
| break; |
| case REQ_OP_WRITE: |
| if (bi->flags & BLK_INTEGRITY_NOGENERATE) |
| return true; |
| |
| /* |
| * Zero the memory allocated to not leak uninitialized kernel |
| * memory to disk for non-integrity metadata where nothing else |
| * initializes the memory. |
| */ |
| if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE) |
| gfp |= __GFP_ZERO; |
| break; |
| default: |
| return true; |
| } |
| |
| /* Allocate kernel buffer for protection data */ |
| len = bio_integrity_bytes(bi, bio_sectors(bio)); |
| buf = kmalloc(len, gfp); |
| if (unlikely(buf == NULL)) { |
| goto err_end_io; |
| } |
| |
| bip = bio_integrity_alloc(bio, GFP_NOIO, 1); |
| if (IS_ERR(bip)) { |
| kfree(buf); |
| goto err_end_io; |
| } |
| |
| bip->bip_flags |= BIP_BLOCK_INTEGRITY; |
| bip_set_seed(bip, bio->bi_iter.bi_sector); |
| |
| if (bi->csum_type == BLK_INTEGRITY_CSUM_IP) |
| bip->bip_flags |= BIP_IP_CHECKSUM; |
| |
| if (bio_integrity_add_page(bio, virt_to_page(buf), len, |
| offset_in_page(buf)) < len) { |
| printk(KERN_ERR "could not attach integrity payload\n"); |
| goto err_end_io; |
| } |
| |
| /* Auto-generate integrity metadata if this is a write */ |
| if (bio_data_dir(bio) == WRITE) |
| blk_integrity_generate(bio); |
| else |
| bip->bio_iter = bio->bi_iter; |
| return true; |
| |
| err_end_io: |
| bio->bi_status = BLK_STS_RESOURCE; |
| bio_endio(bio); |
| return false; |
| } |
| EXPORT_SYMBOL(bio_integrity_prep); |
| |
| /** |
| * bio_integrity_verify_fn - Integrity I/O completion worker |
| * @work: Work struct stored in bio to be verified |
| * |
| * Description: This workqueue function is called to complete a READ |
| * request. The function verifies the transferred integrity metadata |
| * and then calls the original bio end_io function. |
| */ |
| static void bio_integrity_verify_fn(struct work_struct *work) |
| { |
| struct bio_integrity_payload *bip = |
| container_of(work, struct bio_integrity_payload, bip_work); |
| struct bio *bio = bip->bip_bio; |
| |
| blk_integrity_verify(bio); |
| |
| kfree(bvec_virt(bip->bip_vec)); |
| bio_integrity_free(bio); |
| bio_endio(bio); |
| } |
| |
| /** |
| * __bio_integrity_endio - Integrity I/O completion function |
| * @bio: Protected bio |
| * |
| * Description: Completion for integrity I/O |
| * |
| * Normally I/O completion is done in interrupt context. However, |
| * verifying I/O integrity is a time-consuming task which must be run |
| * in process context. This function postpones completion |
| * accordingly. |
| */ |
| bool __bio_integrity_endio(struct bio *bio) |
| { |
| struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| |
| if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && bi->csum_type) { |
| INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); |
| queue_work(kintegrityd_wq, &bip->bip_work); |
| return false; |
| } |
| |
| kfree(bvec_virt(bip->bip_vec)); |
| bio_integrity_free(bio); |
| return true; |
| } |
| |
| /** |
| * bio_integrity_advance - Advance integrity vector |
| * @bio: bio whose integrity vector to update |
| * @bytes_done: number of data bytes that have been completed |
| * |
| * Description: This function calculates how many integrity bytes the |
| * number of completed data bytes correspond to and advances the |
| * integrity vector accordingly. |
| */ |
| void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); |
| unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); |
| |
| bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9); |
| bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); |
| } |
| |
| /** |
| * bio_integrity_trim - Trim integrity vector |
| * @bio: bio whose integrity vector to update |
| * |
| * Description: Used to trim the integrity vector in a cloned bio. |
| */ |
| void bio_integrity_trim(struct bio *bio) |
| { |
| struct bio_integrity_payload *bip = bio_integrity(bio); |
| struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); |
| |
| bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); |
| } |
| EXPORT_SYMBOL(bio_integrity_trim); |
| |
| /** |
| * bio_integrity_clone - Callback for cloning bios with integrity metadata |
| * @bio: New bio |
| * @bio_src: Original bio |
| * @gfp_mask: Memory allocation mask |
| * |
| * Description: Called to allocate a bip when cloning a bio |
| */ |
| int bio_integrity_clone(struct bio *bio, struct bio *bio_src, |
| gfp_t gfp_mask) |
| { |
| struct bio_integrity_payload *bip_src = bio_integrity(bio_src); |
| struct bio_integrity_payload *bip; |
| |
| BUG_ON(bip_src == NULL); |
| |
| bip = bio_integrity_alloc(bio, gfp_mask, 0); |
| if (IS_ERR(bip)) |
| return PTR_ERR(bip); |
| |
| bip->bip_vec = bip_src->bip_vec; |
| bip->bip_iter = bip_src->bip_iter; |
| bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY; |
| |
| return 0; |
| } |
| |
| int bioset_integrity_create(struct bio_set *bs, int pool_size) |
| { |
| if (mempool_initialized(&bs->bio_integrity_pool)) |
| return 0; |
| |
| if (mempool_init_slab_pool(&bs->bio_integrity_pool, |
| pool_size, bip_slab)) |
| return -1; |
| |
| if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { |
| mempool_exit(&bs->bio_integrity_pool); |
| return -1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(bioset_integrity_create); |
| |
| void bioset_integrity_free(struct bio_set *bs) |
| { |
| mempool_exit(&bs->bio_integrity_pool); |
| mempool_exit(&bs->bvec_integrity_pool); |
| } |
| |
| void __init bio_integrity_init(void) |
| { |
| /* |
| * kintegrityd won't block much but may burn a lot of CPU cycles. |
| * Make it highpri CPU intensive wq with max concurrency of 1. |
| */ |
| kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | |
| WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); |
| if (!kintegrityd_wq) |
| panic("Failed to create kintegrityd\n"); |
| |
| bip_slab = kmem_cache_create("bio_integrity_payload", |
| sizeof(struct bio_integrity_payload) + |
| sizeof(struct bio_vec) * BIO_INLINE_VECS, |
| 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
| } |