| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NTP state machine interfaces and logic. |
| * |
| * This code was mainly moved from kernel/timer.c and kernel/time.c |
| * Please see those files for relevant copyright info and historical |
| * changelogs. |
| */ |
| #include <linux/capability.h> |
| #include <linux/clocksource.h> |
| #include <linux/workqueue.h> |
| #include <linux/hrtimer.h> |
| #include <linux/jiffies.h> |
| #include <linux/math64.h> |
| #include <linux/timex.h> |
| #include <linux/time.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/rtc.h> |
| #include <linux/audit.h> |
| |
| #include "ntp_internal.h" |
| #include "timekeeping_internal.h" |
| |
| |
| /* |
| * NTP timekeeping variables: |
| * |
| * Note: All of the NTP state is protected by the timekeeping locks. |
| */ |
| |
| |
| /* USER_HZ period (usecs): */ |
| unsigned long tick_usec = USER_TICK_USEC; |
| |
| /* SHIFTED_HZ period (nsecs): */ |
| unsigned long tick_nsec; |
| |
| static u64 tick_length; |
| static u64 tick_length_base; |
| |
| #define SECS_PER_DAY 86400 |
| #define MAX_TICKADJ 500LL /* usecs */ |
| #define MAX_TICKADJ_SCALED \ |
| (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
| #define MAX_TAI_OFFSET 100000 |
| |
| /* |
| * phase-lock loop variables |
| */ |
| |
| /* |
| * clock synchronization status |
| * |
| * (TIME_ERROR prevents overwriting the CMOS clock) |
| */ |
| static int time_state = TIME_OK; |
| |
| /* clock status bits: */ |
| static int time_status = STA_UNSYNC; |
| |
| /* time adjustment (nsecs): */ |
| static s64 time_offset; |
| |
| /* pll time constant: */ |
| static long time_constant = 2; |
| |
| /* maximum error (usecs): */ |
| static long time_maxerror = NTP_PHASE_LIMIT; |
| |
| /* estimated error (usecs): */ |
| static long time_esterror = NTP_PHASE_LIMIT; |
| |
| /* frequency offset (scaled nsecs/secs): */ |
| static s64 time_freq; |
| |
| /* time at last adjustment (secs): */ |
| static time64_t time_reftime; |
| |
| static long time_adjust; |
| |
| /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
| static s64 ntp_tick_adj; |
| |
| /* second value of the next pending leapsecond, or TIME64_MAX if no leap */ |
| static time64_t ntp_next_leap_sec = TIME64_MAX; |
| |
| #ifdef CONFIG_NTP_PPS |
| |
| /* |
| * The following variables are used when a pulse-per-second (PPS) signal |
| * is available. They establish the engineering parameters of the clock |
| * discipline loop when controlled by the PPS signal. |
| */ |
| #define PPS_VALID 10 /* PPS signal watchdog max (s) */ |
| #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ |
| #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ |
| #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ |
| #define PPS_INTCOUNT 4 /* number of consecutive good intervals to |
| increase pps_shift or consecutive bad |
| intervals to decrease it */ |
| #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ |
| |
| static int pps_valid; /* signal watchdog counter */ |
| static long pps_tf[3]; /* phase median filter */ |
| static long pps_jitter; /* current jitter (ns) */ |
| static struct timespec64 pps_fbase; /* beginning of the last freq interval */ |
| static int pps_shift; /* current interval duration (s) (shift) */ |
| static int pps_intcnt; /* interval counter */ |
| static s64 pps_freq; /* frequency offset (scaled ns/s) */ |
| static long pps_stabil; /* current stability (scaled ns/s) */ |
| |
| /* |
| * PPS signal quality monitors |
| */ |
| static long pps_calcnt; /* calibration intervals */ |
| static long pps_jitcnt; /* jitter limit exceeded */ |
| static long pps_stbcnt; /* stability limit exceeded */ |
| static long pps_errcnt; /* calibration errors */ |
| |
| |
| /* PPS kernel consumer compensates the whole phase error immediately. |
| * Otherwise, reduce the offset by a fixed factor times the time constant. |
| */ |
| static inline s64 ntp_offset_chunk(s64 offset) |
| { |
| if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) |
| return offset; |
| else |
| return shift_right(offset, SHIFT_PLL + time_constant); |
| } |
| |
| static inline void pps_reset_freq_interval(void) |
| { |
| /* the PPS calibration interval may end |
| surprisingly early */ |
| pps_shift = PPS_INTMIN; |
| pps_intcnt = 0; |
| } |
| |
| /** |
| * pps_clear - Clears the PPS state variables |
| */ |
| static inline void pps_clear(void) |
| { |
| pps_reset_freq_interval(); |
| pps_tf[0] = 0; |
| pps_tf[1] = 0; |
| pps_tf[2] = 0; |
| pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; |
| pps_freq = 0; |
| } |
| |
| /* Decrease pps_valid to indicate that another second has passed since |
| * the last PPS signal. When it reaches 0, indicate that PPS signal is |
| * missing. |
| */ |
| static inline void pps_dec_valid(void) |
| { |
| if (pps_valid > 0) |
| pps_valid--; |
| else { |
| time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | |
| STA_PPSWANDER | STA_PPSERROR); |
| pps_clear(); |
| } |
| } |
| |
| static inline void pps_set_freq(s64 freq) |
| { |
| pps_freq = freq; |
| } |
| |
| static inline int is_error_status(int status) |
| { |
| return (status & (STA_UNSYNC|STA_CLOCKERR)) |
| /* PPS signal lost when either PPS time or |
| * PPS frequency synchronization requested |
| */ |
| || ((status & (STA_PPSFREQ|STA_PPSTIME)) |
| && !(status & STA_PPSSIGNAL)) |
| /* PPS jitter exceeded when |
| * PPS time synchronization requested */ |
| || ((status & (STA_PPSTIME|STA_PPSJITTER)) |
| == (STA_PPSTIME|STA_PPSJITTER)) |
| /* PPS wander exceeded or calibration error when |
| * PPS frequency synchronization requested |
| */ |
| || ((status & STA_PPSFREQ) |
| && (status & (STA_PPSWANDER|STA_PPSERROR))); |
| } |
| |
| static inline void pps_fill_timex(struct __kernel_timex *txc) |
| { |
| txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * |
| PPM_SCALE_INV, NTP_SCALE_SHIFT); |
| txc->jitter = pps_jitter; |
| if (!(time_status & STA_NANO)) |
| txc->jitter = pps_jitter / NSEC_PER_USEC; |
| txc->shift = pps_shift; |
| txc->stabil = pps_stabil; |
| txc->jitcnt = pps_jitcnt; |
| txc->calcnt = pps_calcnt; |
| txc->errcnt = pps_errcnt; |
| txc->stbcnt = pps_stbcnt; |
| } |
| |
| #else /* !CONFIG_NTP_PPS */ |
| |
| static inline s64 ntp_offset_chunk(s64 offset) |
| { |
| return shift_right(offset, SHIFT_PLL + time_constant); |
| } |
| |
| static inline void pps_reset_freq_interval(void) {} |
| static inline void pps_clear(void) {} |
| static inline void pps_dec_valid(void) {} |
| static inline void pps_set_freq(s64 freq) {} |
| |
| static inline int is_error_status(int status) |
| { |
| return status & (STA_UNSYNC|STA_CLOCKERR); |
| } |
| |
| static inline void pps_fill_timex(struct __kernel_timex *txc) |
| { |
| /* PPS is not implemented, so these are zero */ |
| txc->ppsfreq = 0; |
| txc->jitter = 0; |
| txc->shift = 0; |
| txc->stabil = 0; |
| txc->jitcnt = 0; |
| txc->calcnt = 0; |
| txc->errcnt = 0; |
| txc->stbcnt = 0; |
| } |
| |
| #endif /* CONFIG_NTP_PPS */ |
| |
| |
| /** |
| * ntp_synced - Returns 1 if the NTP status is not UNSYNC |
| * |
| */ |
| static inline int ntp_synced(void) |
| { |
| return !(time_status & STA_UNSYNC); |
| } |
| |
| |
| /* |
| * NTP methods: |
| */ |
| |
| /* |
| * Update (tick_length, tick_length_base, tick_nsec), based |
| * on (tick_usec, ntp_tick_adj, time_freq): |
| */ |
| static void ntp_update_frequency(void) |
| { |
| u64 second_length; |
| u64 new_base; |
| |
| second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) |
| << NTP_SCALE_SHIFT; |
| |
| second_length += ntp_tick_adj; |
| second_length += time_freq; |
| |
| tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
| new_base = div_u64(second_length, NTP_INTERVAL_FREQ); |
| |
| /* |
| * Don't wait for the next second_overflow, apply |
| * the change to the tick length immediately: |
| */ |
| tick_length += new_base - tick_length_base; |
| tick_length_base = new_base; |
| } |
| |
| static inline s64 ntp_update_offset_fll(s64 offset64, long secs) |
| { |
| time_status &= ~STA_MODE; |
| |
| if (secs < MINSEC) |
| return 0; |
| |
| if (!(time_status & STA_FLL) && (secs <= MAXSEC)) |
| return 0; |
| |
| time_status |= STA_MODE; |
| |
| return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); |
| } |
| |
| static void ntp_update_offset(long offset) |
| { |
| s64 freq_adj; |
| s64 offset64; |
| long secs; |
| |
| if (!(time_status & STA_PLL)) |
| return; |
| |
| if (!(time_status & STA_NANO)) { |
| /* Make sure the multiplication below won't overflow */ |
| offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); |
| offset *= NSEC_PER_USEC; |
| } |
| |
| /* |
| * Scale the phase adjustment and |
| * clamp to the operating range. |
| */ |
| offset = clamp(offset, -MAXPHASE, MAXPHASE); |
| |
| /* |
| * Select how the frequency is to be controlled |
| * and in which mode (PLL or FLL). |
| */ |
| secs = (long)(__ktime_get_real_seconds() - time_reftime); |
| if (unlikely(time_status & STA_FREQHOLD)) |
| secs = 0; |
| |
| time_reftime = __ktime_get_real_seconds(); |
| |
| offset64 = offset; |
| freq_adj = ntp_update_offset_fll(offset64, secs); |
| |
| /* |
| * Clamp update interval to reduce PLL gain with low |
| * sampling rate (e.g. intermittent network connection) |
| * to avoid instability. |
| */ |
| if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) |
| secs = 1 << (SHIFT_PLL + 1 + time_constant); |
| |
| freq_adj += (offset64 * secs) << |
| (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); |
| |
| freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); |
| |
| time_freq = max(freq_adj, -MAXFREQ_SCALED); |
| |
| time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); |
| } |
| |
| /** |
| * ntp_clear - Clears the NTP state variables |
| */ |
| void ntp_clear(void) |
| { |
| time_adjust = 0; /* stop active adjtime() */ |
| time_status |= STA_UNSYNC; |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_esterror = NTP_PHASE_LIMIT; |
| |
| ntp_update_frequency(); |
| |
| tick_length = tick_length_base; |
| time_offset = 0; |
| |
| ntp_next_leap_sec = TIME64_MAX; |
| /* Clear PPS state variables */ |
| pps_clear(); |
| } |
| |
| |
| u64 ntp_tick_length(void) |
| { |
| return tick_length; |
| } |
| |
| /** |
| * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t |
| * |
| * Provides the time of the next leapsecond against CLOCK_REALTIME in |
| * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. |
| */ |
| ktime_t ntp_get_next_leap(void) |
| { |
| ktime_t ret; |
| |
| if ((time_state == TIME_INS) && (time_status & STA_INS)) |
| return ktime_set(ntp_next_leap_sec, 0); |
| ret = KTIME_MAX; |
| return ret; |
| } |
| |
| /* |
| * this routine handles the overflow of the microsecond field |
| * |
| * The tricky bits of code to handle the accurate clock support |
| * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
| * They were originally developed for SUN and DEC kernels. |
| * All the kudos should go to Dave for this stuff. |
| * |
| * Also handles leap second processing, and returns leap offset |
| */ |
| int second_overflow(time64_t secs) |
| { |
| s64 delta; |
| int leap = 0; |
| s32 rem; |
| |
| /* |
| * Leap second processing. If in leap-insert state at the end of the |
| * day, the system clock is set back one second; if in leap-delete |
| * state, the system clock is set ahead one second. |
| */ |
| switch (time_state) { |
| case TIME_OK: |
| if (time_status & STA_INS) { |
| time_state = TIME_INS; |
| div_s64_rem(secs, SECS_PER_DAY, &rem); |
| ntp_next_leap_sec = secs + SECS_PER_DAY - rem; |
| } else if (time_status & STA_DEL) { |
| time_state = TIME_DEL; |
| div_s64_rem(secs + 1, SECS_PER_DAY, &rem); |
| ntp_next_leap_sec = secs + SECS_PER_DAY - rem; |
| } |
| break; |
| case TIME_INS: |
| if (!(time_status & STA_INS)) { |
| ntp_next_leap_sec = TIME64_MAX; |
| time_state = TIME_OK; |
| } else if (secs == ntp_next_leap_sec) { |
| leap = -1; |
| time_state = TIME_OOP; |
| printk(KERN_NOTICE |
| "Clock: inserting leap second 23:59:60 UTC\n"); |
| } |
| break; |
| case TIME_DEL: |
| if (!(time_status & STA_DEL)) { |
| ntp_next_leap_sec = TIME64_MAX; |
| time_state = TIME_OK; |
| } else if (secs == ntp_next_leap_sec) { |
| leap = 1; |
| ntp_next_leap_sec = TIME64_MAX; |
| time_state = TIME_WAIT; |
| printk(KERN_NOTICE |
| "Clock: deleting leap second 23:59:59 UTC\n"); |
| } |
| break; |
| case TIME_OOP: |
| ntp_next_leap_sec = TIME64_MAX; |
| time_state = TIME_WAIT; |
| break; |
| case TIME_WAIT: |
| if (!(time_status & (STA_INS | STA_DEL))) |
| time_state = TIME_OK; |
| break; |
| } |
| |
| |
| /* Bump the maxerror field */ |
| time_maxerror += MAXFREQ / NSEC_PER_USEC; |
| if (time_maxerror > NTP_PHASE_LIMIT) { |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_status |= STA_UNSYNC; |
| } |
| |
| /* Compute the phase adjustment for the next second */ |
| tick_length = tick_length_base; |
| |
| delta = ntp_offset_chunk(time_offset); |
| time_offset -= delta; |
| tick_length += delta; |
| |
| /* Check PPS signal */ |
| pps_dec_valid(); |
| |
| if (!time_adjust) |
| goto out; |
| |
| if (time_adjust > MAX_TICKADJ) { |
| time_adjust -= MAX_TICKADJ; |
| tick_length += MAX_TICKADJ_SCALED; |
| goto out; |
| } |
| |
| if (time_adjust < -MAX_TICKADJ) { |
| time_adjust += MAX_TICKADJ; |
| tick_length -= MAX_TICKADJ_SCALED; |
| goto out; |
| } |
| |
| tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) |
| << NTP_SCALE_SHIFT; |
| time_adjust = 0; |
| |
| out: |
| return leap; |
| } |
| |
| #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) |
| static void sync_hw_clock(struct work_struct *work); |
| static DECLARE_WORK(sync_work, sync_hw_clock); |
| static struct hrtimer sync_hrtimer; |
| #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC) |
| |
| static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer) |
| { |
| queue_work(system_freezable_power_efficient_wq, &sync_work); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry) |
| { |
| ktime_t exp = ktime_set(ktime_get_real_seconds(), 0); |
| |
| if (retry) |
| exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec); |
| else |
| exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec); |
| |
| hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS); |
| } |
| |
| /* |
| * Check whether @now is correct versus the required time to update the RTC |
| * and calculate the value which needs to be written to the RTC so that the |
| * next seconds increment of the RTC after the write is aligned with the next |
| * seconds increment of clock REALTIME. |
| * |
| * tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds |
| * |
| * t2.tv_nsec == 0 |
| * tsched = t2 - set_offset_nsec |
| * newval = t2 - NSEC_PER_SEC |
| * |
| * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC |
| * |
| * As the execution of this code is not guaranteed to happen exactly at |
| * tsched this allows it to happen within a fuzzy region: |
| * |
| * abs(now - tsched) < FUZZ |
| * |
| * If @now is not inside the allowed window the function returns false. |
| */ |
| static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec, |
| struct timespec64 *to_set, |
| const struct timespec64 *now) |
| { |
| /* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */ |
| const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; |
| struct timespec64 delay = {.tv_sec = -1, |
| .tv_nsec = set_offset_nsec}; |
| |
| *to_set = timespec64_add(*now, delay); |
| |
| if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { |
| to_set->tv_nsec = 0; |
| return true; |
| } |
| |
| if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { |
| to_set->tv_sec++; |
| to_set->tv_nsec = 0; |
| return true; |
| } |
| return false; |
| } |
| |
| #ifdef CONFIG_GENERIC_CMOS_UPDATE |
| int __weak update_persistent_clock64(struct timespec64 now64) |
| { |
| return -ENODEV; |
| } |
| #else |
| static inline int update_persistent_clock64(struct timespec64 now64) |
| { |
| return -ENODEV; |
| } |
| #endif |
| |
| #ifdef CONFIG_RTC_SYSTOHC |
| /* Save NTP synchronized time to the RTC */ |
| static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) |
| { |
| struct rtc_device *rtc; |
| struct rtc_time tm; |
| int err = -ENODEV; |
| |
| rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE); |
| if (!rtc) |
| return -ENODEV; |
| |
| if (!rtc->ops || !rtc->ops->set_time) |
| goto out_close; |
| |
| /* First call might not have the correct offset */ |
| if (*offset_nsec == rtc->set_offset_nsec) { |
| rtc_time64_to_tm(to_set->tv_sec, &tm); |
| err = rtc_set_time(rtc, &tm); |
| } else { |
| /* Store the update offset and let the caller try again */ |
| *offset_nsec = rtc->set_offset_nsec; |
| err = -EAGAIN; |
| } |
| out_close: |
| rtc_class_close(rtc); |
| return err; |
| } |
| #else |
| static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) |
| { |
| return -ENODEV; |
| } |
| #endif |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update RTC clock |
| * accordingly every ~11 minutes. Generally RTCs can only store second |
| * precision, but many RTCs will adjust the phase of their second tick to |
| * match the moment of update. This infrastructure arranges to call to the RTC |
| * set at the correct moment to phase synchronize the RTC second tick over |
| * with the kernel clock. |
| */ |
| static void sync_hw_clock(struct work_struct *work) |
| { |
| /* |
| * The default synchronization offset is 500ms for the deprecated |
| * update_persistent_clock64() under the assumption that it uses |
| * the infamous CMOS clock (MC146818). |
| */ |
| static unsigned long offset_nsec = NSEC_PER_SEC / 2; |
| struct timespec64 now, to_set; |
| int res = -EAGAIN; |
| |
| /* |
| * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer() |
| * managed to schedule the work between the timer firing and the |
| * work being able to rearm the timer. Wait for the timer to expire. |
| */ |
| if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer)) |
| return; |
| |
| ktime_get_real_ts64(&now); |
| /* If @now is not in the allowed window, try again */ |
| if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now)) |
| goto rearm; |
| |
| /* Take timezone adjusted RTCs into account */ |
| if (persistent_clock_is_local) |
| to_set.tv_sec -= (sys_tz.tz_minuteswest * 60); |
| |
| /* Try the legacy RTC first. */ |
| res = update_persistent_clock64(to_set); |
| if (res != -ENODEV) |
| goto rearm; |
| |
| /* Try the RTC class */ |
| res = update_rtc(&to_set, &offset_nsec); |
| if (res == -ENODEV) |
| return; |
| rearm: |
| sched_sync_hw_clock(offset_nsec, res != 0); |
| } |
| |
| void ntp_notify_cmos_timer(void) |
| { |
| /* |
| * When the work is currently executed but has not yet the timer |
| * rearmed this queues the work immediately again. No big issue, |
| * just a pointless work scheduled. |
| */ |
| if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer)) |
| queue_work(system_freezable_power_efficient_wq, &sync_work); |
| } |
| |
| static void __init ntp_init_cmos_sync(void) |
| { |
| hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS); |
| sync_hrtimer.function = sync_timer_callback; |
| } |
| #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ |
| static inline void __init ntp_init_cmos_sync(void) { } |
| #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ |
| |
| /* |
| * Propagate a new txc->status value into the NTP state: |
| */ |
| static inline void process_adj_status(const struct __kernel_timex *txc) |
| { |
| if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { |
| time_state = TIME_OK; |
| time_status = STA_UNSYNC; |
| ntp_next_leap_sec = TIME64_MAX; |
| /* restart PPS frequency calibration */ |
| pps_reset_freq_interval(); |
| } |
| |
| /* |
| * If we turn on PLL adjustments then reset the |
| * reference time to current time. |
| */ |
| if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) |
| time_reftime = __ktime_get_real_seconds(); |
| |
| /* only set allowed bits */ |
| time_status &= STA_RONLY; |
| time_status |= txc->status & ~STA_RONLY; |
| } |
| |
| |
| static inline void process_adjtimex_modes(const struct __kernel_timex *txc, |
| s32 *time_tai) |
| { |
| if (txc->modes & ADJ_STATUS) |
| process_adj_status(txc); |
| |
| if (txc->modes & ADJ_NANO) |
| time_status |= STA_NANO; |
| |
| if (txc->modes & ADJ_MICRO) |
| time_status &= ~STA_NANO; |
| |
| if (txc->modes & ADJ_FREQUENCY) { |
| time_freq = txc->freq * PPM_SCALE; |
| time_freq = min(time_freq, MAXFREQ_SCALED); |
| time_freq = max(time_freq, -MAXFREQ_SCALED); |
| /* update pps_freq */ |
| pps_set_freq(time_freq); |
| } |
| |
| if (txc->modes & ADJ_MAXERROR) |
| time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT); |
| |
| if (txc->modes & ADJ_ESTERROR) |
| time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT); |
| |
| if (txc->modes & ADJ_TIMECONST) { |
| time_constant = clamp(txc->constant, 0, MAXTC); |
| if (!(time_status & STA_NANO)) |
| time_constant += 4; |
| time_constant = clamp(time_constant, 0, MAXTC); |
| } |
| |
| if (txc->modes & ADJ_TAI && |
| txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET) |
| *time_tai = txc->constant; |
| |
| if (txc->modes & ADJ_OFFSET) |
| ntp_update_offset(txc->offset); |
| |
| if (txc->modes & ADJ_TICK) |
| tick_usec = txc->tick; |
| |
| if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) |
| ntp_update_frequency(); |
| } |
| |
| |
| /* |
| * adjtimex mainly allows reading (and writing, if superuser) of |
| * kernel time-keeping variables. used by xntpd. |
| */ |
| int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts, |
| s32 *time_tai, struct audit_ntp_data *ad) |
| { |
| int result; |
| |
| if (txc->modes & ADJ_ADJTIME) { |
| long save_adjust = time_adjust; |
| |
| if (!(txc->modes & ADJ_OFFSET_READONLY)) { |
| /* adjtime() is independent from ntp_adjtime() */ |
| time_adjust = txc->offset; |
| ntp_update_frequency(); |
| |
| audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust); |
| audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust); |
| } |
| txc->offset = save_adjust; |
| } else { |
| /* If there are input parameters, then process them: */ |
| if (txc->modes) { |
| audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset); |
| audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq); |
| audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status); |
| audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai); |
| audit_ntp_set_old(ad, AUDIT_NTP_TICK, tick_usec); |
| |
| process_adjtimex_modes(txc, time_tai); |
| |
| audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset); |
| audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq); |
| audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status); |
| audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai); |
| audit_ntp_set_new(ad, AUDIT_NTP_TICK, tick_usec); |
| } |
| |
| txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
| NTP_SCALE_SHIFT); |
| if (!(time_status & STA_NANO)) |
| txc->offset = (u32)txc->offset / NSEC_PER_USEC; |
| } |
| |
| result = time_state; /* mostly `TIME_OK' */ |
| /* check for errors */ |
| if (is_error_status(time_status)) |
| result = TIME_ERROR; |
| |
| txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
| PPM_SCALE_INV, NTP_SCALE_SHIFT); |
| txc->maxerror = time_maxerror; |
| txc->esterror = time_esterror; |
| txc->status = time_status; |
| txc->constant = time_constant; |
| txc->precision = 1; |
| txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
| txc->tick = tick_usec; |
| txc->tai = *time_tai; |
| |
| /* fill PPS status fields */ |
| pps_fill_timex(txc); |
| |
| txc->time.tv_sec = ts->tv_sec; |
| txc->time.tv_usec = ts->tv_nsec; |
| if (!(time_status & STA_NANO)) |
| txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC; |
| |
| /* Handle leapsec adjustments */ |
| if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { |
| if ((time_state == TIME_INS) && (time_status & STA_INS)) { |
| result = TIME_OOP; |
| txc->tai++; |
| txc->time.tv_sec--; |
| } |
| if ((time_state == TIME_DEL) && (time_status & STA_DEL)) { |
| result = TIME_WAIT; |
| txc->tai--; |
| txc->time.tv_sec++; |
| } |
| if ((time_state == TIME_OOP) && |
| (ts->tv_sec == ntp_next_leap_sec)) { |
| result = TIME_WAIT; |
| } |
| } |
| |
| return result; |
| } |
| |
| #ifdef CONFIG_NTP_PPS |
| |
| /* actually struct pps_normtime is good old struct timespec, but it is |
| * semantically different (and it is the reason why it was invented): |
| * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] |
| * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ |
| struct pps_normtime { |
| s64 sec; /* seconds */ |
| long nsec; /* nanoseconds */ |
| }; |
| |
| /* normalize the timestamp so that nsec is in the |
| ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ |
| static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) |
| { |
| struct pps_normtime norm = { |
| .sec = ts.tv_sec, |
| .nsec = ts.tv_nsec |
| }; |
| |
| if (norm.nsec > (NSEC_PER_SEC >> 1)) { |
| norm.nsec -= NSEC_PER_SEC; |
| norm.sec++; |
| } |
| |
| return norm; |
| } |
| |
| /* get current phase correction and jitter */ |
| static inline long pps_phase_filter_get(long *jitter) |
| { |
| *jitter = pps_tf[0] - pps_tf[1]; |
| if (*jitter < 0) |
| *jitter = -*jitter; |
| |
| /* TODO: test various filters */ |
| return pps_tf[0]; |
| } |
| |
| /* add the sample to the phase filter */ |
| static inline void pps_phase_filter_add(long err) |
| { |
| pps_tf[2] = pps_tf[1]; |
| pps_tf[1] = pps_tf[0]; |
| pps_tf[0] = err; |
| } |
| |
| /* decrease frequency calibration interval length. |
| * It is halved after four consecutive unstable intervals. |
| */ |
| static inline void pps_dec_freq_interval(void) |
| { |
| if (--pps_intcnt <= -PPS_INTCOUNT) { |
| pps_intcnt = -PPS_INTCOUNT; |
| if (pps_shift > PPS_INTMIN) { |
| pps_shift--; |
| pps_intcnt = 0; |
| } |
| } |
| } |
| |
| /* increase frequency calibration interval length. |
| * It is doubled after four consecutive stable intervals. |
| */ |
| static inline void pps_inc_freq_interval(void) |
| { |
| if (++pps_intcnt >= PPS_INTCOUNT) { |
| pps_intcnt = PPS_INTCOUNT; |
| if (pps_shift < PPS_INTMAX) { |
| pps_shift++; |
| pps_intcnt = 0; |
| } |
| } |
| } |
| |
| /* update clock frequency based on MONOTONIC_RAW clock PPS signal |
| * timestamps |
| * |
| * At the end of the calibration interval the difference between the |
| * first and last MONOTONIC_RAW clock timestamps divided by the length |
| * of the interval becomes the frequency update. If the interval was |
| * too long, the data are discarded. |
| * Returns the difference between old and new frequency values. |
| */ |
| static long hardpps_update_freq(struct pps_normtime freq_norm) |
| { |
| long delta, delta_mod; |
| s64 ftemp; |
| |
| /* check if the frequency interval was too long */ |
| if (freq_norm.sec > (2 << pps_shift)) { |
| time_status |= STA_PPSERROR; |
| pps_errcnt++; |
| pps_dec_freq_interval(); |
| printk_deferred(KERN_ERR |
| "hardpps: PPSERROR: interval too long - %lld s\n", |
| freq_norm.sec); |
| return 0; |
| } |
| |
| /* here the raw frequency offset and wander (stability) is |
| * calculated. If the wander is less than the wander threshold |
| * the interval is increased; otherwise it is decreased. |
| */ |
| ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, |
| freq_norm.sec); |
| delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); |
| pps_freq = ftemp; |
| if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { |
| printk_deferred(KERN_WARNING |
| "hardpps: PPSWANDER: change=%ld\n", delta); |
| time_status |= STA_PPSWANDER; |
| pps_stbcnt++; |
| pps_dec_freq_interval(); |
| } else { /* good sample */ |
| pps_inc_freq_interval(); |
| } |
| |
| /* the stability metric is calculated as the average of recent |
| * frequency changes, but is used only for performance |
| * monitoring |
| */ |
| delta_mod = delta; |
| if (delta_mod < 0) |
| delta_mod = -delta_mod; |
| pps_stabil += (div_s64(((s64)delta_mod) << |
| (NTP_SCALE_SHIFT - SHIFT_USEC), |
| NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; |
| |
| /* if enabled, the system clock frequency is updated */ |
| if ((time_status & STA_PPSFREQ) != 0 && |
| (time_status & STA_FREQHOLD) == 0) { |
| time_freq = pps_freq; |
| ntp_update_frequency(); |
| } |
| |
| return delta; |
| } |
| |
| /* correct REALTIME clock phase error against PPS signal */ |
| static void hardpps_update_phase(long error) |
| { |
| long correction = -error; |
| long jitter; |
| |
| /* add the sample to the median filter */ |
| pps_phase_filter_add(correction); |
| correction = pps_phase_filter_get(&jitter); |
| |
| /* Nominal jitter is due to PPS signal noise. If it exceeds the |
| * threshold, the sample is discarded; otherwise, if so enabled, |
| * the time offset is updated. |
| */ |
| if (jitter > (pps_jitter << PPS_POPCORN)) { |
| printk_deferred(KERN_WARNING |
| "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", |
| jitter, (pps_jitter << PPS_POPCORN)); |
| time_status |= STA_PPSJITTER; |
| pps_jitcnt++; |
| } else if (time_status & STA_PPSTIME) { |
| /* correct the time using the phase offset */ |
| time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, |
| NTP_INTERVAL_FREQ); |
| /* cancel running adjtime() */ |
| time_adjust = 0; |
| } |
| /* update jitter */ |
| pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; |
| } |
| |
| /* |
| * __hardpps() - discipline CPU clock oscillator to external PPS signal |
| * |
| * This routine is called at each PPS signal arrival in order to |
| * discipline the CPU clock oscillator to the PPS signal. It takes two |
| * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former |
| * is used to correct clock phase error and the latter is used to |
| * correct the frequency. |
| * |
| * This code is based on David Mills's reference nanokernel |
| * implementation. It was mostly rewritten but keeps the same idea. |
| */ |
| void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) |
| { |
| struct pps_normtime pts_norm, freq_norm; |
| |
| pts_norm = pps_normalize_ts(*phase_ts); |
| |
| /* clear the error bits, they will be set again if needed */ |
| time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); |
| |
| /* indicate signal presence */ |
| time_status |= STA_PPSSIGNAL; |
| pps_valid = PPS_VALID; |
| |
| /* when called for the first time, |
| * just start the frequency interval */ |
| if (unlikely(pps_fbase.tv_sec == 0)) { |
| pps_fbase = *raw_ts; |
| return; |
| } |
| |
| /* ok, now we have a base for frequency calculation */ |
| freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); |
| |
| /* check that the signal is in the range |
| * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ |
| if ((freq_norm.sec == 0) || |
| (freq_norm.nsec > MAXFREQ * freq_norm.sec) || |
| (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { |
| time_status |= STA_PPSJITTER; |
| /* restart the frequency calibration interval */ |
| pps_fbase = *raw_ts; |
| printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); |
| return; |
| } |
| |
| /* signal is ok */ |
| |
| /* check if the current frequency interval is finished */ |
| if (freq_norm.sec >= (1 << pps_shift)) { |
| pps_calcnt++; |
| /* restart the frequency calibration interval */ |
| pps_fbase = *raw_ts; |
| hardpps_update_freq(freq_norm); |
| } |
| |
| hardpps_update_phase(pts_norm.nsec); |
| |
| } |
| #endif /* CONFIG_NTP_PPS */ |
| |
| static int __init ntp_tick_adj_setup(char *str) |
| { |
| int rc = kstrtos64(str, 0, &ntp_tick_adj); |
| if (rc) |
| return rc; |
| |
| ntp_tick_adj <<= NTP_SCALE_SHIFT; |
| return 1; |
| } |
| |
| __setup("ntp_tick_adj=", ntp_tick_adj_setup); |
| |
| void __init ntp_init(void) |
| { |
| ntp_clear(); |
| ntp_init_cmos_sync(); |
| } |