| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Resizable, Scalable, Concurrent Hash Table |
| * |
| * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> |
| * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> |
| * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> |
| * |
| * Code partially derived from nft_hash |
| * Rewritten with rehash code from br_multicast plus single list |
| * pointer as suggested by Josh Triplett |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/log2.h> |
| #include <linux/sched.h> |
| #include <linux/rculist.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mm.h> |
| #include <linux/jhash.h> |
| #include <linux/random.h> |
| #include <linux/rhashtable.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| |
| #define HASH_DEFAULT_SIZE 64UL |
| #define HASH_MIN_SIZE 4U |
| |
| union nested_table { |
| union nested_table __rcu *table; |
| struct rhash_lock_head __rcu *bucket; |
| }; |
| |
| static u32 head_hashfn(struct rhashtable *ht, |
| const struct bucket_table *tbl, |
| const struct rhash_head *he) |
| { |
| return rht_head_hashfn(ht, tbl, he, ht->p); |
| } |
| |
| #ifdef CONFIG_PROVE_LOCKING |
| #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) |
| |
| int lockdep_rht_mutex_is_held(struct rhashtable *ht) |
| { |
| return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; |
| } |
| EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); |
| |
| int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) |
| { |
| if (!debug_locks) |
| return 1; |
| if (unlikely(tbl->nest)) |
| return 1; |
| return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); |
| } |
| EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); |
| #else |
| #define ASSERT_RHT_MUTEX(HT) |
| #endif |
| |
| static inline union nested_table *nested_table_top( |
| const struct bucket_table *tbl) |
| { |
| /* The top-level bucket entry does not need RCU protection |
| * because it's set at the same time as tbl->nest. |
| */ |
| return (void *)rcu_dereference_protected(tbl->buckets[0], 1); |
| } |
| |
| static void nested_table_free(union nested_table *ntbl, unsigned int size) |
| { |
| const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); |
| const unsigned int len = 1 << shift; |
| unsigned int i; |
| |
| ntbl = rcu_dereference_protected(ntbl->table, 1); |
| if (!ntbl) |
| return; |
| |
| if (size > len) { |
| size >>= shift; |
| for (i = 0; i < len; i++) |
| nested_table_free(ntbl + i, size); |
| } |
| |
| kfree(ntbl); |
| } |
| |
| static void nested_bucket_table_free(const struct bucket_table *tbl) |
| { |
| unsigned int size = tbl->size >> tbl->nest; |
| unsigned int len = 1 << tbl->nest; |
| union nested_table *ntbl; |
| unsigned int i; |
| |
| ntbl = nested_table_top(tbl); |
| |
| for (i = 0; i < len; i++) |
| nested_table_free(ntbl + i, size); |
| |
| kfree(ntbl); |
| } |
| |
| static void bucket_table_free(const struct bucket_table *tbl) |
| { |
| if (tbl->nest) |
| nested_bucket_table_free(tbl); |
| |
| kvfree(tbl); |
| } |
| |
| static void bucket_table_free_rcu(struct rcu_head *head) |
| { |
| bucket_table_free(container_of(head, struct bucket_table, rcu)); |
| } |
| |
| static union nested_table *nested_table_alloc(struct rhashtable *ht, |
| union nested_table __rcu **prev, |
| bool leaf) |
| { |
| union nested_table *ntbl; |
| int i; |
| |
| ntbl = rcu_dereference(*prev); |
| if (ntbl) |
| return ntbl; |
| |
| ntbl = alloc_hooks_tag(ht->alloc_tag, |
| kmalloc_noprof(PAGE_SIZE, GFP_ATOMIC|__GFP_ZERO)); |
| |
| if (ntbl && leaf) { |
| for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) |
| INIT_RHT_NULLS_HEAD(ntbl[i].bucket); |
| } |
| |
| if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) |
| return ntbl; |
| /* Raced with another thread. */ |
| kfree(ntbl); |
| return rcu_dereference(*prev); |
| } |
| |
| static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, |
| size_t nbuckets, |
| gfp_t gfp) |
| { |
| const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); |
| struct bucket_table *tbl; |
| size_t size; |
| |
| if (nbuckets < (1 << (shift + 1))) |
| return NULL; |
| |
| size = sizeof(*tbl) + sizeof(tbl->buckets[0]); |
| |
| tbl = alloc_hooks_tag(ht->alloc_tag, |
| kmalloc_noprof(size, gfp|__GFP_ZERO)); |
| if (!tbl) |
| return NULL; |
| |
| if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, |
| false)) { |
| kfree(tbl); |
| return NULL; |
| } |
| |
| tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; |
| |
| return tbl; |
| } |
| |
| static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, |
| size_t nbuckets, |
| gfp_t gfp) |
| { |
| struct bucket_table *tbl = NULL; |
| size_t size; |
| int i; |
| static struct lock_class_key __key; |
| |
| tbl = alloc_hooks_tag(ht->alloc_tag, |
| kvmalloc_node_noprof(struct_size(tbl, buckets, nbuckets), |
| gfp|__GFP_ZERO, NUMA_NO_NODE)); |
| |
| size = nbuckets; |
| |
| if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) { |
| tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); |
| nbuckets = 0; |
| } |
| |
| if (tbl == NULL) |
| return NULL; |
| |
| lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); |
| |
| tbl->size = size; |
| |
| rcu_head_init(&tbl->rcu); |
| INIT_LIST_HEAD(&tbl->walkers); |
| |
| tbl->hash_rnd = get_random_u32(); |
| |
| for (i = 0; i < nbuckets; i++) |
| INIT_RHT_NULLS_HEAD(tbl->buckets[i]); |
| |
| return tbl; |
| } |
| |
| static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, |
| struct bucket_table *tbl) |
| { |
| struct bucket_table *new_tbl; |
| |
| do { |
| new_tbl = tbl; |
| tbl = rht_dereference_rcu(tbl->future_tbl, ht); |
| } while (tbl); |
| |
| return new_tbl; |
| } |
| |
| static int rhashtable_rehash_one(struct rhashtable *ht, |
| struct rhash_lock_head __rcu **bkt, |
| unsigned int old_hash) |
| { |
| struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); |
| struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); |
| int err = -EAGAIN; |
| struct rhash_head *head, *next, *entry; |
| struct rhash_head __rcu **pprev = NULL; |
| unsigned int new_hash; |
| unsigned long flags; |
| |
| if (new_tbl->nest) |
| goto out; |
| |
| err = -ENOENT; |
| |
| rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), |
| old_tbl, old_hash) { |
| err = 0; |
| next = rht_dereference_bucket(entry->next, old_tbl, old_hash); |
| |
| if (rht_is_a_nulls(next)) |
| break; |
| |
| pprev = &entry->next; |
| } |
| |
| if (err) |
| goto out; |
| |
| new_hash = head_hashfn(ht, new_tbl, entry); |
| |
| flags = rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], |
| SINGLE_DEPTH_NESTING); |
| |
| head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); |
| |
| RCU_INIT_POINTER(entry->next, head); |
| |
| rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry, flags); |
| |
| if (pprev) |
| rcu_assign_pointer(*pprev, next); |
| else |
| /* Need to preserved the bit lock. */ |
| rht_assign_locked(bkt, next); |
| |
| out: |
| return err; |
| } |
| |
| static int rhashtable_rehash_chain(struct rhashtable *ht, |
| unsigned int old_hash) |
| { |
| struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); |
| struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash); |
| unsigned long flags; |
| int err; |
| |
| if (!bkt) |
| return 0; |
| flags = rht_lock(old_tbl, bkt); |
| |
| while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) |
| ; |
| |
| if (err == -ENOENT) |
| err = 0; |
| rht_unlock(old_tbl, bkt, flags); |
| |
| return err; |
| } |
| |
| static int rhashtable_rehash_attach(struct rhashtable *ht, |
| struct bucket_table *old_tbl, |
| struct bucket_table *new_tbl) |
| { |
| /* Make insertions go into the new, empty table right away. Deletions |
| * and lookups will be attempted in both tables until we synchronize. |
| * As cmpxchg() provides strong barriers, we do not need |
| * rcu_assign_pointer(). |
| */ |
| |
| if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, |
| new_tbl) != NULL) |
| return -EEXIST; |
| |
| return 0; |
| } |
| |
| static int rhashtable_rehash_table(struct rhashtable *ht) |
| { |
| struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); |
| struct bucket_table *new_tbl; |
| struct rhashtable_walker *walker; |
| unsigned int old_hash; |
| int err; |
| |
| new_tbl = rht_dereference(old_tbl->future_tbl, ht); |
| if (!new_tbl) |
| return 0; |
| |
| for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { |
| err = rhashtable_rehash_chain(ht, old_hash); |
| if (err) |
| return err; |
| cond_resched(); |
| } |
| |
| /* Publish the new table pointer. */ |
| rcu_assign_pointer(ht->tbl, new_tbl); |
| |
| spin_lock(&ht->lock); |
| list_for_each_entry(walker, &old_tbl->walkers, list) |
| walker->tbl = NULL; |
| |
| /* Wait for readers. All new readers will see the new |
| * table, and thus no references to the old table will |
| * remain. |
| * We do this inside the locked region so that |
| * rhashtable_walk_stop() can use rcu_head_after_call_rcu() |
| * to check if it should not re-link the table. |
| */ |
| call_rcu(&old_tbl->rcu, bucket_table_free_rcu); |
| spin_unlock(&ht->lock); |
| |
| return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; |
| } |
| |
| static int rhashtable_rehash_alloc(struct rhashtable *ht, |
| struct bucket_table *old_tbl, |
| unsigned int size) |
| { |
| struct bucket_table *new_tbl; |
| int err; |
| |
| ASSERT_RHT_MUTEX(ht); |
| |
| new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); |
| if (new_tbl == NULL) |
| return -ENOMEM; |
| |
| err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); |
| if (err) |
| bucket_table_free(new_tbl); |
| |
| return err; |
| } |
| |
| /** |
| * rhashtable_shrink - Shrink hash table while allowing concurrent lookups |
| * @ht: the hash table to shrink |
| * |
| * This function shrinks the hash table to fit, i.e., the smallest |
| * size would not cause it to expand right away automatically. |
| * |
| * The caller must ensure that no concurrent resizing occurs by holding |
| * ht->mutex. |
| * |
| * The caller must ensure that no concurrent table mutations take place. |
| * It is however valid to have concurrent lookups if they are RCU protected. |
| * |
| * It is valid to have concurrent insertions and deletions protected by per |
| * bucket locks or concurrent RCU protected lookups and traversals. |
| */ |
| static int rhashtable_shrink(struct rhashtable *ht) |
| { |
| struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); |
| unsigned int nelems = atomic_read(&ht->nelems); |
| unsigned int size = 0; |
| |
| if (nelems) |
| size = roundup_pow_of_two(nelems * 3 / 2); |
| if (size < ht->p.min_size) |
| size = ht->p.min_size; |
| |
| if (old_tbl->size <= size) |
| return 0; |
| |
| if (rht_dereference(old_tbl->future_tbl, ht)) |
| return -EEXIST; |
| |
| return rhashtable_rehash_alloc(ht, old_tbl, size); |
| } |
| |
| static void rht_deferred_worker(struct work_struct *work) |
| { |
| struct rhashtable *ht; |
| struct bucket_table *tbl; |
| int err = 0; |
| |
| ht = container_of(work, struct rhashtable, run_work); |
| mutex_lock(&ht->mutex); |
| |
| tbl = rht_dereference(ht->tbl, ht); |
| tbl = rhashtable_last_table(ht, tbl); |
| |
| if (rht_grow_above_75(ht, tbl)) |
| err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); |
| else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) |
| err = rhashtable_shrink(ht); |
| else if (tbl->nest) |
| err = rhashtable_rehash_alloc(ht, tbl, tbl->size); |
| |
| if (!err || err == -EEXIST) { |
| int nerr; |
| |
| nerr = rhashtable_rehash_table(ht); |
| err = err ?: nerr; |
| } |
| |
| mutex_unlock(&ht->mutex); |
| |
| if (err) |
| schedule_work(&ht->run_work); |
| } |
| |
| static int rhashtable_insert_rehash(struct rhashtable *ht, |
| struct bucket_table *tbl) |
| { |
| struct bucket_table *old_tbl; |
| struct bucket_table *new_tbl; |
| unsigned int size; |
| int err; |
| |
| old_tbl = rht_dereference_rcu(ht->tbl, ht); |
| |
| size = tbl->size; |
| |
| err = -EBUSY; |
| |
| if (rht_grow_above_75(ht, tbl)) |
| size *= 2; |
| /* Do not schedule more than one rehash */ |
| else if (old_tbl != tbl) |
| goto fail; |
| |
| err = -ENOMEM; |
| |
| new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); |
| if (new_tbl == NULL) |
| goto fail; |
| |
| err = rhashtable_rehash_attach(ht, tbl, new_tbl); |
| if (err) { |
| bucket_table_free(new_tbl); |
| if (err == -EEXIST) |
| err = 0; |
| } else |
| schedule_work(&ht->run_work); |
| |
| return err; |
| |
| fail: |
| /* Do not fail the insert if someone else did a rehash. */ |
| if (likely(rcu_access_pointer(tbl->future_tbl))) |
| return 0; |
| |
| /* Schedule async rehash to retry allocation in process context. */ |
| if (err == -ENOMEM) |
| schedule_work(&ht->run_work); |
| |
| return err; |
| } |
| |
| static void *rhashtable_lookup_one(struct rhashtable *ht, |
| struct rhash_lock_head __rcu **bkt, |
| struct bucket_table *tbl, unsigned int hash, |
| const void *key, struct rhash_head *obj) |
| { |
| struct rhashtable_compare_arg arg = { |
| .ht = ht, |
| .key = key, |
| }; |
| struct rhash_head __rcu **pprev = NULL; |
| struct rhash_head *head; |
| int elasticity; |
| |
| elasticity = RHT_ELASTICITY; |
| rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { |
| struct rhlist_head *list; |
| struct rhlist_head *plist; |
| |
| elasticity--; |
| if (!key || |
| (ht->p.obj_cmpfn ? |
| ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : |
| rhashtable_compare(&arg, rht_obj(ht, head)))) { |
| pprev = &head->next; |
| continue; |
| } |
| |
| if (!ht->rhlist) |
| return rht_obj(ht, head); |
| |
| list = container_of(obj, struct rhlist_head, rhead); |
| plist = container_of(head, struct rhlist_head, rhead); |
| |
| RCU_INIT_POINTER(list->next, plist); |
| head = rht_dereference_bucket(head->next, tbl, hash); |
| RCU_INIT_POINTER(list->rhead.next, head); |
| if (pprev) |
| rcu_assign_pointer(*pprev, obj); |
| else |
| /* Need to preserve the bit lock */ |
| rht_assign_locked(bkt, obj); |
| |
| return NULL; |
| } |
| |
| if (elasticity <= 0) |
| return ERR_PTR(-EAGAIN); |
| |
| return ERR_PTR(-ENOENT); |
| } |
| |
| static struct bucket_table *rhashtable_insert_one( |
| struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, |
| struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj, |
| void *data) |
| { |
| struct bucket_table *new_tbl; |
| struct rhash_head *head; |
| |
| if (!IS_ERR_OR_NULL(data)) |
| return ERR_PTR(-EEXIST); |
| |
| if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) |
| return ERR_CAST(data); |
| |
| new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); |
| if (new_tbl) |
| return new_tbl; |
| |
| if (PTR_ERR(data) != -ENOENT) |
| return ERR_CAST(data); |
| |
| if (unlikely(rht_grow_above_max(ht, tbl))) |
| return ERR_PTR(-E2BIG); |
| |
| if (unlikely(rht_grow_above_100(ht, tbl))) |
| return ERR_PTR(-EAGAIN); |
| |
| head = rht_ptr(bkt, tbl, hash); |
| |
| RCU_INIT_POINTER(obj->next, head); |
| if (ht->rhlist) { |
| struct rhlist_head *list; |
| |
| list = container_of(obj, struct rhlist_head, rhead); |
| RCU_INIT_POINTER(list->next, NULL); |
| } |
| |
| /* bkt is always the head of the list, so it holds |
| * the lock, which we need to preserve |
| */ |
| rht_assign_locked(bkt, obj); |
| |
| atomic_inc(&ht->nelems); |
| if (rht_grow_above_75(ht, tbl)) |
| schedule_work(&ht->run_work); |
| |
| return NULL; |
| } |
| |
| static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, |
| struct rhash_head *obj) |
| { |
| struct bucket_table *new_tbl; |
| struct bucket_table *tbl; |
| struct rhash_lock_head __rcu **bkt; |
| unsigned long flags; |
| unsigned int hash; |
| void *data; |
| |
| new_tbl = rcu_dereference(ht->tbl); |
| |
| do { |
| tbl = new_tbl; |
| hash = rht_head_hashfn(ht, tbl, obj, ht->p); |
| if (rcu_access_pointer(tbl->future_tbl)) |
| /* Failure is OK */ |
| bkt = rht_bucket_var(tbl, hash); |
| else |
| bkt = rht_bucket_insert(ht, tbl, hash); |
| if (bkt == NULL) { |
| new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); |
| data = ERR_PTR(-EAGAIN); |
| } else { |
| flags = rht_lock(tbl, bkt); |
| data = rhashtable_lookup_one(ht, bkt, tbl, |
| hash, key, obj); |
| new_tbl = rhashtable_insert_one(ht, bkt, tbl, |
| hash, obj, data); |
| if (PTR_ERR(new_tbl) != -EEXIST) |
| data = ERR_CAST(new_tbl); |
| |
| rht_unlock(tbl, bkt, flags); |
| } |
| } while (!IS_ERR_OR_NULL(new_tbl)); |
| |
| if (PTR_ERR(data) == -EAGAIN) |
| data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: |
| -EAGAIN); |
| |
| return data; |
| } |
| |
| void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, |
| struct rhash_head *obj) |
| { |
| void *data; |
| |
| do { |
| rcu_read_lock(); |
| data = rhashtable_try_insert(ht, key, obj); |
| rcu_read_unlock(); |
| } while (PTR_ERR(data) == -EAGAIN); |
| |
| return data; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_insert_slow); |
| |
| /** |
| * rhashtable_walk_enter - Initialise an iterator |
| * @ht: Table to walk over |
| * @iter: Hash table Iterator |
| * |
| * This function prepares a hash table walk. |
| * |
| * Note that if you restart a walk after rhashtable_walk_stop you |
| * may see the same object twice. Also, you may miss objects if |
| * there are removals in between rhashtable_walk_stop and the next |
| * call to rhashtable_walk_start. |
| * |
| * For a completely stable walk you should construct your own data |
| * structure outside the hash table. |
| * |
| * This function may be called from any process context, including |
| * non-preemptable context, but cannot be called from softirq or |
| * hardirq context. |
| * |
| * You must call rhashtable_walk_exit after this function returns. |
| */ |
| void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) |
| { |
| iter->ht = ht; |
| iter->p = NULL; |
| iter->slot = 0; |
| iter->skip = 0; |
| iter->end_of_table = 0; |
| |
| spin_lock(&ht->lock); |
| iter->walker.tbl = |
| rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); |
| list_add(&iter->walker.list, &iter->walker.tbl->walkers); |
| spin_unlock(&ht->lock); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_enter); |
| |
| /** |
| * rhashtable_walk_exit - Free an iterator |
| * @iter: Hash table Iterator |
| * |
| * This function frees resources allocated by rhashtable_walk_enter. |
| */ |
| void rhashtable_walk_exit(struct rhashtable_iter *iter) |
| { |
| spin_lock(&iter->ht->lock); |
| if (iter->walker.tbl) |
| list_del(&iter->walker.list); |
| spin_unlock(&iter->ht->lock); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_exit); |
| |
| /** |
| * rhashtable_walk_start_check - Start a hash table walk |
| * @iter: Hash table iterator |
| * |
| * Start a hash table walk at the current iterator position. Note that we take |
| * the RCU lock in all cases including when we return an error. So you must |
| * always call rhashtable_walk_stop to clean up. |
| * |
| * Returns zero if successful. |
| * |
| * Returns -EAGAIN if resize event occurred. Note that the iterator |
| * will rewind back to the beginning and you may use it immediately |
| * by calling rhashtable_walk_next. |
| * |
| * rhashtable_walk_start is defined as an inline variant that returns |
| * void. This is preferred in cases where the caller would ignore |
| * resize events and always continue. |
| */ |
| int rhashtable_walk_start_check(struct rhashtable_iter *iter) |
| __acquires(RCU) |
| { |
| struct rhashtable *ht = iter->ht; |
| bool rhlist = ht->rhlist; |
| |
| rcu_read_lock(); |
| |
| spin_lock(&ht->lock); |
| if (iter->walker.tbl) |
| list_del(&iter->walker.list); |
| spin_unlock(&ht->lock); |
| |
| if (iter->end_of_table) |
| return 0; |
| if (!iter->walker.tbl) { |
| iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); |
| iter->slot = 0; |
| iter->skip = 0; |
| return -EAGAIN; |
| } |
| |
| if (iter->p && !rhlist) { |
| /* |
| * We need to validate that 'p' is still in the table, and |
| * if so, update 'skip' |
| */ |
| struct rhash_head *p; |
| int skip = 0; |
| rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { |
| skip++; |
| if (p == iter->p) { |
| iter->skip = skip; |
| goto found; |
| } |
| } |
| iter->p = NULL; |
| } else if (iter->p && rhlist) { |
| /* Need to validate that 'list' is still in the table, and |
| * if so, update 'skip' and 'p'. |
| */ |
| struct rhash_head *p; |
| struct rhlist_head *list; |
| int skip = 0; |
| rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { |
| for (list = container_of(p, struct rhlist_head, rhead); |
| list; |
| list = rcu_dereference(list->next)) { |
| skip++; |
| if (list == iter->list) { |
| iter->p = p; |
| iter->skip = skip; |
| goto found; |
| } |
| } |
| } |
| iter->p = NULL; |
| } |
| found: |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); |
| |
| /** |
| * __rhashtable_walk_find_next - Find the next element in a table (or the first |
| * one in case of a new walk). |
| * |
| * @iter: Hash table iterator |
| * |
| * Returns the found object or NULL when the end of the table is reached. |
| * |
| * Returns -EAGAIN if resize event occurred. |
| */ |
| static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) |
| { |
| struct bucket_table *tbl = iter->walker.tbl; |
| struct rhlist_head *list = iter->list; |
| struct rhashtable *ht = iter->ht; |
| struct rhash_head *p = iter->p; |
| bool rhlist = ht->rhlist; |
| |
| if (!tbl) |
| return NULL; |
| |
| for (; iter->slot < tbl->size; iter->slot++) { |
| int skip = iter->skip; |
| |
| rht_for_each_rcu(p, tbl, iter->slot) { |
| if (rhlist) { |
| list = container_of(p, struct rhlist_head, |
| rhead); |
| do { |
| if (!skip) |
| goto next; |
| skip--; |
| list = rcu_dereference(list->next); |
| } while (list); |
| |
| continue; |
| } |
| if (!skip) |
| break; |
| skip--; |
| } |
| |
| next: |
| if (!rht_is_a_nulls(p)) { |
| iter->skip++; |
| iter->p = p; |
| iter->list = list; |
| return rht_obj(ht, rhlist ? &list->rhead : p); |
| } |
| |
| iter->skip = 0; |
| } |
| |
| iter->p = NULL; |
| |
| /* Ensure we see any new tables. */ |
| smp_rmb(); |
| |
| iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); |
| if (iter->walker.tbl) { |
| iter->slot = 0; |
| iter->skip = 0; |
| return ERR_PTR(-EAGAIN); |
| } else { |
| iter->end_of_table = true; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * rhashtable_walk_next - Return the next object and advance the iterator |
| * @iter: Hash table iterator |
| * |
| * Note that you must call rhashtable_walk_stop when you are finished |
| * with the walk. |
| * |
| * Returns the next object or NULL when the end of the table is reached. |
| * |
| * Returns -EAGAIN if resize event occurred. Note that the iterator |
| * will rewind back to the beginning and you may continue to use it. |
| */ |
| void *rhashtable_walk_next(struct rhashtable_iter *iter) |
| { |
| struct rhlist_head *list = iter->list; |
| struct rhashtable *ht = iter->ht; |
| struct rhash_head *p = iter->p; |
| bool rhlist = ht->rhlist; |
| |
| if (p) { |
| if (!rhlist || !(list = rcu_dereference(list->next))) { |
| p = rcu_dereference(p->next); |
| list = container_of(p, struct rhlist_head, rhead); |
| } |
| if (!rht_is_a_nulls(p)) { |
| iter->skip++; |
| iter->p = p; |
| iter->list = list; |
| return rht_obj(ht, rhlist ? &list->rhead : p); |
| } |
| |
| /* At the end of this slot, switch to next one and then find |
| * next entry from that point. |
| */ |
| iter->skip = 0; |
| iter->slot++; |
| } |
| |
| return __rhashtable_walk_find_next(iter); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_next); |
| |
| /** |
| * rhashtable_walk_peek - Return the next object but don't advance the iterator |
| * @iter: Hash table iterator |
| * |
| * Returns the next object or NULL when the end of the table is reached. |
| * |
| * Returns -EAGAIN if resize event occurred. Note that the iterator |
| * will rewind back to the beginning and you may continue to use it. |
| */ |
| void *rhashtable_walk_peek(struct rhashtable_iter *iter) |
| { |
| struct rhlist_head *list = iter->list; |
| struct rhashtable *ht = iter->ht; |
| struct rhash_head *p = iter->p; |
| |
| if (p) |
| return rht_obj(ht, ht->rhlist ? &list->rhead : p); |
| |
| /* No object found in current iter, find next one in the table. */ |
| |
| if (iter->skip) { |
| /* A nonzero skip value points to the next entry in the table |
| * beyond that last one that was found. Decrement skip so |
| * we find the current value. __rhashtable_walk_find_next |
| * will restore the original value of skip assuming that |
| * the table hasn't changed. |
| */ |
| iter->skip--; |
| } |
| |
| return __rhashtable_walk_find_next(iter); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_peek); |
| |
| /** |
| * rhashtable_walk_stop - Finish a hash table walk |
| * @iter: Hash table iterator |
| * |
| * Finish a hash table walk. Does not reset the iterator to the start of the |
| * hash table. |
| */ |
| void rhashtable_walk_stop(struct rhashtable_iter *iter) |
| __releases(RCU) |
| { |
| struct rhashtable *ht; |
| struct bucket_table *tbl = iter->walker.tbl; |
| |
| if (!tbl) |
| goto out; |
| |
| ht = iter->ht; |
| |
| spin_lock(&ht->lock); |
| if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) |
| /* This bucket table is being freed, don't re-link it. */ |
| iter->walker.tbl = NULL; |
| else |
| list_add(&iter->walker.list, &tbl->walkers); |
| spin_unlock(&ht->lock); |
| |
| out: |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_walk_stop); |
| |
| static size_t rounded_hashtable_size(const struct rhashtable_params *params) |
| { |
| size_t retsize; |
| |
| if (params->nelem_hint) |
| retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), |
| (unsigned long)params->min_size); |
| else |
| retsize = max(HASH_DEFAULT_SIZE, |
| (unsigned long)params->min_size); |
| |
| return retsize; |
| } |
| |
| static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) |
| { |
| return jhash2(key, length, seed); |
| } |
| |
| /** |
| * rhashtable_init - initialize a new hash table |
| * @ht: hash table to be initialized |
| * @params: configuration parameters |
| * |
| * Initializes a new hash table based on the provided configuration |
| * parameters. A table can be configured either with a variable or |
| * fixed length key: |
| * |
| * Configuration Example 1: Fixed length keys |
| * struct test_obj { |
| * int key; |
| * void * my_member; |
| * struct rhash_head node; |
| * }; |
| * |
| * struct rhashtable_params params = { |
| * .head_offset = offsetof(struct test_obj, node), |
| * .key_offset = offsetof(struct test_obj, key), |
| * .key_len = sizeof(int), |
| * .hashfn = jhash, |
| * }; |
| * |
| * Configuration Example 2: Variable length keys |
| * struct test_obj { |
| * [...] |
| * struct rhash_head node; |
| * }; |
| * |
| * u32 my_hash_fn(const void *data, u32 len, u32 seed) |
| * { |
| * struct test_obj *obj = data; |
| * |
| * return [... hash ...]; |
| * } |
| * |
| * struct rhashtable_params params = { |
| * .head_offset = offsetof(struct test_obj, node), |
| * .hashfn = jhash, |
| * .obj_hashfn = my_hash_fn, |
| * }; |
| */ |
| int rhashtable_init_noprof(struct rhashtable *ht, |
| const struct rhashtable_params *params) |
| { |
| struct bucket_table *tbl; |
| size_t size; |
| |
| if ((!params->key_len && !params->obj_hashfn) || |
| (params->obj_hashfn && !params->obj_cmpfn)) |
| return -EINVAL; |
| |
| memset(ht, 0, sizeof(*ht)); |
| mutex_init(&ht->mutex); |
| spin_lock_init(&ht->lock); |
| memcpy(&ht->p, params, sizeof(*params)); |
| |
| alloc_tag_record(ht->alloc_tag); |
| |
| if (params->min_size) |
| ht->p.min_size = roundup_pow_of_two(params->min_size); |
| |
| /* Cap total entries at 2^31 to avoid nelems overflow. */ |
| ht->max_elems = 1u << 31; |
| |
| if (params->max_size) { |
| ht->p.max_size = rounddown_pow_of_two(params->max_size); |
| if (ht->p.max_size < ht->max_elems / 2) |
| ht->max_elems = ht->p.max_size * 2; |
| } |
| |
| ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); |
| |
| size = rounded_hashtable_size(&ht->p); |
| |
| ht->key_len = ht->p.key_len; |
| if (!params->hashfn) { |
| ht->p.hashfn = jhash; |
| |
| if (!(ht->key_len & (sizeof(u32) - 1))) { |
| ht->key_len /= sizeof(u32); |
| ht->p.hashfn = rhashtable_jhash2; |
| } |
| } |
| |
| /* |
| * This is api initialization and thus we need to guarantee the |
| * initial rhashtable allocation. Upon failure, retry with the |
| * smallest possible size with __GFP_NOFAIL semantics. |
| */ |
| tbl = bucket_table_alloc(ht, size, GFP_KERNEL); |
| if (unlikely(tbl == NULL)) { |
| size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); |
| tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); |
| } |
| |
| atomic_set(&ht->nelems, 0); |
| |
| RCU_INIT_POINTER(ht->tbl, tbl); |
| |
| INIT_WORK(&ht->run_work, rht_deferred_worker); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_init_noprof); |
| |
| /** |
| * rhltable_init - initialize a new hash list table |
| * @hlt: hash list table to be initialized |
| * @params: configuration parameters |
| * |
| * Initializes a new hash list table. |
| * |
| * See documentation for rhashtable_init. |
| */ |
| int rhltable_init_noprof(struct rhltable *hlt, const struct rhashtable_params *params) |
| { |
| int err; |
| |
| err = rhashtable_init_noprof(&hlt->ht, params); |
| hlt->ht.rhlist = true; |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(rhltable_init_noprof); |
| |
| static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, |
| void (*free_fn)(void *ptr, void *arg), |
| void *arg) |
| { |
| struct rhlist_head *list; |
| |
| if (!ht->rhlist) { |
| free_fn(rht_obj(ht, obj), arg); |
| return; |
| } |
| |
| list = container_of(obj, struct rhlist_head, rhead); |
| do { |
| obj = &list->rhead; |
| list = rht_dereference(list->next, ht); |
| free_fn(rht_obj(ht, obj), arg); |
| } while (list); |
| } |
| |
| /** |
| * rhashtable_free_and_destroy - free elements and destroy hash table |
| * @ht: the hash table to destroy |
| * @free_fn: callback to release resources of element |
| * @arg: pointer passed to free_fn |
| * |
| * Stops an eventual async resize. If defined, invokes free_fn for each |
| * element to releasal resources. Please note that RCU protected |
| * readers may still be accessing the elements. Releasing of resources |
| * must occur in a compatible manner. Then frees the bucket array. |
| * |
| * This function will eventually sleep to wait for an async resize |
| * to complete. The caller is responsible that no further write operations |
| * occurs in parallel. |
| */ |
| void rhashtable_free_and_destroy(struct rhashtable *ht, |
| void (*free_fn)(void *ptr, void *arg), |
| void *arg) |
| { |
| struct bucket_table *tbl, *next_tbl; |
| unsigned int i; |
| |
| cancel_work_sync(&ht->run_work); |
| |
| mutex_lock(&ht->mutex); |
| tbl = rht_dereference(ht->tbl, ht); |
| restart: |
| if (free_fn) { |
| for (i = 0; i < tbl->size; i++) { |
| struct rhash_head *pos, *next; |
| |
| cond_resched(); |
| for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), |
| next = !rht_is_a_nulls(pos) ? |
| rht_dereference(pos->next, ht) : NULL; |
| !rht_is_a_nulls(pos); |
| pos = next, |
| next = !rht_is_a_nulls(pos) ? |
| rht_dereference(pos->next, ht) : NULL) |
| rhashtable_free_one(ht, pos, free_fn, arg); |
| } |
| } |
| |
| next_tbl = rht_dereference(tbl->future_tbl, ht); |
| bucket_table_free(tbl); |
| if (next_tbl) { |
| tbl = next_tbl; |
| goto restart; |
| } |
| mutex_unlock(&ht->mutex); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); |
| |
| void rhashtable_destroy(struct rhashtable *ht) |
| { |
| return rhashtable_free_and_destroy(ht, NULL, NULL); |
| } |
| EXPORT_SYMBOL_GPL(rhashtable_destroy); |
| |
| struct rhash_lock_head __rcu **__rht_bucket_nested( |
| const struct bucket_table *tbl, unsigned int hash) |
| { |
| const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); |
| unsigned int index = hash & ((1 << tbl->nest) - 1); |
| unsigned int size = tbl->size >> tbl->nest; |
| unsigned int subhash = hash; |
| union nested_table *ntbl; |
| |
| ntbl = nested_table_top(tbl); |
| ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); |
| subhash >>= tbl->nest; |
| |
| while (ntbl && size > (1 << shift)) { |
| index = subhash & ((1 << shift) - 1); |
| ntbl = rht_dereference_bucket_rcu(ntbl[index].table, |
| tbl, hash); |
| size >>= shift; |
| subhash >>= shift; |
| } |
| |
| if (!ntbl) |
| return NULL; |
| |
| return &ntbl[subhash].bucket; |
| |
| } |
| EXPORT_SYMBOL_GPL(__rht_bucket_nested); |
| |
| struct rhash_lock_head __rcu **rht_bucket_nested( |
| const struct bucket_table *tbl, unsigned int hash) |
| { |
| static struct rhash_lock_head __rcu *rhnull; |
| |
| if (!rhnull) |
| INIT_RHT_NULLS_HEAD(rhnull); |
| return __rht_bucket_nested(tbl, hash) ?: &rhnull; |
| } |
| EXPORT_SYMBOL_GPL(rht_bucket_nested); |
| |
| struct rhash_lock_head __rcu **rht_bucket_nested_insert( |
| struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) |
| { |
| const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); |
| unsigned int index = hash & ((1 << tbl->nest) - 1); |
| unsigned int size = tbl->size >> tbl->nest; |
| union nested_table *ntbl; |
| |
| ntbl = nested_table_top(tbl); |
| hash >>= tbl->nest; |
| ntbl = nested_table_alloc(ht, &ntbl[index].table, |
| size <= (1 << shift)); |
| |
| while (ntbl && size > (1 << shift)) { |
| index = hash & ((1 << shift) - 1); |
| size >>= shift; |
| hash >>= shift; |
| ntbl = nested_table_alloc(ht, &ntbl[index].table, |
| size <= (1 << shift)); |
| } |
| |
| if (!ntbl) |
| return NULL; |
| |
| return &ntbl[hash].bucket; |
| |
| } |
| EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); |