blob: f8ae1f0f17d36141cb38b4e69d1d13eb2d0bf132 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Serial Attached SCSI (SAS) Transport Layer initialization
*
* Copyright (C) 2005 Adaptec, Inc. All rights reserved.
* Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <scsi/sas_ata.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_sas.h>
#include "sas_internal.h"
#include "../scsi_sas_internal.h"
static struct kmem_cache *sas_task_cache;
static struct kmem_cache *sas_event_cache;
struct sas_task *sas_alloc_task(gfp_t flags)
{
struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
if (task) {
spin_lock_init(&task->task_state_lock);
task->task_state_flags = SAS_TASK_STATE_PENDING;
}
return task;
}
EXPORT_SYMBOL_GPL(sas_alloc_task);
struct sas_task *sas_alloc_slow_task(gfp_t flags)
{
struct sas_task *task = sas_alloc_task(flags);
struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
if (!task || !slow) {
if (task)
kmem_cache_free(sas_task_cache, task);
kfree(slow);
return NULL;
}
task->slow_task = slow;
slow->task = task;
timer_setup(&slow->timer, NULL, 0);
init_completion(&slow->completion);
return task;
}
EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
void sas_free_task(struct sas_task *task)
{
if (task) {
kfree(task->slow_task);
kmem_cache_free(sas_task_cache, task);
}
}
EXPORT_SYMBOL_GPL(sas_free_task);
/*------------ SAS addr hash -----------*/
void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
{
const u32 poly = 0x00DB2777;
u32 r = 0;
int i;
for (i = 0; i < SAS_ADDR_SIZE; i++) {
int b;
for (b = (SAS_ADDR_SIZE - 1); b >= 0; b--) {
r <<= 1;
if ((1 << b) & sas_addr[i]) {
if (!(r & 0x01000000))
r ^= poly;
} else if (r & 0x01000000) {
r ^= poly;
}
}
}
hashed[0] = (r >> 16) & 0xFF;
hashed[1] = (r >> 8) & 0xFF;
hashed[2] = r & 0xFF;
}
int sas_register_ha(struct sas_ha_struct *sas_ha)
{
char name[64];
int error = 0;
mutex_init(&sas_ha->disco_mutex);
spin_lock_init(&sas_ha->phy_port_lock);
sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
set_bit(SAS_HA_REGISTERED, &sas_ha->state);
spin_lock_init(&sas_ha->lock);
mutex_init(&sas_ha->drain_mutex);
init_waitqueue_head(&sas_ha->eh_wait_q);
INIT_LIST_HEAD(&sas_ha->defer_q);
INIT_LIST_HEAD(&sas_ha->eh_dev_q);
sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
error = sas_register_phys(sas_ha);
if (error) {
pr_notice("couldn't register sas phys:%d\n", error);
return error;
}
error = sas_register_ports(sas_ha);
if (error) {
pr_notice("couldn't register sas ports:%d\n", error);
goto Undo_phys;
}
error = -ENOMEM;
snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
sas_ha->event_q = create_singlethread_workqueue(name);
if (!sas_ha->event_q)
goto Undo_ports;
snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
sas_ha->disco_q = create_singlethread_workqueue(name);
if (!sas_ha->disco_q)
goto Undo_event_q;
INIT_LIST_HEAD(&sas_ha->eh_done_q);
INIT_LIST_HEAD(&sas_ha->eh_ata_q);
return 0;
Undo_event_q:
destroy_workqueue(sas_ha->event_q);
Undo_ports:
sas_unregister_ports(sas_ha);
Undo_phys:
return error;
}
static void sas_disable_events(struct sas_ha_struct *sas_ha)
{
/* Set the state to unregistered to avoid further unchained
* events to be queued, and flush any in-progress drainers
*/
mutex_lock(&sas_ha->drain_mutex);
spin_lock_irq(&sas_ha->lock);
clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
spin_unlock_irq(&sas_ha->lock);
__sas_drain_work(sas_ha);
mutex_unlock(&sas_ha->drain_mutex);
}
int sas_unregister_ha(struct sas_ha_struct *sas_ha)
{
sas_disable_events(sas_ha);
sas_unregister_ports(sas_ha);
/* flush unregistration work */
mutex_lock(&sas_ha->drain_mutex);
__sas_drain_work(sas_ha);
mutex_unlock(&sas_ha->drain_mutex);
destroy_workqueue(sas_ha->disco_q);
destroy_workqueue(sas_ha->event_q);
return 0;
}
static int sas_get_linkerrors(struct sas_phy *phy)
{
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
}
return sas_smp_get_phy_events(phy);
}
int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
{
struct domain_device *dev = NULL;
/* try to route user requested link resets through libata */
if (asd_phy->port)
dev = asd_phy->port->port_dev;
/* validate that dev has been probed */
if (dev)
dev = sas_find_dev_by_rphy(dev->rphy);
if (dev && dev_is_sata(dev)) {
sas_ata_schedule_reset(dev);
sas_ata_wait_eh(dev);
return 0;
}
return -ENODEV;
}
/*
* transport_sas_phy_reset - reset a phy and permit libata to manage the link
*
* phy reset request via sysfs in host workqueue context so we know we
* can block on eh and safely traverse the domain_device topology
*/
static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
{
enum phy_func reset_type;
if (hard_reset)
reset_type = PHY_FUNC_HARD_RESET;
else
reset_type = PHY_FUNC_LINK_RESET;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
return 0;
return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
if (ata_dev && !hard_reset) {
sas_ata_schedule_reset(ata_dev);
sas_ata_wait_eh(ata_dev);
return 0;
} else
return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
}
}
static int sas_phy_enable(struct sas_phy *phy, int enable)
{
int ret;
enum phy_func cmd;
if (enable)
cmd = PHY_FUNC_LINK_RESET;
else
cmd = PHY_FUNC_DISABLE;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
if (enable)
ret = transport_sas_phy_reset(phy, 0);
else
ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
if (enable)
ret = transport_sas_phy_reset(phy, 0);
else
ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
}
return ret;
}
int sas_phy_reset(struct sas_phy *phy, int hard_reset)
{
int ret;
enum phy_func reset_type;
if (!phy->enabled)
return -ENODEV;
if (hard_reset)
reset_type = PHY_FUNC_HARD_RESET;
else
reset_type = PHY_FUNC_LINK_RESET;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
}
return ret;
}
int sas_set_phy_speed(struct sas_phy *phy,
struct sas_phy_linkrates *rates)
{
int ret;
if ((rates->minimum_linkrate &&
rates->minimum_linkrate > phy->maximum_linkrate) ||
(rates->maximum_linkrate &&
rates->maximum_linkrate < phy->minimum_linkrate))
return -EINVAL;
if (rates->minimum_linkrate &&
rates->minimum_linkrate < phy->minimum_linkrate_hw)
rates->minimum_linkrate = phy->minimum_linkrate_hw;
if (rates->maximum_linkrate &&
rates->maximum_linkrate > phy->maximum_linkrate_hw)
rates->maximum_linkrate = phy->maximum_linkrate_hw;
if (scsi_is_sas_phy_local(phy)) {
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
rates);
} else {
struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
ret = sas_smp_phy_control(ddev, phy->number,
PHY_FUNC_LINK_RESET, rates);
}
return ret;
}
void sas_prep_resume_ha(struct sas_ha_struct *ha)
{
int i;
set_bit(SAS_HA_REGISTERED, &ha->state);
/* clear out any stale link events/data from the suspension path */
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_phy *phy = ha->sas_phy[i];
memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
phy->frame_rcvd_size = 0;
}
}
EXPORT_SYMBOL(sas_prep_resume_ha);
static int phys_suspended(struct sas_ha_struct *ha)
{
int i, rc = 0;
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_phy *phy = ha->sas_phy[i];
if (phy->suspended)
rc++;
}
return rc;
}
void sas_resume_ha(struct sas_ha_struct *ha)
{
const unsigned long tmo = msecs_to_jiffies(25000);
int i;
/* deform ports on phys that did not resume
* at this point we may be racing the phy coming back (as posted
* by the lldd). So we post the event and once we are in the
* libsas context check that the phy remains suspended before
* tearing it down.
*/
i = phys_suspended(ha);
if (i)
dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
i, i > 1 ? "s" : "");
wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_phy *phy = ha->sas_phy[i];
if (phy->suspended) {
dev_warn(&phy->phy->dev, "resume timeout\n");
sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT);
}
}
/* all phys are back up or timed out, turn on i/o so we can
* flush out disks that did not return
*/
scsi_unblock_requests(ha->core.shost);
sas_drain_work(ha);
}
EXPORT_SYMBOL(sas_resume_ha);
void sas_suspend_ha(struct sas_ha_struct *ha)
{
int i;
sas_disable_events(ha);
scsi_block_requests(ha->core.shost);
for (i = 0; i < ha->num_phys; i++) {
struct asd_sas_port *port = ha->sas_port[i];
sas_discover_event(port, DISCE_SUSPEND);
}
/* flush suspend events while unregistered */
mutex_lock(&ha->drain_mutex);
__sas_drain_work(ha);
mutex_unlock(&ha->drain_mutex);
}
EXPORT_SYMBOL(sas_suspend_ha);
static void sas_phy_release(struct sas_phy *phy)
{
kfree(phy->hostdata);
phy->hostdata = NULL;
}
static void phy_reset_work(struct work_struct *work)
{
struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
}
static void phy_enable_work(struct work_struct *work)
{
struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
d->enable_result = sas_phy_enable(d->phy, d->enable);
}
static int sas_phy_setup(struct sas_phy *phy)
{
struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
mutex_init(&d->event_lock);
INIT_SAS_WORK(&d->reset_work, phy_reset_work);
INIT_SAS_WORK(&d->enable_work, phy_enable_work);
d->phy = phy;
phy->hostdata = d;
return 0;
}
static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
{
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
struct sas_phy_data *d = phy->hostdata;
int rc;
if (!d)
return -ENOMEM;
/* libsas workqueue coordinates ata-eh reset with discovery */
mutex_lock(&d->event_lock);
d->reset_result = 0;
d->hard_reset = hard_reset;
spin_lock_irq(&ha->lock);
sas_queue_work(ha, &d->reset_work);
spin_unlock_irq(&ha->lock);
rc = sas_drain_work(ha);
if (rc == 0)
rc = d->reset_result;
mutex_unlock(&d->event_lock);
return rc;
}
static int queue_phy_enable(struct sas_phy *phy, int enable)
{
struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
struct sas_phy_data *d = phy->hostdata;
int rc;
if (!d)
return -ENOMEM;
/* libsas workqueue coordinates ata-eh reset with discovery */
mutex_lock(&d->event_lock);
d->enable_result = 0;
d->enable = enable;
spin_lock_irq(&ha->lock);
sas_queue_work(ha, &d->enable_work);
spin_unlock_irq(&ha->lock);
rc = sas_drain_work(ha);
if (rc == 0)
rc = d->enable_result;
mutex_unlock(&d->event_lock);
return rc;
}
static struct sas_function_template sft = {
.phy_enable = queue_phy_enable,
.phy_reset = queue_phy_reset,
.phy_setup = sas_phy_setup,
.phy_release = sas_phy_release,
.set_phy_speed = sas_set_phy_speed,
.get_linkerrors = sas_get_linkerrors,
.smp_handler = sas_smp_handler,
};
static inline ssize_t phy_event_threshold_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
}
static inline ssize_t phy_event_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
sha->event_thres = simple_strtol(buf, NULL, 10);
/* threshold cannot be set too small */
if (sha->event_thres < 32)
sha->event_thres = 32;
return count;
}
DEVICE_ATTR(phy_event_threshold,
S_IRUGO|S_IWUSR,
phy_event_threshold_show,
phy_event_threshold_store);
EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
struct scsi_transport_template *
sas_domain_attach_transport(struct sas_domain_function_template *dft)
{
struct scsi_transport_template *stt = sas_attach_transport(&sft);
struct sas_internal *i;
if (!stt)
return stt;
i = to_sas_internal(stt);
i->dft = dft;
stt->create_work_queue = 1;
stt->eh_strategy_handler = sas_scsi_recover_host;
return stt;
}
EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
static struct asd_sas_event *__sas_alloc_event(struct asd_sas_phy *phy,
gfp_t gfp_flags)
{
struct asd_sas_event *event;
struct sas_ha_struct *sas_ha = phy->ha;
struct sas_internal *i =
to_sas_internal(sas_ha->core.shost->transportt);
event = kmem_cache_zalloc(sas_event_cache, gfp_flags);
if (!event)
return NULL;
atomic_inc(&phy->event_nr);
if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
if (i->dft->lldd_control_phy) {
if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
pr_notice("The phy%d bursting events, shut it down.\n",
phy->id);
sas_notify_phy_event_gfp(phy, PHYE_SHUTDOWN,
gfp_flags);
}
} else {
/* Do not support PHY control, stop allocating events */
WARN_ONCE(1, "PHY control not supported.\n");
kmem_cache_free(sas_event_cache, event);
atomic_dec(&phy->event_nr);
event = NULL;
}
}
return event;
}
struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy)
{
return __sas_alloc_event(phy, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
struct asd_sas_event *sas_alloc_event_gfp(struct asd_sas_phy *phy,
gfp_t gfp_flags)
{
return __sas_alloc_event(phy, gfp_flags);
}
void sas_free_event(struct asd_sas_event *event)
{
struct asd_sas_phy *phy = event->phy;
kmem_cache_free(sas_event_cache, event);
atomic_dec(&phy->event_nr);
}
/* ---------- SAS Class register/unregister ---------- */
static int __init sas_class_init(void)
{
sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
if (!sas_task_cache)
goto out;
sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
if (!sas_event_cache)
goto free_task_kmem;
return 0;
free_task_kmem:
kmem_cache_destroy(sas_task_cache);
out:
return -ENOMEM;
}
static void __exit sas_class_exit(void)
{
kmem_cache_destroy(sas_task_cache);
kmem_cache_destroy(sas_event_cache);
}
MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
MODULE_DESCRIPTION("SAS Transport Layer");
MODULE_LICENSE("GPL v2");
module_init(sas_class_init);
module_exit(sas_class_exit);
EXPORT_SYMBOL_GPL(sas_register_ha);
EXPORT_SYMBOL_GPL(sas_unregister_ha);