blob: 3fbbdf084d67a3f574b2de37c6394d3e3b2c4639 [file] [log] [blame] [edit]
/*
* This is the Fusion MPT base driver providing common API layer interface
* for access to MPT (Message Passing Technology) firmware.
*
* This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
* Copyright (C) 2012-2014 LSI Corporation
* Copyright (C) 2013-2014 Avago Technologies
* (mailto: MPT-FusionLinux.pdl@avagotech.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/kthread.h>
#include <asm/page.h> /* To get host page size per arch */
#include <linux/aer.h>
#include "mpt3sas_base.h"
static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
/* maximum controller queue depth */
#define MAX_HBA_QUEUE_DEPTH 30000
#define MAX_CHAIN_DEPTH 100000
static int max_queue_depth = -1;
module_param(max_queue_depth, int, 0444);
MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
static int max_sgl_entries = -1;
module_param(max_sgl_entries, int, 0444);
MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
static int msix_disable = -1;
module_param(msix_disable, int, 0444);
MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
static int smp_affinity_enable = 1;
module_param(smp_affinity_enable, int, 0444);
MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
static int max_msix_vectors = -1;
module_param(max_msix_vectors, int, 0444);
MODULE_PARM_DESC(max_msix_vectors,
" max msix vectors");
static int irqpoll_weight = -1;
module_param(irqpoll_weight, int, 0444);
MODULE_PARM_DESC(irqpoll_weight,
"irq poll weight (default= one fourth of HBA queue depth)");
static int mpt3sas_fwfault_debug;
MODULE_PARM_DESC(mpt3sas_fwfault_debug,
" enable detection of firmware fault and halt firmware - (default=0)");
static int perf_mode = -1;
module_param(perf_mode, int, 0444);
MODULE_PARM_DESC(perf_mode,
"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
"0 - balanced: high iops mode is enabled &\n\t\t"
"interrupt coalescing is enabled only on high iops queues,\n\t\t"
"1 - iops: high iops mode is disabled &\n\t\t"
"interrupt coalescing is enabled on all queues,\n\t\t"
"2 - latency: high iops mode is disabled &\n\t\t"
"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
"\t\tdefault - default perf_mode is 'balanced'"
);
enum mpt3sas_perf_mode {
MPT_PERF_MODE_DEFAULT = -1,
MPT_PERF_MODE_BALANCED = 0,
MPT_PERF_MODE_IOPS = 1,
MPT_PERF_MODE_LATENCY = 2,
};
static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
u32 ioc_state, int timeout);
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
static void
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
/**
* mpt3sas_base_check_cmd_timeout - Function
* to check timeout and command termination due
* to Host reset.
*
* @ioc: per adapter object.
* @status: Status of issued command.
* @mpi_request:mf request pointer.
* @sz: size of buffer.
*
* @Returns - 1/0 Reset to be done or Not
*/
u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
u8 status, void *mpi_request, int sz)
{
u8 issue_reset = 0;
if (!(status & MPT3_CMD_RESET))
issue_reset = 1;
ioc_err(ioc, "Command %s\n",
issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
_debug_dump_mf(mpi_request, sz);
return issue_reset;
}
/**
* _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
* @val: ?
* @kp: ?
*
* Return: ?
*/
static int
_scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
{
int ret = param_set_int(val, kp);
struct MPT3SAS_ADAPTER *ioc;
if (ret)
return ret;
/* global ioc spinlock to protect controller list on list operations */
pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
spin_lock(&gioc_lock);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
ioc->fwfault_debug = mpt3sas_fwfault_debug;
spin_unlock(&gioc_lock);
return 0;
}
module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
param_get_int, &mpt3sas_fwfault_debug, 0644);
/**
* _base_readl_aero - retry readl for max three times.
* @addr: MPT Fusion system interface register address
*
* Retry the readl() for max three times if it gets zero value
* while reading the system interface register.
*/
static inline u32
_base_readl_aero(const volatile void __iomem *addr)
{
u32 i = 0, ret_val;
do {
ret_val = readl(addr);
i++;
} while (ret_val == 0 && i < 3);
return ret_val;
}
static inline u32
_base_readl(const volatile void __iomem *addr)
{
return readl(addr);
}
/**
* _base_clone_reply_to_sys_mem - copies reply to reply free iomem
* in BAR0 space.
*
* @ioc: per adapter object
* @reply: reply message frame(lower 32bit addr)
* @index: System request message index.
*/
static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
u32 index)
{
/*
* 256 is offset within sys register.
* 256 offset MPI frame starts. Max MPI frame supported is 32.
* 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
*/
u16 cmd_credit = ioc->facts.RequestCredit + 1;
void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
MPI_FRAME_START_OFFSET +
(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
writel(reply, reply_free_iomem);
}
/**
* _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
* to system/BAR0 region.
*
* @dst_iomem: Pointer to the destination location in BAR0 space.
* @src: Pointer to the Source data.
* @size: Size of data to be copied.
*/
static void
_base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
{
int i;
u32 *src_virt_mem = (u32 *)src;
for (i = 0; i < size/4; i++)
writel((u32)src_virt_mem[i],
(void __iomem *)dst_iomem + (i * 4));
}
/**
* _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
*
* @dst_iomem: Pointer to the destination location in BAR0 space.
* @src: Pointer to the Source data.
* @size: Size of data to be copied.
*/
static void
_base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
{
int i;
u32 *src_virt_mem = (u32 *)(src);
for (i = 0; i < size/4; i++)
writel((u32)src_virt_mem[i],
(void __iomem *)dst_iomem + (i * 4));
}
/**
* _base_get_chain - Calculates and Returns virtual chain address
* for the provided smid in BAR0 space.
*
* @ioc: per adapter object
* @smid: system request message index
* @sge_chain_count: Scatter gather chain count.
*
* Return: the chain address.
*/
static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u8 sge_chain_count)
{
void __iomem *base_chain, *chain_virt;
u16 cmd_credit = ioc->facts.RequestCredit + 1;
base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
(cmd_credit * ioc->request_sz) +
REPLY_FREE_POOL_SIZE;
chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
ioc->request_sz) + (sge_chain_count * ioc->request_sz);
return chain_virt;
}
/**
* _base_get_chain_phys - Calculates and Returns physical address
* in BAR0 for scatter gather chains, for
* the provided smid.
*
* @ioc: per adapter object
* @smid: system request message index
* @sge_chain_count: Scatter gather chain count.
*
* Return: Physical chain address.
*/
static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u8 sge_chain_count)
{
phys_addr_t base_chain_phys, chain_phys;
u16 cmd_credit = ioc->facts.RequestCredit + 1;
base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
(cmd_credit * ioc->request_sz) +
REPLY_FREE_POOL_SIZE;
chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
ioc->request_sz) + (sge_chain_count * ioc->request_sz);
return chain_phys;
}
/**
* _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
* buffer address for the provided smid.
* (Each smid can have 64K starts from 17024)
*
* @ioc: per adapter object
* @smid: system request message index
*
* Return: Pointer to buffer location in BAR0.
*/
static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
u16 cmd_credit = ioc->facts.RequestCredit + 1;
// Added extra 1 to reach end of chain.
void __iomem *chain_end = _base_get_chain(ioc,
cmd_credit + 1,
ioc->facts.MaxChainDepth);
return chain_end + (smid * 64 * 1024);
}
/**
* _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
* Host buffer Physical address for the provided smid.
* (Each smid can have 64K starts from 17024)
*
* @ioc: per adapter object
* @smid: system request message index
*
* Return: Pointer to buffer location in BAR0.
*/
static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
u16 cmd_credit = ioc->facts.RequestCredit + 1;
phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
cmd_credit + 1,
ioc->facts.MaxChainDepth);
return chain_end_phys + (smid * 64 * 1024);
}
/**
* _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
* lookup list and Provides chain_buffer
* address for the matching dma address.
* (Each smid can have 64K starts from 17024)
*
* @ioc: per adapter object
* @chain_buffer_dma: Chain buffer dma address.
*
* Return: Pointer to chain buffer. Or Null on Failure.
*/
static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
dma_addr_t chain_buffer_dma)
{
u16 index, j;
struct chain_tracker *ct;
for (index = 0; index < ioc->scsiio_depth; index++) {
for (j = 0; j < ioc->chains_needed_per_io; j++) {
ct = &ioc->chain_lookup[index].chains_per_smid[j];
if (ct && ct->chain_buffer_dma == chain_buffer_dma)
return ct->chain_buffer;
}
}
ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
return NULL;
}
/**
* _clone_sg_entries - MPI EP's scsiio and config requests
* are handled here. Base function for
* double buffering, before submitting
* the requests.
*
* @ioc: per adapter object.
* @mpi_request: mf request pointer.
* @smid: system request message index.
*/
static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
void *mpi_request, u16 smid)
{
Mpi2SGESimple32_t *sgel, *sgel_next;
u32 sgl_flags, sge_chain_count = 0;
bool is_write = false;
u16 i = 0;
void __iomem *buffer_iomem;
phys_addr_t buffer_iomem_phys;
void __iomem *buff_ptr;
phys_addr_t buff_ptr_phys;
void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
phys_addr_t dst_addr_phys;
MPI2RequestHeader_t *request_hdr;
struct scsi_cmnd *scmd;
struct scatterlist *sg_scmd = NULL;
int is_scsiio_req = 0;
request_hdr = (MPI2RequestHeader_t *) mpi_request;
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
Mpi25SCSIIORequest_t *scsiio_request =
(Mpi25SCSIIORequest_t *)mpi_request;
sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
is_scsiio_req = 1;
} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
Mpi2ConfigRequest_t *config_req =
(Mpi2ConfigRequest_t *)mpi_request;
sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
} else
return;
/* From smid we can get scsi_cmd, once we have sg_scmd,
* we just need to get sg_virt and sg_next to get virual
* address associated with sgel->Address.
*/
if (is_scsiio_req) {
/* Get scsi_cmd using smid */
scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if (scmd == NULL) {
ioc_err(ioc, "scmd is NULL\n");
return;
}
/* Get sg_scmd from scmd provided */
sg_scmd = scsi_sglist(scmd);
}
/*
* 0 - 255 System register
* 256 - 4352 MPI Frame. (This is based on maxCredit 32)
* 4352 - 4864 Reply_free pool (512 byte is reserved
* considering maxCredit 32. Reply need extra
* room, for mCPU case kept four times of
* maxCredit).
* 4864 - 17152 SGE chain element. (32cmd * 3 chain of
* 128 byte size = 12288)
* 17152 - x Host buffer mapped with smid.
* (Each smid can have 64K Max IO.)
* BAR0+Last 1K MSIX Addr and Data
* Total size in use 2113664 bytes of 4MB BAR0
*/
buffer_iomem = _base_get_buffer_bar0(ioc, smid);
buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
buff_ptr = buffer_iomem;
buff_ptr_phys = buffer_iomem_phys;
WARN_ON(buff_ptr_phys > U32_MAX);
if (le32_to_cpu(sgel->FlagsLength) &
(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
is_write = true;
for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
sgl_flags =
(le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
/*
* Helper function which on passing
* chain_buffer_dma returns chain_buffer. Get
* the virtual address for sgel->Address
*/
sgel_next =
_base_get_chain_buffer_dma_to_chain_buffer(ioc,
le32_to_cpu(sgel->Address));
if (sgel_next == NULL)
return;
/*
* This is coping 128 byte chain
* frame (not a host buffer)
*/
dst_chain_addr[sge_chain_count] =
_base_get_chain(ioc,
smid, sge_chain_count);
src_chain_addr[sge_chain_count] =
(void *) sgel_next;
dst_addr_phys = _base_get_chain_phys(ioc,
smid, sge_chain_count);
WARN_ON(dst_addr_phys > U32_MAX);
sgel->Address =
cpu_to_le32(lower_32_bits(dst_addr_phys));
sgel = sgel_next;
sge_chain_count++;
break;
case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
if (is_write) {
if (is_scsiio_req) {
_base_clone_to_sys_mem(buff_ptr,
sg_virt(sg_scmd),
(le32_to_cpu(sgel->FlagsLength) &
0x00ffffff));
/*
* FIXME: this relies on a a zero
* PCI mem_offset.
*/
sgel->Address =
cpu_to_le32((u32)buff_ptr_phys);
} else {
_base_clone_to_sys_mem(buff_ptr,
ioc->config_vaddr,
(le32_to_cpu(sgel->FlagsLength) &
0x00ffffff));
sgel->Address =
cpu_to_le32((u32)buff_ptr_phys);
}
}
buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
0x00ffffff);
buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
0x00ffffff);
if ((le32_to_cpu(sgel->FlagsLength) &
(MPI2_SGE_FLAGS_END_OF_BUFFER
<< MPI2_SGE_FLAGS_SHIFT)))
goto eob_clone_chain;
else {
/*
* Every single element in MPT will have
* associated sg_next. Better to sanity that
* sg_next is not NULL, but it will be a bug
* if it is null.
*/
if (is_scsiio_req) {
sg_scmd = sg_next(sg_scmd);
if (sg_scmd)
sgel++;
else
goto eob_clone_chain;
}
}
break;
}
}
eob_clone_chain:
for (i = 0; i < sge_chain_count; i++) {
if (is_scsiio_req)
_base_clone_to_sys_mem(dst_chain_addr[i],
src_chain_addr[i], ioc->request_sz);
}
}
/**
* mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
* @arg: input argument, used to derive ioc
*
* Return:
* 0 if controller is removed from pci subsystem.
* -1 for other case.
*/
static int mpt3sas_remove_dead_ioc_func(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
struct pci_dev *pdev;
if (!ioc)
return -1;
pdev = ioc->pdev;
if (!pdev)
return -1;
pci_stop_and_remove_bus_device_locked(pdev);
return 0;
}
/**
* _base_fault_reset_work - workq handling ioc fault conditions
* @work: input argument, used to derive ioc
*
* Context: sleep.
*/
static void
_base_fault_reset_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
unsigned long flags;
u32 doorbell;
int rc;
struct task_struct *p;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
ioc->pci_error_recovery)
goto rearm_timer;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
ioc_err(ioc, "SAS host is non-operational !!!!\n");
/* It may be possible that EEH recovery can resolve some of
* pci bus failure issues rather removing the dead ioc function
* by considering controller is in a non-operational state. So
* here priority is given to the EEH recovery. If it doesn't
* not resolve this issue, mpt3sas driver will consider this
* controller to non-operational state and remove the dead ioc
* function.
*/
if (ioc->non_operational_loop++ < 5) {
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
flags);
goto rearm_timer;
}
/*
* Call _scsih_flush_pending_cmds callback so that we flush all
* pending commands back to OS. This call is required to aovid
* deadlock at block layer. Dead IOC will fail to do diag reset,
* and this call is safe since dead ioc will never return any
* command back from HW.
*/
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
/*
* Set remove_host flag early since kernel thread will
* take some time to execute.
*/
ioc->remove_host = 1;
/*Remove the Dead Host */
p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
"%s_dead_ioc_%d", ioc->driver_name, ioc->id);
if (IS_ERR(p))
ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
__func__);
else
ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
__func__);
return; /* don't rearm timer */
}
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
ioc->manu_pg11.CoreDumpTOSec :
MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
timeout /= (FAULT_POLLING_INTERVAL/1000);
if (ioc->ioc_coredump_loop == 0) {
mpt3sas_print_coredump_info(ioc,
doorbell & MPI2_DOORBELL_DATA_MASK);
/* do not accept any IOs and disable the interrupts */
spin_lock_irqsave(
&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 1;
spin_unlock_irqrestore(
&ioc->ioc_reset_in_progress_lock, flags);
mpt3sas_base_mask_interrupts(ioc);
_base_clear_outstanding_commands(ioc);
}
ioc_info(ioc, "%s: CoreDump loop %d.",
__func__, ioc->ioc_coredump_loop);
/* Wait until CoreDump completes or times out */
if (ioc->ioc_coredump_loop++ < timeout) {
spin_lock_irqsave(
&ioc->ioc_reset_in_progress_lock, flags);
goto rearm_timer;
}
}
if (ioc->ioc_coredump_loop) {
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
__func__, ioc->ioc_coredump_loop);
else
ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
__func__, ioc->ioc_coredump_loop);
ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
}
ioc->non_operational_loop = 0;
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc_warn(ioc, "%s: hard reset: %s\n",
__func__, rc == 0 ? "success" : "failed");
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP)
mpt3sas_print_coredump_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_OPERATIONAL)
return; /* don't rearm timer */
}
ioc->ioc_coredump_loop = 0;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
rearm_timer:
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_start_watchdog - start the fault_reset_work_q
* @ioc: per adapter object
*
* Context: sleep.
*/
void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
if (ioc->fault_reset_work_q)
return;
/* initialize fault polling */
INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
snprintf(ioc->fault_reset_work_q_name,
sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
ioc->driver_name, ioc->id);
ioc->fault_reset_work_q =
create_singlethread_workqueue(ioc->fault_reset_work_q_name);
if (!ioc->fault_reset_work_q) {
ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
return;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
* @ioc: per adapter object
*
* Context: sleep.
*/
void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
wq = ioc->fault_reset_work_q;
ioc->fault_reset_work_q = NULL;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if (wq) {
if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpt3sas_base_fault_info - verbose translation of firmware FAULT code
* @ioc: per adapter object
* @fault_code: fault code
*/
void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
{
ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
}
/**
* mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
* @ioc: per adapter object
* @fault_code: fault code
*
* Return nothing.
*/
void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
{
ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
}
/**
* mpt3sas_base_wait_for_coredump_completion - Wait until coredump
* completes or times out
* @ioc: per adapter object
* @caller: caller function name
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
const char *caller)
{
u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
ioc->manu_pg11.CoreDumpTOSec :
MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
timeout);
if (ioc_state)
ioc_err(ioc,
"%s: CoreDump timed out. (ioc_state=0x%x)\n",
caller, ioc_state);
else
ioc_info(ioc,
"%s: CoreDump completed. (ioc_state=0x%x)\n",
caller, ioc_state);
return ioc_state;
}
/**
* mpt3sas_halt_firmware - halt's mpt controller firmware
* @ioc: per adapter object
*
* For debugging timeout related issues. Writing 0xCOFFEE00
* to the doorbell register will halt controller firmware. With
* the purpose to stop both driver and firmware, the enduser can
* obtain a ring buffer from controller UART.
*/
void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
{
u32 doorbell;
if (!ioc->fwfault_debug)
return;
dump_stack();
doorbell = ioc->base_readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP) {
mpt3sas_print_coredump_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
} else {
writel(0xC0FFEE00, &ioc->chip->Doorbell);
ioc_err(ioc, "Firmware is halted due to command timeout\n");
}
if (ioc->fwfault_debug == 2)
for (;;)
;
else
panic("panic in %s\n", __func__);
}
/**
* _base_sas_ioc_info - verbose translation of the ioc status
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
* @request_hdr: request mf
*/
static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
MPI2RequestHeader_t *request_hdr)
{
u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
MPI2_IOCSTATUS_MASK;
char *desc = NULL;
u16 frame_sz;
char *func_str = NULL;
/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
return;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
return;
switch (ioc_status) {
/****************************************************************************
* Common IOCStatus values for all replies
****************************************************************************/
case MPI2_IOCSTATUS_INVALID_FUNCTION:
desc = "invalid function";
break;
case MPI2_IOCSTATUS_BUSY:
desc = "busy";
break;
case MPI2_IOCSTATUS_INVALID_SGL:
desc = "invalid sgl";
break;
case MPI2_IOCSTATUS_INTERNAL_ERROR:
desc = "internal error";
break;
case MPI2_IOCSTATUS_INVALID_VPID:
desc = "invalid vpid";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
desc = "insufficient resources";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
desc = "insufficient power";
break;
case MPI2_IOCSTATUS_INVALID_FIELD:
desc = "invalid field";
break;
case MPI2_IOCSTATUS_INVALID_STATE:
desc = "invalid state";
break;
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
desc = "op state not supported";
break;
/****************************************************************************
* Config IOCStatus values
****************************************************************************/
case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
desc = "config invalid action";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
desc = "config invalid type";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
desc = "config invalid page";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
desc = "config invalid data";
break;
case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
desc = "config no defaults";
break;
case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
desc = "config cant commit";
break;
/****************************************************************************
* SCSI IO Reply
****************************************************************************/
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
break;
/****************************************************************************
* For use by SCSI Initiator and SCSI Target end-to-end data protection
****************************************************************************/
case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
desc = "eedp guard error";
break;
case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
desc = "eedp ref tag error";
break;
case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
desc = "eedp app tag error";
break;
/****************************************************************************
* SCSI Target values
****************************************************************************/
case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
desc = "target invalid io index";
break;
case MPI2_IOCSTATUS_TARGET_ABORTED:
desc = "target aborted";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
desc = "target no conn retryable";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
desc = "target no connection";
break;
case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
desc = "target xfer count mismatch";
break;
case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
desc = "target data offset error";
break;
case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
desc = "target too much write data";
break;
case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
desc = "target iu too short";
break;
case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
desc = "target ack nak timeout";
break;
case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
desc = "target nak received";
break;
/****************************************************************************
* Serial Attached SCSI values
****************************************************************************/
case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
desc = "smp request failed";
break;
case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
desc = "smp data overrun";
break;
/****************************************************************************
* Diagnostic Buffer Post / Diagnostic Release values
****************************************************************************/
case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
desc = "diagnostic released";
break;
default:
break;
}
if (!desc)
return;
switch (request_hdr->Function) {
case MPI2_FUNCTION_CONFIG:
frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
func_str = "config_page";
break;
case MPI2_FUNCTION_SCSI_TASK_MGMT:
frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
func_str = "task_mgmt";
break;
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
func_str = "sas_iounit_ctl";
break;
case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
frame_sz = sizeof(Mpi2SepRequest_t);
func_str = "enclosure";
break;
case MPI2_FUNCTION_IOC_INIT:
frame_sz = sizeof(Mpi2IOCInitRequest_t);
func_str = "ioc_init";
break;
case MPI2_FUNCTION_PORT_ENABLE:
frame_sz = sizeof(Mpi2PortEnableRequest_t);
func_str = "port_enable";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
func_str = "smp_passthru";
break;
case MPI2_FUNCTION_NVME_ENCAPSULATED:
frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
ioc->sge_size;
func_str = "nvme_encapsulated";
break;
default:
frame_sz = 32;
func_str = "unknown";
break;
}
ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
desc, ioc_status, request_hdr, func_str);
_debug_dump_mf(request_hdr, frame_sz/4);
}
/**
* _base_display_event_data - verbose translation of firmware asyn events
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
*/
static void
_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
char *desc = NULL;
u16 event;
if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
return;
event = le16_to_cpu(mpi_reply->Event);
switch (event) {
case MPI2_EVENT_LOG_DATA:
desc = "Log Data";
break;
case MPI2_EVENT_STATE_CHANGE:
desc = "Status Change";
break;
case MPI2_EVENT_HARD_RESET_RECEIVED:
desc = "Hard Reset Received";
break;
case MPI2_EVENT_EVENT_CHANGE:
desc = "Event Change";
break;
case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
desc = "Device Status Change";
break;
case MPI2_EVENT_IR_OPERATION_STATUS:
if (!ioc->hide_ir_msg)
desc = "IR Operation Status";
break;
case MPI2_EVENT_SAS_DISCOVERY:
{
Mpi2EventDataSasDiscovery_t *event_data =
(Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
ioc_info(ioc, "Discovery: (%s)",
event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
"start" : "stop");
if (event_data->DiscoveryStatus)
pr_cont(" discovery_status(0x%08x)",
le32_to_cpu(event_data->DiscoveryStatus));
pr_cont("\n");
return;
}
case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
desc = "SAS Broadcast Primitive";
break;
case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
desc = "SAS Init Device Status Change";
break;
case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
desc = "SAS Init Table Overflow";
break;
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
desc = "SAS Topology Change List";
break;
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
desc = "SAS Enclosure Device Status Change";
break;
case MPI2_EVENT_IR_VOLUME:
if (!ioc->hide_ir_msg)
desc = "IR Volume";
break;
case MPI2_EVENT_IR_PHYSICAL_DISK:
if (!ioc->hide_ir_msg)
desc = "IR Physical Disk";
break;
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
if (!ioc->hide_ir_msg)
desc = "IR Configuration Change List";
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
if (!ioc->hide_ir_msg)
desc = "Log Entry Added";
break;
case MPI2_EVENT_TEMP_THRESHOLD:
desc = "Temperature Threshold";
break;
case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
desc = "Cable Event";
break;
case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
desc = "SAS Device Discovery Error";
break;
case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
desc = "PCIE Device Status Change";
break;
case MPI2_EVENT_PCIE_ENUMERATION:
{
Mpi26EventDataPCIeEnumeration_t *event_data =
(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
ioc_info(ioc, "PCIE Enumeration: (%s)",
event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
"start" : "stop");
if (event_data->EnumerationStatus)
pr_cont("enumeration_status(0x%08x)",
le32_to_cpu(event_data->EnumerationStatus));
pr_cont("\n");
return;
}
case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
desc = "PCIE Topology Change List";
break;
}
if (!desc)
return;
ioc_info(ioc, "%s\n", desc);
}
/**
* _base_sas_log_info - verbose translation of firmware log info
* @ioc: per adapter object
* @log_info: log info
*/
static void
_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
{
union loginfo_type {
u32 loginfo;
struct {
u32 subcode:16;
u32 code:8;
u32 originator:4;
u32 bus_type:4;
} dw;
};
union loginfo_type sas_loginfo;
char *originator_str = NULL;
sas_loginfo.loginfo = log_info;
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
return;
/* each nexus loss loginfo */
if (log_info == 0x31170000)
return;
/* eat the loginfos associated with task aborts */
if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
0x31140000 || log_info == 0x31130000))
return;
switch (sas_loginfo.dw.originator) {
case 0:
originator_str = "IOP";
break;
case 1:
originator_str = "PL";
break;
case 2:
if (!ioc->hide_ir_msg)
originator_str = "IR";
else
originator_str = "WarpDrive";
break;
}
ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
log_info,
originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
}
/**
* _base_display_reply_info -
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*/
static void
_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
u32 loginfo = 0;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (unlikely(!mpi_reply)) {
ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return;
}
ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
(ioc->logging_level & MPT_DEBUG_REPLY)) {
_base_sas_ioc_info(ioc , mpi_reply,
mpt3sas_base_get_msg_frame(ioc, smid));
}
if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
_base_sas_log_info(ioc, loginfo);
}
if (ioc_status || loginfo) {
ioc_status &= MPI2_IOCSTATUS_MASK;
mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
}
}
/**
* mpt3sas_base_done - base internal command completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return:
* 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
return 1;
ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
if (mpi_reply) {
ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
}
ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->base_cmds.done);
return 1;
}
/**
* _base_async_event - main callback handler for firmware asyn events
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return:
* 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
static u8
_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
Mpi2EventAckRequest_t *ack_request;
u16 smid;
struct _event_ack_list *delayed_event_ack;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
return 1;
_base_display_event_data(ioc, mpi_reply);
if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
GFP_ATOMIC);
if (!delayed_event_ack)
goto out;
INIT_LIST_HEAD(&delayed_event_ack->list);
delayed_event_ack->Event = mpi_reply->Event;
delayed_event_ack->EventContext = mpi_reply->EventContext;
list_add_tail(&delayed_event_ack->list,
&ioc->delayed_event_ack_list);
dewtprintk(ioc,
ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
le16_to_cpu(mpi_reply->Event)));
goto out;
}
ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
ack_request->Event = mpi_reply->Event;
ack_request->EventContext = mpi_reply->EventContext;
ack_request->VF_ID = 0; /* TODO */
ack_request->VP_ID = 0;
ioc->put_smid_default(ioc, smid);
out:
/* scsih callback handler */
mpt3sas_scsih_event_callback(ioc, msix_index, reply);
/* ctl callback handler */
mpt3sas_ctl_event_callback(ioc, msix_index, reply);
return 1;
}
static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct scsi_cmnd *cmd;
if (WARN_ON(!smid) ||
WARN_ON(smid >= ioc->hi_priority_smid))
return NULL;
cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
if (cmd)
return scsi_cmd_priv(cmd);
return NULL;
}
/**
* _base_get_cb_idx - obtain the callback index
* @ioc: per adapter object
* @smid: system request message index
*
* Return: callback index.
*/
static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
int i;
u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
u8 cb_idx = 0xFF;
if (smid < ioc->hi_priority_smid) {
struct scsiio_tracker *st;
if (smid < ctl_smid) {
st = _get_st_from_smid(ioc, smid);
if (st)
cb_idx = st->cb_idx;
} else if (smid == ctl_smid)
cb_idx = ioc->ctl_cb_idx;
} else if (smid < ioc->internal_smid) {
i = smid - ioc->hi_priority_smid;
cb_idx = ioc->hpr_lookup[i].cb_idx;
} else if (smid <= ioc->hba_queue_depth) {
i = smid - ioc->internal_smid;
cb_idx = ioc->internal_lookup[i].cb_idx;
}
return cb_idx;
}
/**
* mpt3sas_base_mask_interrupts - disable interrupts
* @ioc: per adapter object
*
* Disabling ResetIRQ, Reply and Doorbell Interrupts
*/
void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
ioc->mask_interrupts = 1;
him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->base_readl(&ioc->chip->HostInterruptMask);
}
/**
* mpt3sas_base_unmask_interrupts - enable interrupts
* @ioc: per adapter object
*
* Enabling only Reply Interrupts
*/
void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
him_register &= ~MPI2_HIM_RIM;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->mask_interrupts = 0;
}
union reply_descriptor {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
static u32 base_mod64(u64 dividend, u32 divisor)
{
u32 remainder;
if (!divisor)
pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
remainder = do_div(dividend, divisor);
return remainder;
}
/**
* _base_process_reply_queue - Process reply descriptors from reply
* descriptor post queue.
* @reply_q: per IRQ's reply queue object.
*
* Return: number of reply descriptors processed from reply
* descriptor queue.
*/
static int
_base_process_reply_queue(struct adapter_reply_queue *reply_q)
{
union reply_descriptor rd;
u64 completed_cmds;
u8 request_descript_type;
u16 smid;
u8 cb_idx;
u32 reply;
u8 msix_index = reply_q->msix_index;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
Mpi2ReplyDescriptorsUnion_t *rpf;
u8 rc;
completed_cmds = 0;
if (!atomic_add_unless(&reply_q->busy, 1, 1))
return completed_cmds;
rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
request_descript_type = rpf->Default.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
atomic_dec(&reply_q->busy);
return completed_cmds;
}
cb_idx = 0xFF;
do {
rd.word = le64_to_cpu(rpf->Words);
if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
goto out;
reply = 0;
smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
if (request_descript_type ==
MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
request_descript_type ==
MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
request_descript_type ==
MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, 0);
if (rc)
mpt3sas_base_free_smid(ioc, smid);
}
} else if (request_descript_type ==
MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
reply = le32_to_cpu(
rpf->AddressReply.ReplyFrameAddress);
if (reply > ioc->reply_dma_max_address ||
reply < ioc->reply_dma_min_address)
reply = 0;
if (smid) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, reply);
if (reply)
_base_display_reply_info(ioc,
smid, msix_index, reply);
if (rc)
mpt3sas_base_free_smid(ioc,
smid);
}
} else {
_base_async_event(ioc, msix_index, reply);
}
/* reply free queue handling */
if (reply) {
ioc->reply_free_host_index =
(ioc->reply_free_host_index ==
(ioc->reply_free_queue_depth - 1)) ?
0 : ioc->reply_free_host_index + 1;
ioc->reply_free[ioc->reply_free_host_index] =
cpu_to_le32(reply);
if (ioc->is_mcpu_endpoint)
_base_clone_reply_to_sys_mem(ioc,
reply,
ioc->reply_free_host_index);
writel(ioc->reply_free_host_index,
&ioc->chip->ReplyFreeHostIndex);
}
}
rpf->Words = cpu_to_le64(ULLONG_MAX);
reply_q->reply_post_host_index =
(reply_q->reply_post_host_index ==
(ioc->reply_post_queue_depth - 1)) ? 0 :
reply_q->reply_post_host_index + 1;
request_descript_type =
reply_q->reply_post_free[reply_q->reply_post_host_index].
Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
completed_cmds++;
/* Update the reply post host index after continuously
* processing the threshold number of Reply Descriptors.
* So that FW can find enough entries to post the Reply
* Descriptors in the reply descriptor post queue.
*/
if (completed_cmds >= ioc->thresh_hold) {
if (ioc->combined_reply_queue) {
writel(reply_q->reply_post_host_index |
((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
ioc->replyPostRegisterIndex[msix_index/8]);
} else {
writel(reply_q->reply_post_host_index |
(msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
&ioc->chip->ReplyPostHostIndex);
}
if (!reply_q->irq_poll_scheduled) {
reply_q->irq_poll_scheduled = true;
irq_poll_sched(&reply_q->irqpoll);
}
atomic_dec(&reply_q->busy);
return completed_cmds;
}
if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
goto out;
if (!reply_q->reply_post_host_index)
rpf = reply_q->reply_post_free;
else
rpf++;
} while (1);
out:
if (!completed_cmds) {
atomic_dec(&reply_q->busy);
return completed_cmds;
}
if (ioc->is_warpdrive) {
writel(reply_q->reply_post_host_index,
ioc->reply_post_host_index[msix_index]);
atomic_dec(&reply_q->busy);
return completed_cmds;
}
/* Update Reply Post Host Index.
* For those HBA's which support combined reply queue feature
* 1. Get the correct Supplemental Reply Post Host Index Register.
* i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
* Index Register address bank i.e replyPostRegisterIndex[],
* 2. Then update this register with new reply host index value
* in ReplyPostIndex field and the MSIxIndex field with
* msix_index value reduced to a value between 0 and 7,
* using a modulo 8 operation. Since each Supplemental Reply Post
* Host Index Register supports 8 MSI-X vectors.
*
* For other HBA's just update the Reply Post Host Index register with
* new reply host index value in ReplyPostIndex Field and msix_index
* value in MSIxIndex field.
*/
if (ioc->combined_reply_queue)
writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
ioc->replyPostRegisterIndex[msix_index/8]);
else
writel(reply_q->reply_post_host_index | (msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT),
&ioc->chip->ReplyPostHostIndex);
atomic_dec(&reply_q->busy);
return completed_cmds;
}
/**
* _base_interrupt - MPT adapter (IOC) specific interrupt handler.
* @irq: irq number (not used)
* @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
*
* Return: IRQ_HANDLED if processed, else IRQ_NONE.
*/
static irqreturn_t
_base_interrupt(int irq, void *bus_id)
{
struct adapter_reply_queue *reply_q = bus_id;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
if (ioc->mask_interrupts)
return IRQ_NONE;
if (reply_q->irq_poll_scheduled)
return IRQ_HANDLED;
return ((_base_process_reply_queue(reply_q) > 0) ?
IRQ_HANDLED : IRQ_NONE);
}
/**
* _base_irqpoll - IRQ poll callback handler
* @irqpoll: irq_poll object
* @budget: irq poll weight
*
* returns number of reply descriptors processed
*/
static int
_base_irqpoll(struct irq_poll *irqpoll, int budget)
{
struct adapter_reply_queue *reply_q;
int num_entries = 0;
reply_q = container_of(irqpoll, struct adapter_reply_queue,
irqpoll);
if (reply_q->irq_line_enable) {
disable_irq_nosync(reply_q->os_irq);
reply_q->irq_line_enable = false;
}
num_entries = _base_process_reply_queue(reply_q);
if (num_entries < budget) {
irq_poll_complete(irqpoll);
reply_q->irq_poll_scheduled = false;
reply_q->irq_line_enable = true;
enable_irq(reply_q->os_irq);
/*
* Go for one more round of processing the
* reply descriptor post queue incase if HBA
* Firmware has posted some reply descriptors
* while reenabling the IRQ.
*/
_base_process_reply_queue(reply_q);
}
return num_entries;
}
/**
* _base_init_irqpolls - initliaze IRQ polls
* @ioc: per adapter object
*
* returns nothing
*/
static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
irq_poll_init(&reply_q->irqpoll,
ioc->hba_queue_depth/4, _base_irqpoll);
reply_q->irq_poll_scheduled = false;
reply_q->irq_line_enable = true;
reply_q->os_irq = pci_irq_vector(ioc->pdev,
reply_q->msix_index);
}
}
/**
* _base_is_controller_msix_enabled - is controller support muli-reply queues
* @ioc: per adapter object
*
* Return: Whether or not MSI/X is enabled.
*/
static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
{
return (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
}
/**
* mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
* @ioc: per adapter object
* @poll: poll over reply descriptor pools incase interrupt for
* timed-out SCSI command got delayed
* Context: non ISR conext
*
* Called when a Task Management request has completed.
*/
void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
{
struct adapter_reply_queue *reply_q;
/* If MSIX capability is turned off
* then multi-queues are not enabled
*/
if (!_base_is_controller_msix_enabled(ioc))
return;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->shost_recovery || ioc->remove_host ||
ioc->pci_error_recovery)
return;
/* TMs are on msix_index == 0 */
if (reply_q->msix_index == 0)
continue;
synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
if (reply_q->irq_poll_scheduled) {
/* Calling irq_poll_disable will wait for any pending
* callbacks to have completed.
*/
irq_poll_disable(&reply_q->irqpoll);
irq_poll_enable(&reply_q->irqpoll);
/* check how the scheduled poll has ended,
* clean up only if necessary
*/
if (reply_q->irq_poll_scheduled) {
reply_q->irq_poll_scheduled = false;
reply_q->irq_line_enable = true;
enable_irq(reply_q->os_irq);
}
}
}
if (poll)
_base_process_reply_queue(reply_q);
}
/**
* mpt3sas_base_release_callback_handler - clear interrupt callback handler
* @cb_idx: callback index
*/
void
mpt3sas_base_release_callback_handler(u8 cb_idx)
{
mpt_callbacks[cb_idx] = NULL;
}
/**
* mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
* @cb_func: callback function
*
* Return: Index of @cb_func.
*/
u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
{
u8 cb_idx;
for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
if (mpt_callbacks[cb_idx] == NULL)
break;
mpt_callbacks[cb_idx] = cb_func;
return cb_idx;
}
/**
* mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
*/
void
mpt3sas_base_initialize_callback_handler(void)
{
u8 cb_idx;
for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
mpt3sas_base_release_callback_handler(cb_idx);
}
/**
* _base_build_zero_len_sge - build zero length sg entry
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*/
static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT);
ioc->base_add_sg_single(paddr, flags_length, -1);
}
/**
* _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*/
static void
_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple32_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le32(dma_addr);
}
/**
* _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*/
static void
_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple64_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_get_chain_buffer_tracker - obtain chain tracker
* @ioc: per adapter object
* @scmd: SCSI commands of the IO request
*
* Return: chain tracker from chain_lookup table using key as
* smid and smid's chain_offset.
*/
static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
struct chain_tracker *chain_req;
struct scsiio_tracker *st = scsi_cmd_priv(scmd);
u16 smid = st->smid;
u8 chain_offset =
atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
if (chain_offset == ioc->chains_needed_per_io)
return NULL;
chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
return chain_req;
}
/**
* _base_build_sg - build generic sg
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*/
static void
_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u32 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
/* incr sgel */
psge += ioc->sge_size;
/* READ sgel last */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
}
}
/* IEEE format sgls */
/**
* _base_build_nvme_prp - This function is called for NVMe end devices to build
* a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
* entry of the NVMe message (PRP1). If the data buffer is small enough to be
* described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
* used to describe a larger data buffer. If the data buffer is too large to
* describe using the two PRP entriess inside the NVMe message, then PRP1
* describes the first data memory segment, and PRP2 contains a pointer to a PRP
* list located elsewhere in memory to describe the remaining data memory
* segments. The PRP list will be contiguous.
*
* The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
* consists of a list of PRP entries to describe a number of noncontigous
* physical memory segments as a single memory buffer, just as a SGL does. Note
* however, that this function is only used by the IOCTL call, so the memory
* given will be guaranteed to be contiguous. There is no need to translate
* non-contiguous SGL into a PRP in this case. All PRPs will describe
* contiguous space that is one page size each.
*
* Each NVMe message contains two PRP entries. The first (PRP1) either contains
* a PRP list pointer or a PRP element, depending upon the command. PRP2
* contains the second PRP element if the memory being described fits within 2
* PRP entries, or a PRP list pointer if the PRP spans more than two entries.
*
* A PRP list pointer contains the address of a PRP list, structured as a linear
* array of PRP entries. Each PRP entry in this list describes a segment of
* physical memory.
*
* Each 64-bit PRP entry comprises an address and an offset field. The address
* always points at the beginning of a 4KB physical memory page, and the offset
* describes where within that 4KB page the memory segment begins. Only the
* first element in a PRP list may contain a non-zero offest, implying that all
* memory segments following the first begin at the start of a 4KB page.
*
* Each PRP element normally describes 4KB of physical memory, with exceptions
* for the first and last elements in the list. If the memory being described
* by the list begins at a non-zero offset within the first 4KB page, then the
* first PRP element will contain a non-zero offset indicating where the region
* begins within the 4KB page. The last memory segment may end before the end
* of the 4KB segment, depending upon the overall size of the memory being
* described by the PRP list.
*
* Since PRP entries lack any indication of size, the overall data buffer length
* is used to determine where the end of the data memory buffer is located, and
* how many PRP entries are required to describe it.
*
* @ioc: per adapter object
* @smid: system request message index for getting asscociated SGL
* @nvme_encap_request: the NVMe request msg frame pointer
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*/
static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
int prp_size = NVME_PRP_SIZE;
__le64 *prp_entry, *prp1_entry, *prp2_entry;
__le64 *prp_page;
dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
u32 offset, entry_len;
u32 page_mask_result, page_mask;
size_t length;
struct mpt3sas_nvme_cmd *nvme_cmd =
(void *)nvme_encap_request->NVMe_Command;
/*
* Not all commands require a data transfer. If no data, just return
* without constructing any PRP.
*/
if (!data_in_sz && !data_out_sz)
return;
prp1_entry = &nvme_cmd->prp1;
prp2_entry = &nvme_cmd->prp2;
prp_entry = prp1_entry;
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory.
*/
prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
/*
* Check if we are within 1 entry of a page boundary we don't
* want our first entry to be a PRP List entry.
*/
page_mask = ioc->page_size - 1;
page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
if (!page_mask_result) {
/* Bump up to next page boundary. */
prp_page = (__le64 *)((u8 *)prp_page + prp_size);
prp_page_dma = prp_page_dma + prp_size;
}
/*
* Set PRP physical pointer, which initially points to the current PRP
* DMA memory page.
*/
prp_entry_dma = prp_page_dma;
/* Get physical address and length of the data buffer. */
if (data_in_sz) {
dma_addr = data_in_dma;
length = data_in_sz;
} else {
dma_addr = data_out_dma;
length = data_out_sz;
}
/* Loop while the length is not zero. */
while (length) {
/*
* Check if we need to put a list pointer here if we are at
* page boundary - prp_size (8 bytes).
*/
page_mask_result = (prp_entry_dma + prp_size) & page_mask;
if (!page_mask_result) {
/*
* This is the last entry in a PRP List, so we need to
* put a PRP list pointer here. What this does is:
* - bump the current memory pointer to the next
* address, which will be the next full page.
* - set the PRP Entry to point to that page. This
* is now the PRP List pointer.
* - bump the PRP Entry pointer the start of the
* next page. Since all of this PRP memory is
* contiguous, no need to get a new page - it's
* just the next address.
*/
prp_entry_dma++;
*prp_entry = cpu_to_le64(prp_entry_dma);
prp_entry++;
}
/* Need to handle if entry will be part of a page. */
offset = dma_addr & page_mask;
entry_len = ioc->page_size - offset;
if (prp_entry == prp1_entry) {
/*
* Must fill in the first PRP pointer (PRP1) before
* moving on.
*/
*prp1_entry = cpu_to_le64(dma_addr);
/*
* Now point to the second PRP entry within the
* command (PRP2).
*/
prp_entry = prp2_entry;
} else if (prp_entry == prp2_entry) {
/*
* Should the PRP2 entry be a PRP List pointer or just
* a regular PRP pointer? If there is more than one
* more page of data, must use a PRP List pointer.
*/
if (length > ioc->page_size) {
/*
* PRP2 will contain a PRP List pointer because
* more PRP's are needed with this command. The
* list will start at the beginning of the
* contiguous buffer.
*/
*prp2_entry = cpu_to_le64(prp_entry_dma);
/*
* The next PRP Entry will be the start of the
* first PRP List.
*/
prp_entry = prp_page;
} else {
/*
* After this, the PRP Entries are complete.
* This command uses 2 PRP's and no PRP list.
*/
*prp2_entry = cpu_to_le64(dma_addr);
}
} else {
/*
* Put entry in list and bump the addresses.
*
* After PRP1 and PRP2 are filled in, this will fill in
* all remaining PRP entries in a PRP List, one per
* each time through the loop.
*/
*prp_entry = cpu_to_le64(dma_addr);
prp_entry++;
prp_entry_dma++;
}
/*
* Bump the phys address of the command's data buffer by the
* entry_len.
*/
dma_addr += entry_len;
/* Decrement length accounting for last partial page. */
if (entry_len > length)
length = 0;
else
length -= entry_len;
}
}
/**
* base_make_prp_nvme -
* Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
*
* @ioc: per adapter object
* @scmd: SCSI command from the mid-layer
* @mpi_request: mpi request
* @smid: msg Index
* @sge_count: scatter gather element count.
*
* Return: true: PRPs are built
* false: IEEE SGLs needs to be built
*/
static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd,
Mpi25SCSIIORequest_t *mpi_request,
u16 smid, int sge_count)
{
int sge_len, num_prp_in_chain = 0;
Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
__le64 *curr_buff;
dma_addr_t msg_dma, sge_addr, offset;
u32 page_mask, page_mask_result;
struct scatterlist *sg_scmd;
u32 first_prp_len;
int data_len = scsi_bufflen(scmd);
u32 nvme_pg_size;
nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
/*
* Nvme has a very convoluted prp format. One prp is required
* for each page or partial page. Driver need to split up OS sg_list
* entries if it is longer than one page or cross a page
* boundary. Driver also have to insert a PRP list pointer entry as
* the last entry in each physical page of the PRP list.
*
* NOTE: The first PRP "entry" is actually placed in the first
* SGL entry in the main message as IEEE 64 format. The 2nd
* entry in the main message is the chain element, and the rest
* of the PRP entries are built in the contiguous pcie buffer.
*/
page_mask = nvme_pg_size - 1;
/*
* Native SGL is needed.
* Put a chain element in main message frame that points to the first
* chain buffer.
*
* NOTE: The ChainOffset field must be 0 when using a chain pointer to
* a native SGL.
*/
/* Set main message chain element pointer */
main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
/*
* For NVMe the chain element needs to be the 2nd SG entry in the main
* message.
*/
main_chain_element = (Mpi25IeeeSgeChain64_t *)
((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
/*
* For the PRP entries, use the specially allocated buffer of
* contiguous memory. Normal chain buffers can't be used
* because each chain buffer would need to be the size of an OS
* page (4k).
*/
curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
main_chain_element->Address = cpu_to_le64(msg_dma);
main_chain_element->NextChainOffset = 0;
main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
/* Build first prp, sge need not to be page aligned*/
ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
sg_scmd = scsi_sglist(scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
offset = sge_addr & page_mask;
first_prp_len = nvme_pg_size - offset;
ptr_first_sgl->Address = cpu_to_le64(sge_addr);
ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
data_len -= first_prp_len;
if (sge_len > first_prp_len) {
sge_addr += first_prp_len;
sge_len -= first_prp_len;
} else if (data_len && (sge_len == first_prp_len)) {
sg_scmd = sg_next(sg_scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
for (;;) {
offset = sge_addr & page_mask;
/* Put PRP pointer due to page boundary*/
page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
if (unlikely(!page_mask_result)) {
scmd_printk(KERN_NOTICE,
scmd, "page boundary curr_buff: 0x%p\n",
curr_buff);
msg_dma += 8;
*curr_buff = cpu_to_le64(msg_dma);
curr_buff++;
num_prp_in_chain++;
}
*curr_buff = cpu_to_le64(sge_addr);
curr_buff++;
msg_dma += 8;
num_prp_in_chain++;
sge_addr += nvme_pg_size;
sge_len -= nvme_pg_size;
data_len -= nvme_pg_size;
if (data_len <= 0)
break;
if (sge_len > 0)
continue;
sg_scmd = sg_next(sg_scmd);
sge_addr = sg_dma_address(sg_scmd);
sge_len = sg_dma_len(sg_scmd);
}
main_chain_element->Length =
cpu_to_le32(num_prp_in_chain * sizeof(u64));
return;
}
static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
{
u32 data_length = 0;
bool build_prp = true;
data_length = scsi_bufflen(scmd);
if (pcie_device &&
(mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
build_prp = false;
return build_prp;
}
/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
* we built IEEE SGL
*/
if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
build_prp = false;
return build_prp;
}
/**
* _base_check_pcie_native_sgl - This function is called for PCIe end devices to
* determine if the driver needs to build a native SGL. If so, that native
* SGL is built in the special contiguous buffers allocated especially for
* PCIe SGL creation. If the driver will not build a native SGL, return
* TRUE and a normal IEEE SGL will be built. Currently this routine
* supports NVMe.
* @ioc: per adapter object
* @mpi_request: mf request pointer
* @smid: system request message index
* @scmd: scsi command
* @pcie_device: points to the PCIe device's info
*
* Return: 0 if native SGL was built, 1 if no SGL was built
*/
static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
struct _pcie_device *pcie_device)
{
int sges_left;
/* Get the SG list pointer and info. */
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"scsi_dma_map failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return 1;
}
/* Check if we need to build a native SG list. */
if (base_is_prp_possible(ioc, pcie_device,
scmd, sges_left) == 0) {
/* We built a native SG list, just return. */
goto out;
}
/*
* Build native NVMe PRP.
*/
base_make_prp_nvme(ioc, scmd, mpi_request,
smid, sges_left);
return 0;
out:
scsi_dma_unmap(scmd);
return 1;
}
/**
* _base_add_sg_single_ieee - add sg element for IEEE format
* @paddr: virtual address for SGE
* @flags: SGE flags
* @chain_offset: number of 128 byte elements from start of segment
* @length: data transfer length
* @dma_addr: Physical address
*/
static void
_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
dma_addr_t dma_addr)
{
Mpi25IeeeSgeChain64_t *sgel = paddr;
sgel->Flags = flags;
sgel->NextChainOffset = chain_offset;
sgel->Length = cpu_to_le32(length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*/
static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
}
/**
* _base_build_sg_scmd - main sg creation routine
* pcie_device is unused here!
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* @unused: unused pcie_device pointer
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Return: 0 success, anything else error
*/
static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
{
Mpi2SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
u32 chain_flags;
int sges_left;
u32 sges_in_segment;
u32 sgl_flags;
u32 sgl_flags_last_element;
u32 sgl_flags_end_buffer;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
if (scmd->sc_data_direction == DMA_TO_DEVICE)
sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
<< MPI2_SGE_FLAGS_SHIFT;
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"scsi_dma_map failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = ioc->max_sges_in_main_message;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
(sges_in_segment * ioc->sge_size))/4;
/* fill in main message segment when there is a chain following */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element | sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
/* initializing the chain flags and pointers */
chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : (sges_in_segment * ioc->sge_size)/4;
chain_length = sges_in_segment * ioc->sge_size;
if (chain_offset) {
chain_offset = chain_offset <<
MPI2_SGE_CHAIN_OFFSET_SHIFT;
chain_length += ioc->sge_size;
}
ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
if (sges_in_segment == 1)
ioc->base_add_sg_single(sg_local,
sgl_flags_last_element |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left) {
if (sges_left == 1)
ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
else
ioc->base_add_sg_single(sg_local, sgl_flags |
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
* constructed on need.
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Return: 0 success, anything else error
*/
static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
{
Mpi25SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
int sges_left;
u32 sges_in_segment;
u8 simple_sgl_flags;
u8 simple_sgl_flags_last;
u8 chain_sgl_flags;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
simple_sgl_flags_last = simple_sgl_flags |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
/* Check if we need to build a native SG list. */
if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
smid, scmd, pcie_device) == 0)) {
/* We built a native SG list, just return. */
return 0;
}
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (sges_left < 0) {
sdev_printk(KERN_ERR, scmd->device,
"scsi_dma_map failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = (ioc->request_sz -
offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
(offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
/* fill in main message segment when there is a chain following */
while (sges_in_segment > 1) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
/* initializing the pointers */
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : sges_in_segment;
chain_length = sges_in_segment * ioc->sge_size_ieee;
if (chain_offset)
chain_length += ioc->sge_size_ieee;
_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
chain_offset, chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left > 0) {
if (sges_left == 1)
_base_add_sg_single_ieee(sg_local,
simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_ieee - build generic sg for IEEE format
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*/
static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u8 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge_ieee(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
/* incr sgel */
psge += ioc->sge_size_ieee;
/* READ sgel last */
sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
}
}
#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
/**
* _base_config_dma_addressing - set dma addressing
* @ioc: per adapter object
* @pdev: PCI device struct
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
{
struct sysinfo s;
int dma_mask;
if (ioc->is_mcpu_endpoint ||
sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
dma_get_required_mask(&pdev->dev) <= 32)
dma_mask = 32;
/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
dma_mask = 63;
else
dma_mask = 64;
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
return -ENODEV;
if (dma_mask > 32) {
ioc->base_add_sg_single = &_base_add_sg_single_64;
ioc->sge_size = sizeof(Mpi2SGESimple64_t);
} else {
ioc->base_add_sg_single = &_base_add_sg_single_32;
ioc->sge_size = sizeof(Mpi2SGESimple32_t);
}
si_meminfo(&s);
ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
dma_mask, convert_to_kb(s.totalram));
return 0;
}
/**
* _base_check_enable_msix - checks MSIX capabable.
* @ioc: per adapter object
*
* Check to see if card is capable of MSIX, and set number
* of available msix vectors
*/
static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
int base;
u16 message_control;
/* Check whether controller SAS2008 B0 controller,
* if it is SAS2008 B0 controller use IO-APIC instead of MSIX
*/
if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
return -EINVAL;
}
base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
if (!base) {
dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
return -EINVAL;
}
/* get msix vector count */
/* NUMA_IO not supported for older controllers */
if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
ioc->msix_vector_count = 1;
else {
pci_read_config_word(ioc->pdev, base + 2, &message_control);
ioc->msix_vector_count = (message_control & 0x3FF) + 1;
}
dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
ioc->msix_vector_count));
return 0;
}
/**
* _base_free_irq - free irq
* @ioc: per adapter object
*
* Freeing respective reply_queue from the list.
*/
static void
_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
list_del(&reply_q->list);
if (ioc->smp_affinity_enable)
irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
reply_q->msix_index), NULL);
free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
reply_q);
kfree(reply_q);
}
}
/**
* _base_request_irq - request irq
* @ioc: per adapter object
* @index: msix index into vector table
*
* Inserting respective reply_queue into the list.
*/
static int
_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
{
struct pci_dev *pdev = ioc->pdev;
struct adapter_reply_queue *reply_q;
int r;
reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
if (!reply_q) {
ioc_err(ioc, "unable to allocate memory %zu!\n",
sizeof(struct adapter_reply_queue));
return -ENOMEM;
}
reply_q->ioc = ioc;
reply_q->msix_index = index;
atomic_set(&reply_q->busy, 0);
if (ioc->msix_enable)
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
ioc->driver_name, ioc->id, index);
else
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
ioc->driver_name, ioc->id);
r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
IRQF_SHARED, reply_q->name, reply_q);
if (r) {
pr_err("%s: unable to allocate interrupt %d!\n",
reply_q->name, pci_irq_vector(pdev, index));
kfree(reply_q);
return -EBUSY;
}
INIT_LIST_HEAD(&reply_q->list);
list_add_tail(&reply_q->list, &ioc->reply_queue_list);
return 0;
}
/**
* _base_assign_reply_queues - assigning msix index for each cpu
* @ioc: per adapter object
*
* The enduser would need to set the affinity via /proc/irq/#/smp_affinity
*
* It would nice if we could call irq_set_affinity, however it is not
* an exported symbol
*/
static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
{
unsigned int cpu, nr_cpus, nr_msix, index = 0;
struct adapter_reply_queue *reply_q;
int local_numa_node;
if (!_base_is_controller_msix_enabled(ioc))
return;
if (ioc->msix_load_balance)
return;
memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
nr_cpus = num_online_cpus();
nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
ioc->facts.MaxMSIxVectors);
if (!nr_msix)
return;
if (ioc->smp_affinity_enable) {
/*
* set irq affinity to local numa node for those irqs
* corresponding to high iops queues.
*/
if (ioc->high_iops_queues) {
local_numa_node = dev_to_node(&ioc->pdev->dev);
for (index = 0; index < ioc->high_iops_queues;
index++) {
irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
index), cpumask_of_node(local_numa_node));
}
}
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
const cpumask_t *mask;
if (reply_q->msix_index < ioc->high_iops_queues)
continue;
mask = pci_irq_get_affinity(ioc->pdev,
reply_q->msix_index);
if (!mask) {
ioc_warn(ioc, "no affinity for msi %x\n",
reply_q->msix_index);
goto fall_back;
}
for_each_cpu_and(cpu, mask, cpu_online_mask) {
if (cpu >= ioc->cpu_msix_table_sz)
break;
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
}
}
return;
}
fall_back:
cpu = cpumask_first(cpu_online_mask);
nr_msix -= ioc->high_iops_queues;
index = 0;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
unsigned int i, group = nr_cpus / nr_msix;
if (reply_q->msix_index < ioc->high_iops_queues)
continue;
if (cpu >= nr_cpus)
break;
if (index < nr_cpus % nr_msix)
group++;
for (i = 0 ; i < group ; i++) {
ioc->cpu_msix_table[cpu] = reply_q->msix_index;
cpu = cpumask_next(cpu, cpu_online_mask);
}
index++;
}
}
/**
* _base_check_and_enable_high_iops_queues - enable high iops mode
* @ioc: per adapter object
* @hba_msix_vector_count: msix vectors supported by HBA
*
* Enable high iops queues only if
* - HBA is a SEA/AERO controller and
* - MSI-Xs vector supported by the HBA is 128 and
* - total CPU count in the system >=16 and
* - loaded driver with default max_msix_vectors module parameter and
* - system booted in non kdump mode
*
* returns nothing.
*/
static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
int hba_msix_vector_count)
{
u16 lnksta, speed;
if (perf_mode == MPT_PERF_MODE_IOPS ||
perf_mode == MPT_PERF_MODE_LATENCY) {
ioc->high_iops_queues = 0;
return;
}
if (perf_mode == MPT_PERF_MODE_DEFAULT) {
pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
speed = lnksta & PCI_EXP_LNKSTA_CLS;
if (speed < 0x4) {
ioc->high_iops_queues = 0;
return;
}
}
if (!reset_devices && ioc->is_aero_ioc &&
hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
max_msix_vectors == -1)
ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
else
ioc->high_iops_queues = 0;
}
/**
* _base_disable_msix - disables msix
* @ioc: per adapter object
*
*/
static void
_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
{
if (!ioc->msix_enable)
return;
pci_free_irq_vectors(ioc->pdev);
ioc->msix_enable = 0;
}
/**
* _base_alloc_irq_vectors - allocate msix vectors
* @ioc: per adapter object
*
*/
static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
{
int i, irq_flags = PCI_IRQ_MSIX;
struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
struct irq_affinity *descp = &desc;
if (ioc->smp_affinity_enable)
irq_flags |= PCI_IRQ_AFFINITY;
else
descp = NULL;
ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
ioc->reply_queue_count);
i = pci_alloc_irq_vectors_affinity(ioc->pdev,
ioc->high_iops_queues,
ioc->reply_queue_count, irq_flags, descp);
return i;
}
/**
* _base_enable_msix - enables msix, failback to io_apic
* @ioc: per adapter object
*
*/
static int
_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
int r;
int i, local_max_msix_vectors;
u8 try_msix = 0;
ioc->msix_load_balance = false;
if (msix_disable == -1 || msix_disable == 0)
try_msix = 1;
if (!try_msix)
goto try_ioapic;
if (_base_check_enable_msix(ioc) != 0)
goto try_ioapic;
ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
ioc->cpu_count, max_msix_vectors);
if (ioc->is_aero_ioc)
_base_check_and_enable_high_iops_queues(ioc,
ioc->msix_vector_count);
ioc->reply_queue_count =
min_t(int, ioc->cpu_count + ioc->high_iops_queues,
ioc->msix_vector_count);
if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
local_max_msix_vectors = (reset_devices) ? 1 : 8;
else
local_max_msix_vectors = max_msix_vectors;
if (local_max_msix_vectors > 0)
ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
ioc->reply_queue_count);
else if (local_max_msix_vectors == 0)
goto try_ioapic;
/*
* Enable msix_load_balance only if combined reply queue mode is
* disabled on SAS3 & above generation HBA devices.
*/
if (!ioc->combined_reply_queue &&
ioc->hba_mpi_version_belonged != MPI2_VERSION) {
ioc_info(ioc,
"combined ReplyQueue is off, Enabling msix load balance\n");
ioc->msix_load_balance = true;
}
/*
* smp affinity setting is not need when msix load balance
* is enabled.
*/
if (ioc->msix_load_balance)
ioc->smp_affinity_enable = 0;
r = _base_alloc_irq_vectors(ioc);
if (r < 0) {
ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
goto try_ioapic;
}
ioc->msix_enable = 1;
ioc->reply_queue_count = r;
for (i = 0; i < ioc->reply_queue_count; i++) {
r = _base_request_irq(ioc, i);
if (r) {
_base_free_irq(ioc);
_base_disable_msix(ioc);
goto try_ioapic;
}
}
ioc_info(ioc, "High IOPs queues : %s\n",
ioc->high_iops_queues ? "enabled" : "disabled");
return 0;
/* failback to io_apic interrupt routing */
try_ioapic:
ioc->high_iops_queues = 0;
ioc_info(ioc, "High IOPs queues : disabled\n");
ioc->reply_queue_count = 1;
r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
if (r < 0) {
dfailprintk(ioc,
ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
r));
} else
r = _base_request_irq(ioc, 0);
return r;
}
/**
* mpt3sas_base_unmap_resources - free controller resources
* @ioc: per adapter object
*/
static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
_base_free_irq(ioc);
_base_disable_msix(ioc);
kfree(ioc->replyPostRegisterIndex);
ioc->replyPostRegisterIndex = NULL;
if (ioc->chip_phys) {
iounmap(ioc->chip);
ioc->chip_phys = 0;
}
if (pci_is_enabled(pdev)) {
pci_release_selected_regions(ioc->pdev, ioc->bars);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
}
static int
_base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
/**
* _base_check_for_fault_and_issue_reset - check if IOC is in fault state
* and if it is in fault state then issue diag reset.
* @ioc: per adapter object
*
* Returns: 0 for success, non-zero for failure.
*/
static int
_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
{
u32 ioc_state;
int rc = -EFAULT;
dinitprintk(ioc, pr_info("%s\n", __func__));
if (ioc->pci_error_recovery)
return 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
rc = _base_diag_reset(ioc);
} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP) {
mpt3sas_print_coredump_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
rc = _base_diag_reset(ioc);
}
return rc;
}
/**
* mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
u32 memap_sz;
u32 pio_sz;
int i, r = 0, rc;
u64 pio_chip = 0;
phys_addr_t chip_phys = 0;
struct adapter_reply_queue *reply_q;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_enable_device_mem(pdev)) {
ioc_warn(ioc, "pci_enable_device_mem: failed\n");
ioc->bars = 0;
return -ENODEV;
}
if (pci_request_selected_regions(pdev, ioc->bars,
ioc->driver_name)) {
ioc_warn(ioc, "pci_request_selected_regions: failed\n");
ioc->bars = 0;
r = -ENODEV;
goto out_fail;
}
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
if (_base_config_dma_addressing(ioc, pdev) != 0) {
ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
r = -ENODEV;
goto out_fail;
}
for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
(!memap_sz || !pio_sz); i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
if (pio_sz)
continue;
pio_chip = (u64)pci_resource_start(pdev, i);
pio_sz = pci_resource_len(pdev, i);
} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
if (memap_sz)
continue;
ioc->chip_phys = pci_resource_start(pdev, i);
chip_phys = ioc->chip_phys;
memap_sz = pci_resource_len(pdev, i);
ioc->chip = ioremap(ioc->chip_phys, memap_sz);
}
}
if (ioc->chip == NULL) {
ioc_err(ioc,
"unable to map adapter memory! or resource not found\n");
r = -EINVAL;
goto out_fail;
}
mpt3sas_base_mask_interrupts(ioc);
r = _base_get_ioc_facts(ioc);
if (r) {
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (_base_get_ioc_facts(ioc)))
goto out_fail;
}
if (!ioc->rdpq_array_enable_assigned) {
ioc->rdpq_array_enable = ioc->rdpq_array_capable;
ioc->rdpq_array_enable_assigned = 1;
}
r = _base_enable_msix(ioc);
if (r)
goto out_fail;
if (!ioc->is_driver_loading)
_base_init_irqpolls(ioc);
/* Use the Combined reply queue feature only for SAS3 C0 & higher
* revision HBAs and also only when reply queue count is greater than 8
*/
if (ioc->combined_reply_queue) {
/* Determine the Supplemental Reply Post Host Index Registers
* Addresse. Supplemental Reply Post Host Index Registers
* starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
* each register is at offset bytes of
* MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
*/
ioc->replyPostRegisterIndex = kcalloc(
ioc->combined_reply_index_count,
sizeof(resource_size_t *), GFP_KERNEL);
if (!ioc->replyPostRegisterIndex) {
ioc_err(ioc,
"allocation for replyPostRegisterIndex failed!\n");
r = -ENOMEM;
goto out_fail;
}
for (i = 0; i < ioc->combined_reply_index_count; i++) {
ioc->replyPostRegisterIndex[i] = (resource_size_t *)
((u8 __force *)&ioc->chip->Doorbell +
MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
(i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
}
}
if (ioc->is_warpdrive) {
ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
&ioc->chip->ReplyPostHostIndex;
for (i = 1; i < ioc->cpu_msix_table_sz; i++)
ioc->reply_post_host_index[i] =
(resource_size_t __iomem *)
((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
* 4)));
}
list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
pr_info("%s: %s enabled: IRQ %d\n",
reply_q->name,
ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
pci_irq_vector(ioc->pdev, reply_q->msix_index));
ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
&chip_phys, ioc->chip, memap_sz);
ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
(unsigned long long)pio_chip, pio_sz);
/* Save PCI configuration state for recovery from PCI AER/EEH errors */
pci_save_state(pdev);
return 0;
out_fail:
mpt3sas_base_unmap_resources(ioc);
return r;
}
/**
* mpt3sas_base_get_msg_frame - obtain request mf pointer
* @ioc: per adapter object
* @smid: system request message index(smid zero is invalid)
*
* Return: virt pointer to message frame.
*/
void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->request + (smid * ioc->request_sz));
}
/**
* mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Return: virt pointer to sense buffer.
*/
void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Return: phys pointer to the low 32bit address of the sense buffer.
*/
__le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Return: virt pointer to a PCIe SGL.
*/
void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
}
/**
* mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Return: phys pointer to the address of the PCIe buffer.
*/
dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
}
/**
* mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
* @ioc: per adapter object
* @phys_addr: lower 32 physical addr of the reply
*
* Converts 32bit lower physical addr into a virt address.
*/
void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
{
if (!phys_addr)
return NULL;
return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
}
/**
* _base_get_msix_index - get the msix index
* @ioc: per adapter object
* @scmd: scsi_cmnd object
*
* returns msix index of general reply queues,
* i.e. reply queue on which IO request's reply
* should be posted by the HBA firmware.
*/
static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
/* Enables reply_queue load balancing */
if (ioc->msix_load_balance)
return ioc->reply_queue_count ?
base_mod64(atomic64_add_return(1,
&ioc->total_io_cnt), ioc->reply_queue_count) : 0;
return ioc->cpu_msix_table[raw_smp_processor_id()];
}
/**
* _base_sdev_nr_inflight_request -get number of inflight requests
* of a request queue.
* @q: request_queue object
*
* returns number of inflight request of a request queue.
*/
inline unsigned long
_base_sdev_nr_inflight_request(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
return atomic_read(&hctx->nr_active);
}
/**
* _base_get_high_iops_msix_index - get the msix index of
* high iops queues
* @ioc: per adapter object
* @scmd: scsi_cmnd object
*
* Returns: msix index of high iops reply queues.
* i.e. high iops reply queue on which IO request's
* reply should be posted by the HBA firmware.
*/
static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd)
{
/**
* Round robin the IO interrupts among the high iops
* reply queues in terms of batch count 16 when outstanding
* IOs on the target device is >=8.
*/
if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
return base_mod64((
atomic64_add_return(1, &ioc->high_iops_outstanding) /
MPT3SAS_HIGH_IOPS_BATCH_COUNT),
MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
return _base_get_msix_index(ioc, scmd);
}
/**
* mpt3sas_base_get_smid - obtain a free smid from internal queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Return: smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->internal_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
ioc_err(ioc, "%s: smid not available\n", __func__);
return 0;
}
request = list_entry(ioc->internal_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
* @ioc: per adapter object
* @cb_idx: callback index
* @scmd: pointer to scsi command object
*
* Return: smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
struct scsi_cmnd *scmd)
{
struct scsiio_tracker *request = scsi_cmd_priv(scmd);
unsigned int tag = scmd->request->tag;
u16 smid;
smid = tag + 1;
request->cb_idx = cb_idx;
request->smid = smid;
request->scmd = scmd;
INIT_LIST_HEAD(&request->chain_list);
return smid;
}
/**
* mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Return: smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return 0;
}
request = list_entry(ioc->hpr_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
static void
_base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
{
/*
* See _wait_for_commands_to_complete() call with regards to this code.
*/
if (ioc->shost_recovery && ioc->pending_io_count) {
ioc->pending_io_count = scsi_host_busy(ioc->shost);
if (ioc->pending_io_count == 0)
wake_up(&ioc->reset_wq);
}
}
void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
struct scsiio_tracker *st)
{
if (WARN_ON(st->smid == 0))
return;
st->cb_idx = 0xFF;
st->direct_io = 0;
st->scmd = NULL;
atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
st->smid = 0;
}
/**
* mpt3sas_base_free_smid - put smid back on free_list
* @ioc: per adapter object
* @smid: system request message index
*/
void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
unsigned long flags;
int i;
if (smid < ioc->hi_priority_smid) {
struct scsiio_tracker *st;
void *request;
st = _get_st_from_smid(ioc, smid);
if (!st) {
_base_recovery_check(ioc);
return;
}
/* Clear MPI request frame */
request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(request, 0, ioc->request_sz);
mpt3sas_base_clear_st(ioc, st);
_base_recovery_check(ioc);
return;
}
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (smid < ioc->internal_smid) {
/* hi-priority */
i = smid - ioc->hi_priority_smid;
ioc->hpr_lookup[i].cb_idx = 0xFF;
list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
} else if (smid <= ioc->hba_queue_depth) {
/* internal queue */
i = smid - ioc->internal_smid;
ioc->internal_lookup[i].cb_idx = 0xFF;
list_add(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
}
/**
* _base_mpi_ep_writeq - 32 bit write to MMIO
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* This special handling for MPI EP to take care of 32 bit
* environment where its not quarenteed to send the entire word
* in one transfer.
*/
static inline void
_base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
spinlock_t *writeq_lock)
{
unsigned long flags;
spin_lock_irqsave(writeq_lock, flags);
__raw_writel((u32)(b), addr);
__raw_writel((u32)(b >> 32), (addr + 4));
spin_unlock_irqrestore(writeq_lock, flags);
}
/**
* _base_writeq - 64 bit write to MMIO
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* Glue for handling an atomic 64 bit word to MMIO. This special handling takes
* care of 32 bit environment where its not quarenteed to send the entire word
* in one transfer.
*/
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
wmb();
__raw_writeq(b, addr);
barrier();
}
#else
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
_base_mpi_ep_writeq(b, addr, writeq_lock);
}
#endif
/**
* _base_set_and_get_msix_index - get the msix index and assign to msix_io
* variable of scsi tracker
* @ioc: per adapter object
* @smid: system request message index
*
* returns msix index.
*/
static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct scsiio_tracker *st = NULL;
if (smid < ioc->hi_priority_smid)
st = _get_st_from_smid(ioc, smid);
if (st == NULL)
return _base_get_msix_index(ioc, NULL);
st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
return st->msix_io;
}
/**
* _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*/
static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
void *mpi_req_iomem;
__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
_clone_sg_entries(ioc, (void *) mfp, smid);
mpi_req_iomem = (void __force *)ioc->chip +
MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
ioc->request_sz);
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*/
static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_fast_path - send fast path request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*/
static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags =
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_hi_priority - send Task Management request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
*/
static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 msix_task)
{
Mpi2RequestDescriptorUnion_t descriptor;
void *mpi_req_iomem;
u64 *request;
if (ioc->is_mcpu_endpoint) {
__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
/* TBD 256 is offset within sys register. */
mpi_req_iomem = (void __force *)ioc->chip
+ MPI_FRAME_START_OFFSET
+ (smid * ioc->request_sz);
_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
ioc->request_sz);
}
request = (u64 *)&descriptor;
descriptor.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.HighPriority.MSIxIndex = msix_task;
descriptor.HighPriority.SMID = cpu_to_le16(smid);
descriptor.HighPriority.LMID = 0;
descriptor.HighPriority.Reserved1 = 0;
if (ioc->is_mcpu_endpoint)
_base_mpi_ep_writeq(*request,
&ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
else
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
* firmware
* @ioc: per adapter object
* @smid: system request message index
*/
void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.Default.RequestFlags =
MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_default - Default, primarily used for config pages
* @ioc: per adapter object
* @smid: system request message index
*/
static void
_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
void *mpi_req_iomem;
u64 *request;
if (ioc->is_mcpu_endpoint) {
__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
_clone_sg_entries(ioc, (void *) mfp, smid);
/* TBD 256 is offset within sys register */
mpi_req_iomem = (void __force *)ioc->chip +
MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
ioc->request_sz);
}
request = (u64 *)&descriptor;
descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
if (ioc->is_mcpu_endpoint)
_base_mpi_ep_writeq(*request,
&ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
else
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
* Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle, unused in this function, for function type match
*
* Return nothing.
*/
static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_fast_path_atomic - send fast path request to firmware
* using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle, unused in this function, for function type match
* Return nothing
*/
static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_hi_priority_atomic - send Task Management request to
* firmware using Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
* @msix_task: msix_task will be same as msix of IO incase of task abort else 0
*
* Return nothing.
*/
static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 msix_task)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.MSIxIndex = msix_task;
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_put_smid_default - Default, primarily used for config pages
* use Atomic Request Descriptor
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi26AtomicRequestDescriptor_t descriptor;
u32 *request = (u32 *)&descriptor;
descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
descriptor.SMID = cpu_to_le16(smid);
writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
}
/**
* _base_display_OEMs_branding - Display branding string
* @ioc: per adapter object
*/
static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
return;
switch (ioc->pdev->subsystem_vendor) {
case PCI_VENDOR_ID_INTEL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RMS2LL080_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS2LL080_BRANDING);
break;
case MPT2SAS_INTEL_RMS2LL040_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS2LL040_BRANDING);
break;
case MPT2SAS_INTEL_SSD910_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_SSD910_BRANDING);
break;
default:
ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_INTEL_RS25GB008_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RS25GB008_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB080_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS25JB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25JB040_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS25JB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB080_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS25KB080_BRANDING);
break;
case MPT2SAS_INTEL_RMS25KB040_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS25KB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB040_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS25LB040_BRANDING);
break;
case MPT2SAS_INTEL_RMS25LB080_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_INTEL_RMS25LB080_BRANDING);
break;
default:
ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_INTEL_RMS3JC080_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_INTEL_RMS3JC080_BRANDING);
break;
case MPT3SAS_INTEL_RS3GC008_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_INTEL_RS3GC008_BRANDING);
break;
case MPT3SAS_INTEL_RS3FC044_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_INTEL_RS3FC044_BRANDING);
break;
case MPT3SAS_INTEL_RS3UC080_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_INTEL_RS3UC080_BRANDING);
break;
default:
ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
default:
ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_DELL:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2008:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
break;
case MPT2SAS_DELL_PERC_H200_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_PERC_H200_BRANDING);
break;
case MPT2SAS_DELL_6GBPS_SAS_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_DELL_6GBPS_SAS_BRANDING);
break;
default:
ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_DELL_12G_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_DELL_12G_HBA_BRANDING);
break;
default:
ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
default:
ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case PCI_VENDOR_ID_CISCO:
switch (ioc->pdev->device) {
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
default:
ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case MPI25_MFGPAGE_DEVID_SAS3108_1:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
break;
case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
ioc_info(ioc, "%s\n",
MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
break;
default:
ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
default:
ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case MPT2SAS_HP_3PAR_SSVID:
switch (ioc->pdev->device) {
case MPI2_MFGPAGE_DEVID_SAS2004:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
break;
default:
ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
case MPI2_MFGPAGE_DEVID_SAS2308_2:
switch (ioc->pdev->subsystem_device) {
case MPT2SAS_HP_2_4_INTERNAL_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_HP_2_4_INTERNAL_BRANDING);
break;
case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
break;
case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
ioc_info(ioc, "%s\n",
MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
break;
default:
ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
break;
default:
ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
ioc->pdev->subsystem_device);
break;
}
default:
break;
}
}
/**
* _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
* version from FW Image Header.
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2FWImageHeader_t *fw_img_hdr;
Mpi26ComponentImageHeader_t *cmp_img_hdr;
Mpi25FWUploadRequest_t *mpi_request;
Mpi2FWUploadReply_t mpi_reply;
int r = 0;
u32 package_version = 0;
void *fwpkg_data = NULL;
dma_addr_t fwpkg_data_dma;
u16 smid, ioc_status;
size_t data_length;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
ioc_err(ioc, "%s: internal command already in use\n", __func__);
return -EAGAIN;
}
data_length = sizeof(Mpi2FWImageHeader_t);
fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
&fwpkg_data_dma, GFP_KERNEL);
if (!fwpkg_data) {
ioc_err(ioc,
"Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -ENOMEM;
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
r = -EAGAIN;
goto out;
}
ioc->base_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
mpi_request->ImageSize = cpu_to_le32(data_length);
ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
data_length);
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
/* Wait for 15 seconds */
wait_for_completion_timeout(&ioc->base_cmds.done,
FW_IMG_HDR_READ_TIMEOUT*HZ);
ioc_info(ioc, "%s: complete\n", __func__);
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
ioc_err(ioc, "%s: timeout\n", __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi25FWUploadRequest_t)/4);
r = -ETIME;
} else {
memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
memcpy(&mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2FWUploadReply_t));
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
if (le32_to_cpu(fw_img_hdr->Signature) ==
MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
cmp_img_hdr =
(Mpi26ComponentImageHeader_t *)
(fwpkg_data);
package_version =
le32_to_cpu(
cmp_img_hdr->ApplicationSpecific);
} else
package_version =
le32_to_cpu(
fw_img_hdr->PackageVersion.Word);
if (package_version)
ioc_info(ioc,
"FW Package Ver(%02d.%02d.%02d.%02d)\n",
((package_version) & 0xFF000000) >> 24,
((package_version) & 0x00FF0000) >> 16,
((package_version) & 0x0000FF00) >> 8,
(package_version) & 0x000000FF);
} else {
_debug_dump_mf(&mpi_reply,
sizeof(Mpi2FWUploadReply_t)/4);
}
}
}
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
out:
if (fwpkg_data)
dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
fwpkg_data_dma);
return r;
}
/**
* _base_display_ioc_capabilities - Disply IOC's capabilities.
* @ioc: per adapter object
*/
static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
char desc[16];
u32 iounit_pg1_flags;
u32 bios_version;
bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
strncpy(desc, ioc->manu_pg0.ChipName, 16);
ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
desc,
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF,
ioc->pdev->revision,
(bios_version & 0xFF000000) >> 24,
(bios_version & 0x00FF0000) >> 16,
(bios_version & 0x0000FF00) >> 8,
bios_version & 0x000000FF);
_base_display_OEMs_branding(ioc);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
pr_info("%sNVMe", i ? "," : "");
i++;
}
ioc_info(ioc, "Protocol=(");
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
pr_cont("Initiator");
i++;
}
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
pr_cont("%sTarget", i ? "," : "");
i++;
}
i = 0;
pr_cont("), Capabilities=(");
if (!ioc->hide_ir_msg) {
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
pr_cont("Raid");
i++;
}
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
pr_cont("%sTLR", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
pr_cont("%sMulticast", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
pr_cont("%sBIDI Target", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
pr_cont("%sEEDP", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
pr_cont("%sSnapshot Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
pr_cont("%sDiag Trace Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
pr_cont("%sDiag Extended Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
pr_cont("%sTask Set Full", i ? "," : "");
i++;
}
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
pr_cont("%sNCQ", i ? "," : "");
i++;
}
pr_cont(")\n");
}
/**
* mpt3sas_base_update_missing_delay - change the missing delay timers
* @ioc: per adapter object
* @device_missing_delay: amount of time till device is reported missing
* @io_missing_delay: interval IO is returned when there is a missing device
*
* Passed on the command line, this function will modify the device missing
* delay, as well as the io missing delay. This should be called at driver
* load time.
*/
void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
u16 device_missing_delay, u8 io_missing_delay)
{
u16 dmd, dmd_new, dmd_orignal;
u8 io_missing_delay_original;
u16 sz;
Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
Mpi2ConfigReply_t mpi_reply;
u8 num_phys = 0;
u16 ioc_status;
mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
if (!num_phys)
return;
sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
sizeof(Mpi2SasIOUnit1PhyData_t));
sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
if (!sas_iounit_pg1) {
ioc_err(ioc, "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
goto out;
}
if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
sas_iounit_pg1, sz))) {
ioc_err(ioc, "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
ioc_err(ioc, "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
goto out;
}
/* device missing delay */
dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
dmd_orignal = dmd;
if (device_missing_delay > 0x7F) {
dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
device_missing_delay;
dmd = dmd / 16;
dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
} else
dmd = device_missing_delay;
sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
/* io missing delay */
io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
sz)) {
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd_new = (dmd &
MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd_new =
dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
dmd_orignal, dmd_new);
ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
io_missing_delay_original,
io_missing_delay);
ioc->device_missing_delay = dmd_new;
ioc->io_missing_delay = io_missing_delay;
}
out:
kfree(sas_iounit_pg1);
}
/**
* _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
* according to performance mode.
* @ioc : per adapter object
*
* Return nothing.
*/
static void
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCPage1_t ioc_pg1;
Mpi2ConfigReply_t mpi_reply;
mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
switch (perf_mode) {
case MPT_PERF_MODE_DEFAULT:
case MPT_PERF_MODE_BALANCED:
if (ioc->high_iops_queues) {
ioc_info(ioc,
"Enable interrupt coalescing only for first\t"
"%d reply queues\n",
MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
/*
* If 31st bit is zero then interrupt coalescing is
* enabled for all reply descriptor post queues.
* If 31st bit is set to one then user can
* enable/disable interrupt coalescing on per reply
* descriptor post queue group(8) basis. So to enable
* interrupt coalescing only on first reply descriptor
* post queue group 31st bit and zero th bit is enabled.
*/
ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
ioc_info(ioc, "performance mode: balanced\n");
return;
}
fallthrough;
case MPT_PERF_MODE_LATENCY:
/*
* Enable interrupt coalescing on all reply queues
* with timeout value 0xA
*/
ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
ioc_pg1.ProductSpecific = 0;
mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
ioc_info(ioc, "performance mode: latency\n");
break;
case MPT_PERF_MODE_IOPS:
/*
* Enable interrupt coalescing on all reply queues.
*/
ioc_info(ioc,
"performance mode: iops with coalescing timeout: 0x%x\n",
le32_to_cpu(ioc_pg1.CoalescingTimeout));
ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
ioc_pg1.ProductSpecific = 0;
mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
break;
}
}
/**
* _base_static_config_pages - static start of day config pages
* @ioc: per adapter object
*/
static void
_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2ConfigReply_t mpi_reply;
u32 iounit_pg1_flags;
ioc->nvme_abort_timeout = 30;
mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
if (ioc->ir_firmware)
mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
&ioc->manu_pg10);
/*
* Ensure correct T10 PI operation if vendor left EEDPTagMode
* flag unset in NVDATA.
*/
mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
ioc->name);
ioc->manu_pg11.EEDPTagMode &= ~0x3;
ioc->manu_pg11.EEDPTagMode |= 0x1;
mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
&ioc->manu_pg11);
}
if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
ioc->tm_custom_handling = 1;
else {
ioc->tm_custom_handling = 0;
if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
else if (ioc->manu_pg11.NVMeAbortTO >
NVME_TASK_ABORT_MAX_TIMEOUT)
ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
else
ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
}
mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
_base_display_ioc_capabilities(ioc);
/*
* Enable task_set_full handling in iounit_pg1 when the
* facts capabilities indicate that its supported.
*/
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
iounit_pg1_flags &=
~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
else
iounit_pg1_flags |=
MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
if (ioc->iounit_pg8.NumSensors)
ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
if (ioc->is_aero_ioc)
_base_update_ioc_page1_inlinewith_perf_mode(ioc);
}
/**
* mpt3sas_free_enclosure_list - release memory
* @ioc: per adapter object
*
* Free memory allocated during encloure add.
*/
void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
{
struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
/* Free enclosure list */
list_for_each_entry_safe(enclosure_dev,
enclosure_dev_next, &ioc->enclosure_list, list) {
list_del(&enclosure_dev->list);
kfree(enclosure_dev);
}
}
/**
* _base_release_memory_pools - release memory
* @ioc: per adapter object
*
* Free memory allocated from _base_allocate_memory_pools.
*/
static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
int j = 0;
int dma_alloc_count = 0;
struct chain_tracker *ct;
int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
if (ioc->request) {
dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
ioc->request, ioc->request_dma);
dexitprintk(ioc,
ioc_info(ioc, "request_pool(0x%p): free\n",
ioc->request));
ioc->request = NULL;
}
if (ioc->sense) {
dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
dma_pool_destroy(ioc->sense_dma_pool);
dexitprintk(ioc,
ioc_info(ioc, "sense_pool(0x%p): free\n",
ioc->sense));
ioc->sense = NULL;
}
if (ioc->reply) {
dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
dma_pool_destroy(ioc->reply_dma_pool);
dexitprintk(ioc,
ioc_info(ioc, "reply_pool(0x%p): free\n",
ioc->reply));
ioc->reply = NULL;
}
if (ioc->reply_free) {
dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
ioc->reply_free_dma);
dma_pool_destroy(ioc->reply_free_dma_pool);
dexitprintk(ioc,
ioc_info(ioc, "reply_free_pool(0x%p): free\n",
ioc->reply_free));
ioc->reply_free = NULL;
}
if (ioc->reply_post) {
dma_alloc_count = DIV_ROUND_UP(count,
RDPQ_MAX_INDEX_IN_ONE_CHUNK);
for (i = 0; i < count; i++) {
if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
&& dma_alloc_count) {
if (ioc->reply_post[i].reply_post_free) {
dma_pool_free(
ioc->reply_post_free_dma_pool,
ioc->reply_post[i].reply_post_free,
ioc->reply_post[i].reply_post_free_dma);
dexitprintk(ioc, ioc_info(ioc,
"reply_post_free_pool(0x%p): free\n",
ioc->reply_post[i].reply_post_free));
ioc->reply_post[i].reply_post_free =
NULL;
}
--dma_alloc_count;
}
}
dma_pool_destroy(ioc->reply_post_free_dma_pool);
if (ioc->reply_post_free_array &&
ioc->rdpq_array_enable) {
dma_pool_free(ioc->reply_post_free_array_dma_pool,
ioc->reply_post_free_array,
ioc->reply_post_free_array_dma);
ioc->reply_post_free_array = NULL;
}
dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
kfree(ioc->reply_post);
}
if (ioc->pcie_sgl_dma_pool) {
for (i = 0; i < ioc->scsiio_depth; i++) {
dma_pool_free(ioc->pcie_sgl_dma_pool,
ioc->pcie_sg_lookup[i].pcie_sgl,
ioc->pcie_sg_lookup[i].pcie_sgl_dma);
}
dma_pool_destroy(ioc->pcie_sgl_dma_pool);
}
if (ioc->config_page) {
dexitprintk(ioc,
ioc_info(ioc, "config_page(0x%p): free\n",
ioc->config_page));
dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
ioc->config_page, ioc->config_page_dma);
}
kfree(ioc->hpr_lookup);
ioc->hpr_lookup = NULL;
kfree(ioc->internal_lookup);
ioc->internal_lookup = NULL;
if (ioc->chain_lookup) {
for (i = 0; i < ioc->scsiio_depth; i++) {
for (j = ioc->chains_per_prp_buffer;
j < ioc->chains_needed_per_io; j++) {
ct = &ioc->chain_lookup[i].chains_per_smid[j];
if (ct && ct->chain_buffer)
dma_pool_free(ioc->chain_dma_pool,
ct->chain_buffer,
ct->chain_buffer_dma);
}
kfree(ioc->chain_lookup[i].chains_per_smid);
}
dma_pool_destroy(ioc->chain_dma_pool);
kfree(ioc->chain_lookup);
ioc->chain_lookup = NULL;
}
}
/**
* mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
* having same upper 32bits in their base memory address.
* @reply_pool_start_address: Base address of a reply queue set
* @pool_sz: Size of single Reply Descriptor Post Queues pool size
*
* Return: 1 if reply queues in a set have a same upper 32bits in their base
* memory address, else 0.
*/
static int
mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
{
long reply_pool_end_address;
reply_pool_end_address = reply_pool_start_address + pool_sz;
if (upper_32_bits(reply_pool_start_address) ==
upper_32_bits(reply_pool_end_address))
return 1;
else
return 0;
}
/**
* base_alloc_rdpq_dma_pool - Allocating DMA'able memory
* for reply queues.
* @ioc: per adapter object
* @sz: DMA Pool size
* Return: 0 for success, non-zero for failure.
*/
static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
{
int i = 0;
u32 dma_alloc_count = 0;
int reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
GFP_KERNEL);
if (!ioc->reply_post)
return -ENOMEM;
/*
* For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
* VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
* be within 4GB boundary i.e reply queues in a set must have same
* upper 32-bits in their memory address. so here driver is allocating
* the DMA'able memory for reply queues according.
* Driver uses limitation of
* VENTURA_SERIES to manage INVADER_SERIES as well.
*/
dma_alloc_count = DIV_ROUND_UP(count,
RDPQ_MAX_INDEX_IN_ONE_CHUNK);
ioc->reply_post_free_dma_pool =
dma_pool_create("reply_post_free pool",
&ioc->pdev->dev, sz, 16, 0);
if (!ioc->reply_post_free_dma_pool)
return -ENOMEM;
for (i = 0; i < count; i++) {
if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
ioc->reply_post[i].reply_post_free =
dma_pool_zalloc(ioc->reply_post_free_dma_pool,
GFP_KERNEL,
&ioc->reply_post[i].reply_post_free_dma);
if (!ioc->reply_post[i].reply_post_free)
return -ENOMEM;
/*
* Each set of RDPQ pool must satisfy 4gb boundary
* restriction.
* 1) Check if allocated resources for RDPQ pool are in
* the same 4GB range.
* 2) If #1 is true, continue with 64 bit DMA.
* 3) If #1 is false, return 1. which means free all the
* resources and set DMA mask to 32 and allocate.
*/
if (!mpt3sas_check_same_4gb_region(
(long)ioc->reply_post[i].reply_post_free, sz)) {
dinitprintk(ioc,
ioc_err(ioc, "bad Replypost free pool(0x%p)"
"reply_post_free_dma = (0x%llx)\n",
ioc->reply_post[i].reply_post_free,
(unsigned long long)
ioc->reply_post[i].reply_post_free_dma));
return -EAGAIN;
}
dma_alloc_count--;
} else {
ioc->reply_post[i].reply_post_free =
(Mpi2ReplyDescriptorsUnion_t *)
((long)ioc->reply_post[i-1].reply_post_free
+ reply_post_free_sz);
ioc->reply_post[i].reply_post_free_dma =
(dma_addr_t)
(ioc->reply_post[i-1].reply_post_free_dma +
reply_post_free_sz);
}
}
return 0;
}
/**
* _base_allocate_memory_pools - allocate start of day memory pools
* @ioc: per adapter object
*
* Return: 0 success, anything else error.
*/
static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
struct mpt3sas_facts *facts;
u16 max_sge_elements;
u16 chains_needed_per_io;
u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
u32 retry_sz;
u32 rdpq_sz = 0;
u16 max_request_credit, nvme_blocks_needed;
unsigned short sg_tablesize;
u16 sge_size;
int i, j;
int ret = 0;
struct chain_tracker *ct;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
retry_sz = 0;
facts = &ioc->facts;
/* command line tunables for max sgl entries */
if (max_sgl_entries != -1)
sg_tablesize = max_sgl_entries;
else {
if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
sg_tablesize = MPT2SAS_SG_DEPTH;
else
sg_tablesize = MPT3SAS_SG_DEPTH;
}
/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
if (reset_devices)
sg_tablesize = min_t(unsigned short, sg_tablesize,
MPT_KDUMP_MIN_PHYS_SEGMENTS);
if (ioc->is_mcpu_endpoint)
ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else {
if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
sg_tablesize = min_t(unsigned short, sg_tablesize,
SG_MAX_SEGMENTS);
ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
}
ioc->shost->sg_tablesize = sg_tablesize;
}
ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
(facts->RequestCredit / 4));
if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
INTERNAL_SCSIIO_CMDS_COUNT)) {
ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
facts->RequestCredit);
return -ENOMEM;
}
ioc->internal_depth = 10;
}
ioc->hi_priority_depth = ioc->internal_depth - (5);
/* command line tunables for max controller queue depth */
if (max_queue_depth != -1 && max_queue_depth != 0) {
max_request_credit = min_t(u16, max_queue_depth +
ioc->internal_depth, facts->RequestCredit);
if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
max_request_credit = MAX_HBA_QUEUE_DEPTH;
} else if (reset_devices)
max_request_credit = min_t(u16, facts->RequestCredit,
(MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
else
max_request_credit = min_t(u16, facts->RequestCredit,
MAX_HBA_QUEUE_DEPTH);
/* Firmware maintains additional facts->HighPriorityCredit number of
* credits for HiPriprity Request messages, so hba queue depth will be
* sum of max_request_credit and high priority queue depth.
*/
ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
/* request frame size */
ioc->request_sz = facts->IOCRequestFrameSize * 4;
/* reply frame size */
ioc->reply_sz = facts->ReplyFrameSize * 4;
/* chain segment size */
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
if (facts->IOCMaxChainSegmentSize)
ioc->chain_segment_sz =
facts->IOCMaxChainSegmentSize *
MAX_CHAIN_ELEMT_SZ;
else
/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
MAX_CHAIN_ELEMT_SZ;
} else
ioc->chain_segment_sz = ioc->request_sz;
/* calculate the max scatter element size */
sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
retry_allocation:
total_sz = 0;
/* calculate number of sg elements left over in the 1st frame */
max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
sizeof(Mpi2SGEIOUnion_t)) + sge_size);
ioc->max_sges_in_main_message = max_sge_elements/sge_size;
/* now do the same for a chain buffer */
max_sge_elements = ioc->chain_segment_sz - sge_size;
ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
/*
* MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
*/
chains_needed_per_io = ((ioc->shost->sg_tablesize -
ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
+ 1;
if (chains_needed_per_io > facts->MaxChainDepth) {
chains_needed_per_io = facts->MaxChainDepth;
ioc->shost->sg_tablesize = min_t(u16,
ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
* chains_needed_per_io), ioc->shost->sg_tablesize);
}
ioc->chains_needed_per_io = chains_needed_per_io;
/* reply free queue sizing - taking into account for 64 FW events */
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
/* mCPU manage single counters for simplicity */
if (ioc->is_mcpu_endpoint)
ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
else {
/* calculate reply descriptor post queue depth */
ioc->reply_post_queue_depth = ioc->hba_queue_depth +
ioc->reply_free_queue_depth + 1;
/* align the reply post queue on the next 16 count boundary */
if (ioc->reply_post_queue_depth % 16)
ioc->reply_post_queue_depth += 16 -
(ioc->reply_post_queue_depth % 16);
}
if (ioc->reply_post_queue_depth >
facts->MaxReplyDescriptorPostQueueDepth) {
ioc->reply_post_queue_depth =
facts->MaxReplyDescriptorPostQueueDepth -
(facts->MaxReplyDescriptorPostQueueDepth % 16);
ioc->hba_queue_depth =
((ioc->reply_post_queue_depth - 64) / 2) - 1;
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
}
ioc_info(ioc,
"scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
"sge_per_io(%d), chains_per_io(%d)\n",
ioc->max_sges_in_main_message,
ioc->max_sges_in_chain_message,
ioc->shost->sg_tablesize,
ioc->chains_needed_per_io);
/* reply post queue, 16 byte align */
reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
if (ret == -EAGAIN) {
/*
* Free allocated bad RDPQ memory pools.
* Change dma coherent mask to 32 bit and reallocate RDPQ
*/
_base_release_memory_pools(ioc);
ioc->use_32bit_dma = true;
if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
ioc_err(ioc,
"32 DMA mask failed %s\n", pci_name(ioc->pdev));
return -ENODEV;
}
if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
return -ENOMEM;
} else if (ret == -ENOMEM)
return -ENOMEM;
total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
ioc->scsiio_depth = ioc->hba_queue_depth -
ioc->hi_priority_depth - ioc->internal_depth;
/* set the scsi host can_queue depth
* with some internal commands that could be outstanding
*/
ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
dinitprintk(ioc,
ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
ioc->shost->can_queue));
/* contiguous pool for request and chains, 16 byte align, one extra "
* "frame for smid=0
*/
ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
/* hi-priority queue */
sz += (ioc->hi_priority_depth * ioc->request_sz);
/* internal queue */
sz += (ioc->internal_depth * ioc->request_sz);
ioc->request_dma_sz = sz;
ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
&ioc->request_dma, GFP_KERNEL);
if (!ioc->request) {
ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
ioc->hba_queue_depth, ioc->chains_needed_per_io,
ioc->request_sz, sz / 1024);
if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
goto out;
retry_sz = 64;
ioc->hba_queue_depth -= retry_sz;
_base_release_memory_pools(ioc);
goto retry_allocation;
}
if (retry_sz)
ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
ioc->hba_queue_depth, ioc->chains_needed_per_io,
ioc->request_sz, sz / 1024);
/* hi-priority queue */
ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
/* internal queue */
ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
ioc->request_sz);
ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
ioc->request_sz);
ioc_info(ioc,
"request pool(0x%p) - dma(0x%llx): "
"depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->request, (unsigned long long) ioc->request_dma,
ioc->hba_queue_depth, ioc->request_sz,
(ioc->hba_queue_depth * ioc->request_sz) / 1024);
total_sz += sz;
dinitprintk(ioc,
ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
ioc->request, ioc->scsiio_depth));
ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
if (!ioc->chain_lookup) {
ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
goto out;
}
sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
for (i = 0; i < ioc->scsiio_depth; i++) {
ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
if (!ioc->chain_lookup[i].chains_per_smid) {
ioc_err(ioc, "chain_lookup: kzalloc failed\n");
goto out;
}
}
/* initialize hi-priority queue smid's */
ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->hpr_lookup) {
ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
goto out;
}
ioc->hi_priority_smid = ioc->scsiio_depth + 1;
dinitprintk(ioc,
ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
ioc->hi_priority,
ioc->hi_priority_depth, ioc->hi_priority_smid));
/* initialize internal queue smid's */
ioc->internal_lookup = kcalloc(ioc->internal_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->internal_lookup) {
ioc_err(ioc, "internal_lookup: kcalloc failed\n");
goto out;
}
ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
dinitprintk(ioc,
ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
ioc->internal,
ioc->internal_depth, ioc->internal_smid));
/*
* The number of NVMe page sized blocks needed is:
* (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
* ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
* that is placed in the main message frame. 8 is the size of each PRP
* entry or PRP list pointer entry. 8 is subtracted from page_size
* because of the PRP list pointer entry at the end of a page, so this
* is not counted as a PRP entry. The 1 added page is a round up.
*
* To avoid allocation failures due to the amount of memory that could
* be required for NVMe PRP's, only each set of NVMe blocks will be
* contiguous, so a new set is allocated for each possible I/O.
*/
ioc->chains_per_prp_buffer = 0;
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
nvme_blocks_needed =
(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
nvme_blocks_needed++;
sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
if (!ioc->pcie_sg_lookup) {
ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
goto out;
}
sz = nvme_blocks_needed * ioc->page_size;
ioc->pcie_sgl_dma_pool =
dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
if (!ioc->pcie_sgl_dma_pool) {
ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
goto out;
}
ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
ioc->chains_needed_per_io);
for (i = 0; i < ioc->scsiio_depth; i++) {
ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
ioc->pcie_sgl_dma_pool, GFP_KERNEL,
&ioc->pcie_sg_lookup[i].pcie_sgl_dma);
if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
goto out;
}
for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
ct = &ioc->chain_lookup[i].chains_per_smid[j];
ct->chain_buffer =
ioc->pcie_sg_lookup[i].pcie_sgl +
(j * ioc->chain_segment_sz);
ct->chain_buffer_dma =
ioc->pcie_sg_lookup[i].pcie_sgl_dma +
(j * ioc->chain_segment_sz);
}
}
dinitprintk(ioc,
ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
ioc->scsiio_depth, sz,
(sz * ioc->scsiio_depth) / 1024));
dinitprintk(ioc,
ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
ioc->chains_per_prp_buffer));
total_sz += sz * ioc->scsiio_depth;
}
ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
ioc->chain_segment_sz, 16, 0);
if (!ioc->chain_dma_pool) {
ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
goto out;
}
for (i = 0; i < ioc->scsiio_depth; i++) {
for (j = ioc->chains_per_prp_buffer;
j < ioc->chains_needed_per_io; j++) {
ct = &ioc->chain_lookup[i].chains_per_smid[j];
ct->chain_buffer = dma_pool_alloc(
ioc->chain_dma_pool, GFP_KERNEL,
&ct->chain_buffer_dma);
if (!ct->chain_buffer) {
ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
goto out;
}
}
total_sz += ioc->chain_segment_sz;
}
dinitprintk(ioc,
ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->chain_depth, ioc->chain_segment_sz,
(ioc->chain_depth * ioc->chain_segment_sz) / 1024));
/* sense buffers, 4 byte align */
sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
4, 0);
if (!ioc->sense_dma_pool) {
ioc_err(ioc, "sense pool: dma_pool_create failed\n");
goto out;
}
ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
&ioc->sense_dma);
if (!ioc->sense) {
ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
goto out;
}
/* sense buffer requires to be in same 4 gb region.
* Below function will check the same.
* In case of failure, new pci pool will be created with updated
* alignment. Older allocation and pool will be destroyed.
* Alignment will be used such a way that next allocation if
* success, will always meet same 4gb region requirement.
* Actual requirement is not alignment, but we need start and end of
* DMA address must have same upper 32 bit address.
*/
if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
//Release Sense pool & Reallocate
dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
dma_pool_destroy(ioc->sense_dma_pool);
ioc->sense = NULL;
ioc->sense_dma_pool =
dma_pool_create("sense pool", &ioc->pdev->dev, sz,
roundup_pow_of_two(sz), 0);
if (!ioc->sense_dma_pool) {
ioc_err(ioc, "sense pool: pci_pool_create failed\n");
goto out;
}
ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
&ioc->sense_dma);
if (!ioc->sense) {
ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
goto out;
}
}
ioc_info(ioc,
"sense pool(0x%p)- dma(0x%llx): depth(%d),"
"element_size(%d), pool_size(%d kB)\n",
ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
SCSI_SENSE_BUFFERSIZE, sz / 1024);
total_sz += sz;
/* reply pool, 4 byte align */
sz = ioc->reply_free_queue_depth * ioc->reply_sz;
ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
4, 0);
if (!ioc->reply_dma_pool) {
ioc_err(ioc, "reply pool: dma_pool_create failed\n");
goto out;
}
ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
&ioc->reply_dma);
if (!ioc->reply) {
ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
goto out;
}
ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
dinitprintk(ioc,
ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->reply, ioc->reply_free_queue_depth,
ioc->reply_sz, sz / 1024));
dinitprintk(ioc,
ioc_info(ioc, "reply_dma(0x%llx)\n",
(unsigned long long)ioc->reply_dma));
total_sz += sz;
/* reply free queue, 16 byte align */
sz = ioc->reply_free_queue_depth * 4;
ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
&ioc->pdev->dev, sz, 16, 0);
if (!ioc->reply_free_dma_pool) {
ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
goto out;
}
ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
&ioc->reply_free_dma);
if (!ioc->reply_free) {
ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
goto out;
}
dinitprintk(ioc,
ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
ioc->reply_free, ioc->reply_free_queue_depth,
4, sz / 1024));
dinitprintk(ioc,
ioc_info(ioc, "reply_free_dma (0x%llx)\n",
(unsigned long long)ioc->reply_free_dma));
total_sz += sz;
if (ioc->rdpq_array_enable) {
reply_post_free_array_sz = ioc->reply_queue_count *
sizeof(Mpi2IOCInitRDPQArrayEntry);
ioc->reply_post_free_array_dma_pool =
dma_pool_create("reply_post_free_array pool",
&ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
if (!ioc->reply_post_free_array_dma_pool) {
dinitprintk(ioc,
ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
goto out;
}
ioc->reply_post_free_array =
dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
GFP_KERNEL, &ioc->reply_post_free_array_dma);
if (!ioc->reply_post_free_array) {
dinitprintk(ioc,
ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
goto out;
}
}
ioc->config_page_sz = 512;
ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
if (!ioc->config_page) {
ioc_err(ioc, "config page: dma_pool_alloc failed\n");
goto out;
}
ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
ioc->config_page, (unsigned long long)ioc->config_page_dma,
ioc->config_page_sz);
total_sz += ioc->config_page_sz;
ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
total_sz / 1024);
ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
ioc->shost->can_queue, facts->RequestCredit);
ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
ioc->shost->sg_tablesize);
return 0;
out:
return -ENOMEM;
}
/**
* mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
* @ioc: Pointer to MPT_ADAPTER structure
* @cooked: Request raw or cooked IOC state
*
* Return: all IOC Doorbell register bits if cooked==0, else just the
* Doorbell bits in MPI_IOC_STATE_MASK.
*/
u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
{
u32 s, sc;
s = ioc->base_readl(&ioc->chip->Doorbell);
sc = s & MPI2_IOC_STATE_MASK;
return cooked ? sc : s;
}
/**
* _base_wait_on_iocstate - waiting on a particular ioc state
* @ioc: ?
* @ioc_state: controller state { READY, OPERATIONAL, or RESET }
* @timeout: timeout in second
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
{
u32 count, cntdn;
u32 current_state;
count = 0;
cntdn = 1000 * timeout;
do {
current_state = mpt3sas_base_get_iocstate(ioc, 1);
if (current_state == ioc_state)
return 0;
if (count && current_state == MPI2_IOC_STATE_FAULT)
break;
if (count && current_state == MPI2_IOC_STATE_COREDUMP)
break;
usleep_range(1000, 1500);
count++;
} while (--cntdn);
return current_state;
}
/**
* _base_dump_reg_set - This function will print hexdump of register set.
* @ioc: per adapter object
*
* Returns nothing.
*/
static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
{
unsigned int i, sz = 256;
u32 __iomem *reg = (u32 __iomem *)ioc->chip;
ioc_info(ioc, "System Register set:\n");
for (i = 0; i < (sz / sizeof(u32)); i++)
pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
}
/**
* _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
* a write to the doorbell)
* @ioc: per adapter object
* @timeout: timeout in seconds
*
* Return: 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
*/
static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = 1000 * timeout;
do {
int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc,
ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
__func__, count, timeout));
return 0;
}
usleep_range(1000, 1500);
count++;
} while (--cntdn);
ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
__func__, count, int_status);
return -EFAULT;
}
static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = 2000 * timeout;
do {
int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc,
ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
__func__, count, timeout));
return 0;
}
udelay(500);
count++;
} while (--cntdn);
ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
__func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
* @ioc: per adapter object
* @timeout: timeout in second
*
* Return: 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
* doorbell.
*/
static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 int_status;
u32 doorbell;
count = 0;
cntdn = 1000 * timeout;
do {
int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
dhsprintk(ioc,
ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
__func__, count, timeout));
return 0;
} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
doorbell = ioc->base_readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, doorbell);
return -EFAULT;
}
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP) {
mpt3sas_print_coredump_info(ioc, doorbell);
return -EFAULT;
}
} else if (int_status == 0xFFFFFFFF)
goto out;
usleep_range(1000, 1500);
count++;
} while (--cntdn);
out:
ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
__func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
* @ioc: per adapter object
* @timeout: timeout in second
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 cntdn, count;
u32 doorbell_reg;
count = 0;
cntdn = 1000 * timeout;
do {
doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
dhsprintk(ioc,
ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
__func__, count, timeout));
return 0;
}
usleep_range(1000, 1500);
count++;
} while (--cntdn);
ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
__func__, count, doorbell_reg);
return -EFAULT;
}
/**
* _base_send_ioc_reset - send doorbell reset
* @ioc: per adapter object
* @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
* @timeout: timeout in second
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
{
u32 ioc_state;
int r = 0;
unsigned long flags;
if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
ioc_err(ioc, "%s: unknown reset_type\n", __func__);
return -EFAULT;
}
if (!(ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
return -EFAULT;
ioc_info(ioc, "sending message unit reset !!\n");
writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
&ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 15))) {
r = -EFAULT;
goto out;
}
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
if (ioc_state) {
ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
__func__, ioc_state);
r = -EFAULT;
goto out;
}
out:
if (r != 0) {
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
/*
* Wait for IOC state CoreDump to clear only during
* HBA initialization & release time.
*/
if ((ioc_state & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
ioc->fault_reset_work_q == NULL)) {
spin_unlock_irqrestore(
&ioc->ioc_reset_in_progress_lock, flags);
mpt3sas_print_coredump_info(ioc, ioc_state);
mpt3sas_base_wait_for_coredump_completion(ioc,
__func__);
spin_lock_irqsave(
&ioc->ioc_reset_in_progress_lock, flags);
}
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
ioc_info(ioc, "message unit reset: %s\n",
r == 0 ? "SUCCESS" : "FAILED");
return r;
}
/**
* mpt3sas_wait_for_ioc - IOC's operational state is checked here.
* @ioc: per adapter object
* @timeout: timeout in seconds
*
* Return: Waits up to timeout seconds for the IOC to
* become operational. Returns 0 if IOC is present
* and operational; otherwise returns -EFAULT.
*/
int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
int wait_state_count = 0;
u32 ioc_state;
do {
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
break;
ssleep(1);
ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
__func__, ++wait_state_count);
} while (--timeout);
if (!timeout) {
ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
return -EFAULT;
}
if (wait_state_count)
ioc_info(ioc, "ioc is operational\n");
return 0;
}
/**
* _base_handshake_req_reply_wait - send request thru doorbell interface
* @ioc: per adapter object
* @request_bytes: request length
* @request: pointer having request payload
* @reply_bytes: reply length
* @reply: pointer to reply payload
* @timeout: timeout in second
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
u32 *request, int reply_bytes, u16 *reply, int timeout)
{
MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
int i;
u8 failed;
__le32 *mfp;
/* make sure doorbell is not in use */
if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
return -EFAULT;
}
/* clear pending doorbell interrupts from previous state changes */
if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
MPI2_HIS_IOC2SYS_DB_STATUS)
writel(0, &ioc->chip->HostInterruptStatus);
/* send message to ioc */
writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
&ioc->chip->Doorbell);
if ((_base_spin_on_doorbell_int(ioc, 5))) {
ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
__LINE__);
return -EFAULT;
}
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_ack(ioc, 5))) {
ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
__LINE__);
return -EFAULT;
}
/* send message 32-bits at a time */
for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 5)))
failed = 1;
}
if (failed) {
ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
__LINE__);
return -EFAULT;
}
/* now wait for the reply */
if ((_base_wait_for_doorbell_int(ioc, timeout))) {
ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
__LINE__);
return -EFAULT;
}
/* read the first two 16-bits, it gives the total length of the reply */
reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_int(ioc, 5))) {
ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
__LINE__);
return -EFAULT;
}
reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
for (i = 2; i < default_reply->MsgLength * 2; i++) {
if ((_base_wait_for_doorbell_int(ioc, 5))) {
ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
__LINE__);
return -EFAULT;
}
if (i >= reply_bytes/2) /* overflow case */
ioc->base_readl(&ioc->chip->Doorbell);
else
reply[i] = le16_to_cpu(
ioc->base_readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
}
_base_wait_for_doorbell_int(ioc, 5);
if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
dhsprintk(ioc,
ioc_info(ioc, "doorbell is in use (line=%d)\n",
__LINE__));
}
writel(0, &ioc->chip->HostInterruptStatus);
if (ioc->logging_level & MPT_DEBUG_INIT) {
mfp = (__le32 *)reply;
pr_info("\toffset:data\n");
for (i = 0; i < reply_bytes/4; i++)
ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
le32_to_cpu(mfp[i]));
}
return 0;
}
/**
* mpt3sas_base_sas_iounit_control - send sas iounit control to FW
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SAS IO Unit Control Request message allows the host to perform low-level
* operations, such as resets on the PHYs of the IO Unit, also allows the host
* to obtain the IOC assigned device handles for a device if it has other
* identifying information about the device, in addition allows the host to
* remove IOC resources associated with the device.
*
* Return: 0 for success, non-zero for failure.
*/
int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
Mpi2SasIoUnitControlReply_t *mpi_reply,
Mpi2SasIoUnitControlRequest_t *mpi_request)
{
u16 smid;
u8 issue_reset = 0;
int rc;
void *request;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
ioc_err(ioc, "%s: base_cmd in use\n", __func__);
rc = -EAGAIN;
goto out;
}
rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
if (rc)
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
ioc->ioc_link_reset_in_progress = 1;
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
ioc->ioc_link_reset_in_progress)
ioc->ioc_link_reset_in_progress = 0;
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
issue_reset);
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SasIoUnitControlReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* mpt3sas_base_scsi_enclosure_processor - sending request to sep device
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SCSI Enclosure Processor request message causes the IOC to
* communicate with SES devices to control LED status signals.
*
* Return: 0 for success, non-zero for failure.
*/
int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
{
u16 smid;
u8 issue_reset = 0;
int rc;
void *request;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
ioc_err(ioc, "%s: base_cmd in use\n", __func__);
rc = -EAGAIN;
goto out;
}
rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
if (rc)
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(request, 0, ioc->request_sz);
memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
mpt3sas_check_cmd_timeout(ioc,
ioc->base_cmds.status, mpi_request,
sizeof(Mpi2SepRequest_t)/4, issue_reset);
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SepReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* _base_get_port_facts - obtain port facts reply and save in ioc
* @ioc: per adapter object
* @port: ?
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
{
Mpi2PortFactsRequest_t mpi_request;
Mpi2PortFactsReply_t mpi_reply;
struct mpt3sas_port_facts *pfacts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
mpi_request.PortNumber = port;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
if (r != 0) {
ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
return r;
}
pfacts = &ioc->pfacts[port];
memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
pfacts->PortNumber = mpi_reply.PortNumber;
pfacts->VP_ID = mpi_reply.VP_ID;
pfacts->VF_ID = mpi_reply.VF_ID;
pfacts->MaxPostedCmdBuffers =
le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
return 0;
}
/**
* _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
* @ioc: per adapter object
* @timeout:
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
{
u32 ioc_state;
int rc;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
if (ioc->pci_error_recovery) {
dfailprintk(ioc,
ioc_info(ioc, "%s: host in pci error recovery\n",
__func__));
return -EFAULT;
}
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc,
ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
__func__, ioc_state));
if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
(ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP) {
ioc_info(ioc,
"%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
__func__, ioc_state);
return -EFAULT;
}
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
if (ioc_state) {
dfailprintk(ioc,
ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
__func__, ioc_state));
return -EFAULT;
}
issue_diag_reset:
rc = _base_diag_reset(ioc);
return rc;
}
/**
* _base_get_ioc_facts - obtain ioc facts reply and save in ioc
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCFactsRequest_t mpi_request;
Mpi2IOCFactsReply_t mpi_reply;
struct mpt3sas_facts *facts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
r = _base_wait_for_iocstate(ioc, 10);
if (r) {
dfailprintk(ioc,
ioc_info(ioc, "%s: failed getting to correct state\n",
__func__));
return r;
}
mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
if (r != 0) {
ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
return r;
}
facts = &ioc->facts;
memset(facts, 0, sizeof(struct mpt3sas_facts));
facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
facts->VP_ID = mpi_reply.VP_ID;
facts->VF_ID = mpi_reply.VF_ID;
facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
facts->MaxChainDepth = mpi_reply.MaxChainDepth;
facts->WhoInit = mpi_reply.WhoInit;
facts->NumberOfPorts = mpi_reply.NumberOfPorts;
facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
if (ioc->msix_enable && (facts->MaxMSIxVectors <=
MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
ioc->combined_reply_queue = 0;
facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
facts->MaxReplyDescriptorPostQueueDepth =
le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
ioc->ir_firmware = 1;
if ((facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
ioc->rdpq_array_capable = 1;
if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
&& ioc->is_aero_ioc)
ioc->atomic_desc_capable = 1;
facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
facts->IOCRequestFrameSize =
le16_to_cpu(mpi_reply.IOCRequestFrameSize);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
facts->IOCMaxChainSegmentSize =
le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
}
facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
ioc->shost->max_id = -1;
facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
facts->HighPriorityCredit =
le16_to_cpu(mpi_reply.HighPriorityCredit);
facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
/*
* Get the Page Size from IOC Facts. If it's 0, default to 4k.
*/
ioc->page_size = 1 << facts->CurrentHostPageSize;
if (ioc->page_size == 1) {
ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
}
dinitprintk(ioc,
ioc_info(ioc, "CurrentHostPageSize(%d)\n",
facts->CurrentHostPageSize));
dinitprintk(ioc,
ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
facts->RequestCredit, facts->MaxChainDepth));
dinitprintk(ioc,
ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
facts->IOCRequestFrameSize * 4,
facts->ReplyFrameSize * 4));
return 0;
}
/**
* _base_send_ioc_init - send ioc_init to firmware
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2IOCInitRequest_t mpi_request;
Mpi2IOCInitReply_t mpi_reply;
int i, r = 0;
ktime_t current_time;
u16 ioc_status;
u32 reply_post_free_array_sz = 0;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
mpi_request.VF_ID = 0; /* TODO */
mpi_request.VP_ID = 0;
mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
if (_base_is_controller_msix_enabled(ioc))
mpi_request.HostMSIxVectors = ioc->reply_queue_count;
mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
mpi_request.ReplyDescriptorPostQueueDepth =
cpu_to_le16(ioc->reply_post_queue_depth);
mpi_request.ReplyFreeQueueDepth =
cpu_to_le16(ioc->reply_free_queue_depth);
mpi_request.SenseBufferAddressHigh =
cpu_to_le32((u64)ioc->sense_dma >> 32);
mpi_request.SystemReplyAddressHigh =
cpu_to_le32((u64)ioc->reply_dma >> 32);
mpi_request.SystemRequestFrameBaseAddress =
cpu_to_le64((u64)ioc->request_dma);
mpi_request.ReplyFreeQueueAddress =
cpu_to_le64((u64)ioc->reply_free_dma);
if (ioc->rdpq_array_enable) {
reply_post_free_array_sz = ioc->reply_queue_count *
sizeof(Mpi2IOCInitRDPQArrayEntry);
memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
for (i = 0; i < ioc->reply_queue_count; i++)
ioc->reply_post_free_array[i].RDPQBaseAddress =
cpu_to_le64(
(u64)ioc->reply_post[i].reply_post_free_dma);
mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)ioc->reply_post_free_array_dma);
} else {
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
}
/*
* Set the flag to enable CoreDump state feature in IOC firmware.
*/
mpi_request.ConfigurationFlags |=
cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
/* This time stamp specifies number of milliseconds
* since epoch ~ midnight January 1, 1970.
*/
current_time = ktime_get_real();
mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
if (ioc->logging_level & MPT_DEBUG_INIT) {
__le32 *mfp;
int i;
mfp = (__le32 *)&mpi_request;
ioc_info(ioc, "\toffset:data\n");
for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
le32_to_cpu(mfp[i]));
}
r = _base_handshake_req_reply_wait(ioc,
sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
if (r != 0) {
ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
return r;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
mpi_reply.IOCLogInfo) {
ioc_err(ioc, "%s: failed\n", __func__);
r = -EIO;
}
return r;
}
/**
* mpt3sas_port_enable_done - command completion routine for port enable
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return: 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
return 1;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
return 1;
ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
ioc->port_enable_failed = 1;
if (ioc->is_driver_loading) {
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
mpt3sas_port_enable_complete(ioc);
return 1;
} else {
ioc->start_scan_failed = ioc_status;
ioc->start_scan = 0;
return 1;
}
}
complete(&ioc->port_enable_cmds.done);
return 1;
}
/**
* _base_send_port_enable - send port_enable(discovery stuff) to firmware
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
Mpi2PortEnableReply_t *mpi_reply;
int r = 0;
u16 smid;
u16 ioc_status;
ioc_info(ioc, "sending port enable !!\n");
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
ioc_err(ioc, "%s: internal command already in use\n", __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
init_completion(&ioc->port_enable_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
ioc_err(ioc, "%s: timeout\n", __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2PortEnableRequest_t)/4);
if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
goto out;
}
mpi_reply = ioc->port_enable_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
__func__, ioc_status);
r = -EFAULT;
goto out;
}
out:
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
return r;
}
/**
* mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
u16 smid;
ioc_info(ioc, "sending port enable !!\n");
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
ioc_err(ioc, "%s: internal command already in use\n", __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
ioc->put_smid_default(ioc, smid);
return 0;
}
/**
* _base_determine_wait_on_discovery - desposition
* @ioc: per adapter object
*
* Decide whether to wait on discovery to complete. Used to either
* locate boot device, or report volumes ahead of physical devices.
*
* Return: 1 for wait, 0 for don't wait.
*/
static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
{
/* We wait for discovery to complete if IR firmware is loaded.
* The sas topology events arrive before PD events, so we need time to
* turn on the bit in ioc->pd_handles to indicate PD
* Also, it maybe required to report Volumes ahead of physical
* devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
*/
if (ioc->ir_firmware)
return 1;
/* if no Bios, then we don't need to wait */
if (!ioc->bios_pg3.BiosVersion)
return 0;
/* Bios is present, then we drop down here.
*
* If there any entries in the Bios Page 2, then we wait
* for discovery to complete.
*/
/* Current Boot Device */
if ((ioc->bios_pg2.CurrentBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Request Boot Device */
(ioc->bios_pg2.ReqBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Alternate Request Boot Device */
(ioc->bios_pg2.ReqAltBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
return 0;
return 1;
}
/**
* _base_unmask_events - turn on notification for this event
* @ioc: per adapter object
* @event: firmware event
*
* The mask is stored in ioc->event_masks.
*/
static void
_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
{
u32 desired_event;
if (event >= 128)
return;
desired_event = (1 << (event % 32));
if (event < 32)
ioc->event_masks[0] &= ~desired_event;
else if (event < 64)
ioc->event_masks[1] &= ~desired_event;
else if (event < 96)
ioc->event_masks[2] &= ~desired_event;
else if (event < 128)
ioc->event_masks[3] &= ~desired_event;
}
/**
* _base_event_notification - send event notification
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_event_notification(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2EventNotificationRequest_t *mpi_request;
u16 smid;
int r = 0;
int i;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
ioc_err(ioc, "%s: internal command already in use\n", __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
return -EAGAIN;
}
ioc->base_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
mpi_request->EventMasks[i] =
cpu_to_le32(ioc->event_masks[i]);
init_completion(&ioc->base_cmds.done);
ioc->put_smid_default(ioc, smid);
wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
ioc_err(ioc, "%s: timeout\n", __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2EventNotificationRequest_t)/4);
if (ioc->base_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
} else
dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
return r;
}
/**
* mpt3sas_base_validate_event_type - validating event types
* @ioc: per adapter object
* @event_type: firmware event
*
* This will turn on firmware event notification when application
* ask for that event. We don't mask events that are already enabled.
*/
void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
{
int i, j;
u32 event_mask, desired_event;
u8 send_update_to_fw;
for (i = 0, send_update_to_fw = 0; i <
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
event_mask = ~event_type[i];
desired_event = 1;
for (j = 0; j < 32; j++) {
if (!(event_mask & desired_event) &&
(ioc->event_masks[i] & desired_event)) {
ioc->event_masks[i] &= ~desired_event;
send_update_to_fw = 1;
}
desired_event = (desired_event << 1);
}
}
if (!send_update_to_fw)
return;
mutex_lock(&ioc->base_cmds.mutex);
_base_event_notification(ioc);
mutex_unlock(&ioc->base_cmds.mutex);
}
/**
* _base_diag_reset - the "big hammer" start of day reset
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
{
u32 host_diagnostic;
u32 ioc_state;
u32 count;
u32 hcb_size;
ioc_info(ioc, "sending diag reset !!\n");
pci_cfg_access_lock(ioc->pdev);
drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
count = 0;
do {
/* Write magic sequence to WriteSequence register
* Loop until in diagnostic mode
*/
drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
/* wait 100 msec */
msleep(100);
if (count++ > 20) {
ioc_info(ioc,
"Stop writing magic sequence after 20 retries\n");
_base_dump_reg_set(ioc);
goto out;
}
host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
drsprintk(ioc,
ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
count, host_diagnostic));
} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
&ioc->chip->HostDiagnostic);
/*This delay allows the chip PCIe hardware time to finish reset tasks*/
msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
/* Approximately 300 second max wait */
for (count = 0; count < (300000000 /
MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
if (host_diagnostic == 0xFFFFFFFF) {
ioc_info(ioc,
"Invalid host diagnostic register value\n");
_base_dump_reg_set(ioc);
goto out;
}
if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
break;
msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
}
if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
drsprintk(ioc,
ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
writel(host_diagnostic, &ioc->chip->HostDiagnostic);
drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
&ioc->chip->HCBSize);
}
drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
&ioc->chip->HostDiagnostic);
drsprintk(ioc,
ioc_info(ioc, "disable writes to the diagnostic register\n"));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
if (ioc_state) {
ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
__func__, ioc_state);
_base_dump_reg_set(ioc);
goto out;
}
pci_cfg_access_unlock(ioc->pdev);
ioc_info(ioc, "diag reset: SUCCESS\n");
return 0;
out:
pci_cfg_access_unlock(ioc->pdev);
ioc_err(ioc, "diag reset: FAILED\n");
return -EFAULT;
}
/**
* _base_make_ioc_ready - put controller in READY state
* @ioc: per adapter object
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
{
u32 ioc_state;
int rc;
int count;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
if (ioc->pci_error_recovery)
return 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc,
ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
__func__, ioc_state));
/* if in RESET state, it should move to READY state shortly */
count = 0;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
while ((ioc_state & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_READY) {
if (count++ == 10) {
ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
__func__, ioc_state);
return -EFAULT;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
}
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
ioc_info(ioc, "unexpected doorbell active!\n");
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_print_fault_code(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
/*
* if host reset is invoked while watch dog thread is waiting
* for IOC state to be changed to Fault state then driver has
* to wait here for CoreDump state to clear otherwise reset
* will be issued to the FW and FW move the IOC state to
* reset state without copying the FW logs to coredump region.
*/
if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
mpt3sas_print_coredump_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
mpt3sas_base_wait_for_coredump_completion(ioc,
__func__);
}
goto issue_diag_reset;
}
if (type == FORCE_BIG_HAMMER)
goto issue_diag_reset;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
if (!(_base_send_ioc_reset(ioc,
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
return 0;
}
issue_diag_reset:
rc = _base_diag_reset(ioc);
return rc;
}
/**
* _base_make_ioc_operational - put controller in OPERATIONAL state
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
{
int r, i, index, rc;
unsigned long flags;
u32 reply_address;
u16 smid;
struct _tr_list *delayed_tr, *delayed_tr_next;
struct _sc_list *delayed_sc, *delayed_sc_next;
struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
u8 hide_flag;
struct adapter_reply_queue *reply_q;
Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
/* clean the delayed target reset list */
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_volume_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_sc, delayed_sc_next,
&ioc->delayed_sc_list, list) {
list_del(&delayed_sc->list);
kfree(delayed_sc);
}
list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
&ioc->delayed_event_ack_list, list) {
list_del(&delayed_event_ack->list);
kfree(delayed_event_ack);
}
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
/* hi-priority queue */
INIT_LIST_HEAD(&ioc->hpr_free_list);
smid = ioc->hi_priority_smid;
for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
ioc->hpr_lookup[i].cb_idx = 0xFF;
ioc->hpr_lookup[i].smid = smid;
list_add_tail(&ioc->hpr_lookup[i].tracker_list,
&ioc->hpr_free_list);
}
/* internal queue */
INIT_LIST_HEAD(&ioc->internal_free_list);
smid = ioc->internal_smid;
for (i = 0; i < ioc->internal_depth; i++, smid++) {
ioc->internal_lookup[i].cb_idx = 0xFF;
ioc->internal_lookup[i].smid = smid;
list_add_tail(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
/* initialize Reply Free Queue */
for (i = 0, reply_address = (u32)ioc->reply_dma ;
i < ioc->reply_free_queue_depth ; i++, reply_address +=
ioc->reply_sz) {
ioc->reply_free[i] = cpu_to_le32(reply_address);
if (ioc->is_mcpu_endpoint)
_base_clone_reply_to_sys_mem(ioc,
reply_address, i);
}
/* initialize reply queues */
if (ioc->is_driver_loading)
_base_assign_reply_queues(ioc);
/* initialize Reply Post Free Queue */
index = 0;
reply_post_free_contig = ioc->reply_post[0].reply_post_free;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
/*
* If RDPQ is enabled, switch to the next allocation.
* Otherwise advance within the contiguous region.
*/
if (ioc->rdpq_array_enable) {
reply_q->reply_post_free =
ioc->reply_post[index++].reply_post_free;
} else {
reply_q->reply_post_free = reply_post_free_contig;
reply_post_free_contig += ioc->reply_post_queue_depth;
}
reply_q->reply_post_host_index = 0;
for (i = 0; i < ioc->reply_post_queue_depth; i++)
reply_q->reply_post_free[i].Words =
cpu_to_le64(ULLONG_MAX);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_free_queue;
}
skip_init_reply_post_free_queue:
r = _base_send_ioc_init(ioc);
if (r) {
/*
* No need to check IOC state for fault state & issue
* diag reset during host reset. This check is need
* only during driver load time.
*/
if (!ioc->is_driver_loading)
return r;
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (_base_send_ioc_init(ioc)))
return r;
}
/* initialize reply free host index */
ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
/* initialize reply post host index */
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->combined_reply_queue)
writel((reply_q->msix_index & 7)<<
MPI2_RPHI_MSIX_INDEX_SHIFT,
ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
else
writel(reply_q->msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT,
&ioc->chip->ReplyPostHostIndex);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_host_index;
}
skip_init_reply_post_host_index:
mpt3sas_base_unmask_interrupts(ioc);
if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
r = _base_display_fwpkg_version(ioc);
if (r)
return r;
}
_base_static_config_pages(ioc);
r = _base_event_notification(ioc);
if (r)
return r;
if (ioc->is_driver_loading) {
if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
== 0x80) {
hide_flag = (u8) (
le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
MFG_PAGE10_HIDE_SSDS_MASK);
if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
ioc->mfg_pg10_hide_flag = hide_flag;
}
ioc->wait_for_discovery_to_complete =
_base_determine_wait_on_discovery(ioc);
return r; /* scan_start and scan_finished support */
}
r = _base_send_port_enable(ioc);
if (r)
return r;
return r;
}
/**
* mpt3sas_base_free_resources - free resources controller resources
* @ioc: per adapter object
*/
void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
/* synchronizing freeing resource with pci_access_mutex lock */
mutex_lock(&ioc->pci_access_mutex);
if (ioc->chip_phys && ioc->chip) {
mpt3sas_base_mask_interrupts(ioc);
ioc->shost_recovery = 1;
_base_make_ioc_ready(ioc, SOFT_RESET);
ioc->shost_recovery = 0;
}
mpt3sas_base_unmap_resources(ioc);
mutex_unlock(&ioc->pci_access_mutex);
return;
}
/**
* mpt3sas_base_attach - attach controller instance
* @ioc: per adapter object
*
* Return: 0 for success, non-zero for failure.
*/
int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
{
int r, i, rc;
int cpu_id, last_cpu_id = 0;
dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
/* setup cpu_msix_table */
ioc->cpu_count = num_online_cpus();
for_each_online_cpu(cpu_id)
last_cpu_id = cpu_id;
ioc->cpu_msix_table_sz = last_cpu_id + 1;
ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
ioc->reply_queue_count = 1;
if (!ioc->cpu_msix_table) {
ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
r = -ENOMEM;
goto out_free_resources;
}
if (ioc->is_warpdrive) {
ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
sizeof(resource_size_t *), GFP_KERNEL);
if (!ioc->reply_post_host_index) {
ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
r = -ENOMEM;
goto out_free_resources;
}
}
ioc->smp_affinity_enable = smp_affinity_enable;
ioc->rdpq_array_enable_assigned = 0;
ioc->use_32bit_dma = false;
if (ioc->is_aero_ioc)
ioc->base_readl = &_base_readl_aero;
else
ioc->base_readl = &_base_readl;
r = mpt3sas_base_map_resources(ioc);
if (r)
goto out_free_resources;
pci_set_drvdata(ioc->pdev, ioc->shost);
r = _base_get_ioc_facts(ioc);
if (r) {
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (_base_get_ioc_facts(ioc)))
goto out_free_resources;
}
switch (ioc->hba_mpi_version_belonged) {
case MPI2_VERSION:
ioc->build_sg_scmd = &_base_build_sg_scmd;
ioc->build_sg = &_base_build_sg;
ioc->build_zero_len_sge = &_base_build_zero_len_sge;
ioc->get_msix_index_for_smlio = &_base_get_msix_index;
break;
case MPI25_VERSION:
case MPI26_VERSION:
/*
* In SAS3.0,
* SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
* Target Status - all require the IEEE formated scatter gather
* elements.
*/
ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
ioc->build_sg = &_base_build_sg_ieee;
ioc->build_nvme_prp = &_base_build_nvme_prp;
ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
if (ioc->high_iops_queues)
ioc->get_msix_index_for_smlio =
&_base_get_high_iops_msix_index;
else
ioc->get_msix_index_for_smlio = &_base_get_msix_index;
break;
}
if (ioc->atomic_desc_capable) {
ioc->put_smid_default = &_base_put_smid_default_atomic;
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
ioc->put_smid_fast_path =
&_base_put_smid_fast_path_atomic;
ioc->put_smid_hi_priority =
&_base_put_smid_hi_priority_atomic;
} else {
ioc->put_smid_default = &_base_put_smid_default;
ioc->put_smid_fast_path = &_base_put_smid_fast_path;
ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
if (ioc->is_mcpu_endpoint)
ioc->put_smid_scsi_io =
&_base_put_smid_mpi_ep_scsi_io;
else
ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
}
/*
* These function pointers for other requests that don't
* the require IEEE scatter gather elements.
*
* For example Configuration Pages and SAS IOUNIT Control don't.
*/
ioc->build_sg_mpi = &_base_build_sg;
ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
r = _base_make_ioc_ready(ioc, SOFT_RESET);
if (r)
goto out_free_resources;
ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
if (!ioc->pfacts) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
r = _base_get_port_facts(ioc, i);
if (r) {
rc = _base_check_for_fault_and_issue_reset(ioc);
if (rc || (_base_get_port_facts(ioc, i)))
goto out_free_resources;
}
}
r = _base_allocate_memory_pools(ioc);
if (r)
goto out_free_resources;
if (irqpoll_weight > 0)
ioc->thresh_hold = irqpoll_weight;
else
ioc->thresh_hold = ioc->hba_queue_depth/4;
_base_init_irqpolls(ioc);
init_waitqueue_head(&ioc->reset_wq);
/* allocate memory pd handle bitmask list */
ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pd_handles_sz++;
ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->pd_handles) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->blocking_handles) {
r = -ENOMEM;
goto out_free_resources;
}
/* allocate memory for pending OS device add list */
ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pend_os_device_add_sz++;
ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
GFP_KERNEL);
if (!ioc->pend_os_device_add) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
ioc->device_remove_in_progress =
kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
if (!ioc->device_remove_in_progress) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->fwfault_debug = mpt3sas_fwfault_debug;
/* base internal command bits */
mutex_init(&ioc->base_cmds.mutex);
ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
/* port_enable command bits */
ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
/* transport internal command bits */
ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->transport_cmds.mutex);
/* scsih internal command bits */
ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->scsih_cmds.mutex);
/* task management internal command bits */
ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->tm_cmds.mutex);
/* config page internal command bits */
ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->config_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->config_cmds.mutex);
/* ctl module internal command bits */
ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->ctl_cmds.mutex);
if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
!ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
!ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
!ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
ioc->event_masks[i] = -1;
/* here we enable the events we care about */
_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
if (ioc->is_gen35_ioc) {
_base_unmask_events(ioc,
MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
_base_unmask_events(ioc,
MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
}
}
r = _base_make_ioc_operational(ioc);
if (r)
goto out_free_resources;
/*
* Copy current copy of IOCFacts in prev_fw_facts
* and it will be used during online firmware upgrade.
*/
memcpy(&ioc->prev_fw_facts, &ioc->facts,
sizeof(struct mpt3sas_facts));
ioc->non_operational_loop = 0;
ioc->ioc_coredump_loop = 0;
ioc->got_task_abort_from_ioctl = 0;
return 0;
out_free_resources:
ioc->remove_host = 1;
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
if (ioc->is_warpdrive)
kfree(ioc->reply_post_host_index);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->device_remove_in_progress);
kfree(ioc->pend_os_device_add);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->pfacts);
ioc->ctl_cmds.reply = NULL;
ioc->base_cmds.reply = NULL;
ioc->tm_cmds.reply = NULL;
ioc->scsih_cmds.reply = NULL;
ioc->transport_cmds.reply = NULL;
ioc->config_cmds.reply = NULL;
ioc->pfacts = NULL;
return r;
}
/**
* mpt3sas_base_detach - remove controller instance
* @ioc: per adapter object
*/
void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
mpt3sas_base_stop_watchdog(ioc);
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
mpt3sas_free_enclosure_list(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
if (ioc->is_warpdrive)
kfree(ioc->reply_post_host_index);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->device_remove_in_progress);
kfree(ioc->pend_os_device_add);
kfree(ioc->pfacts);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
}
/**
* _base_pre_reset_handler - pre reset handler
* @ioc: per adapter object
*/
static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
{
mpt3sas_scsih_pre_reset_handler(ioc);
mpt3sas_ctl_pre_reset_handler(ioc);
dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
}
/**
* _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
* @ioc: per adapter object
*/
static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
{
dtmprintk(ioc,
ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
ioc->transport_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
complete(&ioc->transport_cmds.done);
}
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
ioc->base_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
complete(&ioc->base_cmds.done);
}
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
ioc->port_enable_failed = 1;
ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
if (ioc->is_driver_loading) {
ioc->start_scan_failed =
MPI2_IOCSTATUS_INTERNAL_ERROR;
ioc->start_scan = 0;
ioc->port_enable_cmds.status =
MPT3_CMD_NOT_USED;
} else {
complete(&ioc->port_enable_cmds.done);
}
}
if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
ioc->config_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
ioc->config_cmds.smid = USHRT_MAX;
complete(&ioc->config_cmds.done);
}
}
/**
* _base_clear_outstanding_commands - clear all outstanding commands
* @ioc: per adapter object
*/
static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
{
mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
mpt3sas_ctl_clear_outstanding_ioctls(ioc);
_base_clear_outstanding_mpt_commands(ioc);
}
/**
* _base_reset_done_handler - reset done handler
* @ioc: per adapter object
*/
static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
{
mpt3sas_scsih_reset_done_handler(ioc);
mpt3sas_ctl_reset_done_handler(ioc);
dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
}
/**
* mpt3sas_wait_for_commands_to_complete - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
*
* This function is waiting 10s for all pending commands to complete
* prior to putting controller in reset.
*/
void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
{
u32 ioc_state;
ioc->pending_io_count = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
return;
/* pending command count */
ioc->pending_io_count = scsi_host_busy(ioc->shost);
if (!ioc->pending_io_count)
return;
/* wait for pending commands to complete */
wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
}
/**
* _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
* attributes during online firmware upgrade and update the corresponding
* IOC variables accordingly.
*
* @ioc: Pointer to MPT_ADAPTER structure
*/
static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
{
u16 pd_handles_sz;
void *pd_handles = NULL, *blocking_handles = NULL;
void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
pd_handles_sz++;
pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
GFP_KERNEL);
if (!pd_handles) {
ioc_info(ioc,
"Unable to allocate the memory for pd_handles of sz: %d\n",
pd_handles_sz);
return -ENOMEM;
}
memset(pd_handles + ioc->pd_handles_sz, 0,
(pd_handles_sz - ioc->pd_handles_sz));
ioc->pd_handles = pd_handles;
blocking_handles = krealloc(ioc->blocking_handles,
pd_handles_sz, GFP_KERNEL);
if (!blocking_handles) {
ioc_info(ioc,
"Unable to allocate the memory for "
"blocking_handles of sz: %d\n",
pd_handles_sz);
return -ENOMEM;
}
memset(blocking_handles + ioc->pd_handles_sz, 0,
(pd_handles_sz - ioc->pd_handles_sz));
ioc->blocking_handles = blocking_handles;
ioc->pd_handles_sz = pd_handles_sz;
pend_os_device_add = krealloc(ioc->pend_os_device_add,
pd_handles_sz, GFP_KERNEL);
if (!pend_os_device_add) {
ioc_info(ioc,
"Unable to allocate the memory for pend_os_device_add of sz: %d\n",
pd_handles_sz);
return -ENOMEM;
}
memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
(pd_handles_sz - ioc->pend_os_device_add_sz));
ioc->pend_os_device_add = pend_os_device_add;
ioc->pend_os_device_add_sz = pd_handles_sz;
device_remove_in_progress = krealloc(
ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
if (!device_remove_in_progress) {
ioc_info(ioc,
"Unable to allocate the memory for "
"device_remove_in_progress of sz: %d\n "
, pd_handles_sz);
return -ENOMEM;
}
memset(device_remove_in_progress +
ioc->device_remove_in_progress_sz, 0,
(pd_handles_sz - ioc->device_remove_in_progress_sz));
ioc->device_remove_in_progress = device_remove_in_progress;
ioc->device_remove_in_progress_sz = pd_handles_sz;
}
memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
return 0;
}
/**
* mpt3sas_base_hard_reset_handler - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Return: 0 for success, non-zero for failure.
*/
int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
enum reset_type type)
{
int r;
unsigned long flags;
u32 ioc_state;
u8 is_fault = 0, is_trigger = 0;
dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
if (ioc->pci_error_recovery) {
ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
r = 0;
goto out_unlocked;
}
if (mpt3sas_fwfault_debug)
mpt3sas_halt_firmware(ioc);
/* wait for an active reset in progress to complete */
mutex_lock(&ioc->reset_in_progress_mutex);
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 1;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) &&
(!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED))) {
is_trigger = 1;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
(ioc_state & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_COREDUMP)
is_fault = 1;
}
_base_pre_reset_handler(ioc);
mpt3sas_wait_for_commands_to_complete(ioc);
mpt3sas_base_mask_interrupts(ioc);
r = _base_make_ioc_ready(ioc, type);
if (r)
goto out;
_base_clear_outstanding_commands(ioc);
/* If this hard reset is called while port enable is active, then
* there is no reason to call make_ioc_operational
*/
if (ioc->is_driver_loading && ioc->port_enable_failed) {
ioc->remove_host = 1;
r = -EFAULT;
goto out;
}
r = _base_get_ioc_facts(ioc);
if (r)
goto out;
r = _base_check_ioc_facts_changes(ioc);
if (r) {
ioc_info(ioc,
"Some of the parameters got changed in this new firmware"
" image and it requires system reboot\n");
goto out;
}
if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
panic("%s: Issue occurred with flashing controller firmware."
"Please reboot the system and ensure that the correct"
" firmware version is running\n", ioc->name);
r = _base_make_ioc_operational(ioc);
if (!r)
_base_reset_done_handler(ioc);
out:
ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 0;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_count++;
mutex_unlock(&ioc->reset_in_progress_mutex);
out_unlocked:
if ((r == 0) && is_trigger) {
if (is_fault)
mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
else
mpt3sas_trigger_master(ioc,
MASTER_TRIGGER_ADAPTER_RESET);
}
dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
return r;
}