| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * acpi_pad.c ACPI Processor Aggregator Driver |
| * |
| * Copyright (c) 2009, Intel Corporation. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/cpumask.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/kthread.h> |
| #include <uapi/linux/sched/types.h> |
| #include <linux/freezer.h> |
| #include <linux/cpu.h> |
| #include <linux/tick.h> |
| #include <linux/slab.h> |
| #include <linux/acpi.h> |
| #include <linux/perf_event.h> |
| #include <linux/platform_device.h> |
| #include <asm/mwait.h> |
| #include <xen/xen.h> |
| |
| #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad" |
| #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator" |
| #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80 |
| |
| #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS 0 |
| #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION 1 |
| |
| static DEFINE_MUTEX(isolated_cpus_lock); |
| static DEFINE_MUTEX(round_robin_lock); |
| |
| static unsigned long power_saving_mwait_eax; |
| |
| static unsigned char tsc_detected_unstable; |
| static unsigned char tsc_marked_unstable; |
| |
| static void power_saving_mwait_init(void) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| unsigned int highest_cstate = 0; |
| unsigned int highest_subcstate = 0; |
| int i; |
| |
| if (!boot_cpu_has(X86_FEATURE_MWAIT)) |
| return; |
| if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) |
| return; |
| |
| cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); |
| |
| if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || |
| !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) |
| return; |
| |
| edx >>= MWAIT_SUBSTATE_SIZE; |
| for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { |
| if (edx & MWAIT_SUBSTATE_MASK) { |
| highest_cstate = i; |
| highest_subcstate = edx & MWAIT_SUBSTATE_MASK; |
| } |
| } |
| power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | |
| (highest_subcstate - 1); |
| |
| #if defined(CONFIG_X86) |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_HYGON: |
| case X86_VENDOR_AMD: |
| case X86_VENDOR_INTEL: |
| case X86_VENDOR_ZHAOXIN: |
| case X86_VENDOR_CENTAUR: |
| /* |
| * AMD Fam10h TSC will tick in all |
| * C/P/S0/S1 states when this bit is set. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| tsc_detected_unstable = 1; |
| break; |
| default: |
| /* TSC could halt in idle */ |
| tsc_detected_unstable = 1; |
| } |
| #endif |
| } |
| |
| static unsigned long cpu_weight[NR_CPUS]; |
| static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1}; |
| static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS); |
| static void round_robin_cpu(unsigned int tsk_index) |
| { |
| struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits); |
| cpumask_var_t tmp; |
| int cpu; |
| unsigned long min_weight = -1; |
| unsigned long preferred_cpu; |
| |
| if (!alloc_cpumask_var(&tmp, GFP_KERNEL)) |
| return; |
| |
| mutex_lock(&round_robin_lock); |
| cpumask_clear(tmp); |
| for_each_cpu(cpu, pad_busy_cpus) |
| cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu)); |
| cpumask_andnot(tmp, cpu_online_mask, tmp); |
| /* avoid HT siblings if possible */ |
| if (cpumask_empty(tmp)) |
| cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus); |
| if (cpumask_empty(tmp)) { |
| mutex_unlock(&round_robin_lock); |
| free_cpumask_var(tmp); |
| return; |
| } |
| for_each_cpu(cpu, tmp) { |
| if (cpu_weight[cpu] < min_weight) { |
| min_weight = cpu_weight[cpu]; |
| preferred_cpu = cpu; |
| } |
| } |
| |
| if (tsk_in_cpu[tsk_index] != -1) |
| cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus); |
| tsk_in_cpu[tsk_index] = preferred_cpu; |
| cpumask_set_cpu(preferred_cpu, pad_busy_cpus); |
| cpu_weight[preferred_cpu]++; |
| mutex_unlock(&round_robin_lock); |
| |
| set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu)); |
| |
| free_cpumask_var(tmp); |
| } |
| |
| static void exit_round_robin(unsigned int tsk_index) |
| { |
| struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits); |
| |
| if (tsk_in_cpu[tsk_index] != -1) { |
| cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus); |
| tsk_in_cpu[tsk_index] = -1; |
| } |
| } |
| |
| static unsigned int idle_pct = 5; /* percentage */ |
| static unsigned int round_robin_time = 1; /* second */ |
| static int power_saving_thread(void *data) |
| { |
| int do_sleep; |
| unsigned int tsk_index = (unsigned long)data; |
| u64 last_jiffies = 0; |
| |
| sched_set_fifo_low(current); |
| |
| while (!kthread_should_stop()) { |
| unsigned long expire_time; |
| |
| /* round robin to cpus */ |
| expire_time = last_jiffies + round_robin_time * HZ; |
| if (time_before(expire_time, jiffies)) { |
| last_jiffies = jiffies; |
| round_robin_cpu(tsk_index); |
| } |
| |
| do_sleep = 0; |
| |
| expire_time = jiffies + HZ * (100 - idle_pct) / 100; |
| |
| while (!need_resched()) { |
| if (tsc_detected_unstable && !tsc_marked_unstable) { |
| /* TSC could halt in idle, so notify users */ |
| mark_tsc_unstable("TSC halts in idle"); |
| tsc_marked_unstable = 1; |
| } |
| local_irq_disable(); |
| |
| perf_lopwr_cb(true); |
| |
| tick_broadcast_enable(); |
| tick_broadcast_enter(); |
| stop_critical_timings(); |
| |
| mwait_idle_with_hints(power_saving_mwait_eax, 1); |
| |
| start_critical_timings(); |
| tick_broadcast_exit(); |
| |
| perf_lopwr_cb(false); |
| |
| local_irq_enable(); |
| |
| if (time_before(expire_time, jiffies)) { |
| do_sleep = 1; |
| break; |
| } |
| } |
| |
| /* |
| * current sched_rt has threshold for rt task running time. |
| * When a rt task uses 95% CPU time, the rt thread will be |
| * scheduled out for 5% CPU time to not starve other tasks. But |
| * the mechanism only works when all CPUs have RT task running, |
| * as if one CPU hasn't RT task, RT task from other CPUs will |
| * borrow CPU time from this CPU and cause RT task use > 95% |
| * CPU time. To make 'avoid starvation' work, takes a nap here. |
| */ |
| if (unlikely(do_sleep)) |
| schedule_timeout_killable(HZ * idle_pct / 100); |
| |
| /* If an external event has set the need_resched flag, then |
| * we need to deal with it, or this loop will continue to |
| * spin without calling __mwait(). |
| */ |
| if (unlikely(need_resched())) |
| schedule(); |
| } |
| |
| exit_round_robin(tsk_index); |
| return 0; |
| } |
| |
| static struct task_struct *ps_tsks[NR_CPUS]; |
| static unsigned int ps_tsk_num; |
| static int create_power_saving_task(void) |
| { |
| int rc; |
| |
| ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread, |
| (void *)(unsigned long)ps_tsk_num, |
| "acpi_pad/%d", ps_tsk_num); |
| |
| if (IS_ERR(ps_tsks[ps_tsk_num])) { |
| rc = PTR_ERR(ps_tsks[ps_tsk_num]); |
| ps_tsks[ps_tsk_num] = NULL; |
| } else { |
| rc = 0; |
| ps_tsk_num++; |
| } |
| |
| return rc; |
| } |
| |
| static void destroy_power_saving_task(void) |
| { |
| if (ps_tsk_num > 0) { |
| ps_tsk_num--; |
| kthread_stop(ps_tsks[ps_tsk_num]); |
| ps_tsks[ps_tsk_num] = NULL; |
| } |
| } |
| |
| static void set_power_saving_task_num(unsigned int num) |
| { |
| if (num > ps_tsk_num) { |
| while (ps_tsk_num < num) { |
| if (create_power_saving_task()) |
| return; |
| } |
| } else if (num < ps_tsk_num) { |
| while (ps_tsk_num > num) |
| destroy_power_saving_task(); |
| } |
| } |
| |
| static void acpi_pad_idle_cpus(unsigned int num_cpus) |
| { |
| cpus_read_lock(); |
| |
| num_cpus = min_t(unsigned int, num_cpus, num_online_cpus()); |
| set_power_saving_task_num(num_cpus); |
| |
| cpus_read_unlock(); |
| } |
| |
| static uint32_t acpi_pad_idle_cpus_num(void) |
| { |
| return ps_tsk_num; |
| } |
| |
| static ssize_t rrtime_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| unsigned long num; |
| |
| if (kstrtoul(buf, 0, &num)) |
| return -EINVAL; |
| if (num < 1 || num >= 100) |
| return -EINVAL; |
| mutex_lock(&isolated_cpus_lock); |
| round_robin_time = num; |
| mutex_unlock(&isolated_cpus_lock); |
| return count; |
| } |
| |
| static ssize_t rrtime_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", round_robin_time); |
| } |
| static DEVICE_ATTR_RW(rrtime); |
| |
| static ssize_t idlepct_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| unsigned long num; |
| |
| if (kstrtoul(buf, 0, &num)) |
| return -EINVAL; |
| if (num < 1 || num >= 100) |
| return -EINVAL; |
| mutex_lock(&isolated_cpus_lock); |
| idle_pct = num; |
| mutex_unlock(&isolated_cpus_lock); |
| return count; |
| } |
| |
| static ssize_t idlepct_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return sysfs_emit(buf, "%d\n", idle_pct); |
| } |
| static DEVICE_ATTR_RW(idlepct); |
| |
| static ssize_t idlecpus_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t count) |
| { |
| unsigned long num; |
| |
| if (kstrtoul(buf, 0, &num)) |
| return -EINVAL; |
| mutex_lock(&isolated_cpus_lock); |
| acpi_pad_idle_cpus(num); |
| mutex_unlock(&isolated_cpus_lock); |
| return count; |
| } |
| |
| static ssize_t idlecpus_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return cpumap_print_to_pagebuf(false, buf, |
| to_cpumask(pad_busy_cpus_bits)); |
| } |
| |
| static DEVICE_ATTR_RW(idlecpus); |
| |
| static struct attribute *acpi_pad_attrs[] = { |
| &dev_attr_idlecpus.attr, |
| &dev_attr_idlepct.attr, |
| &dev_attr_rrtime.attr, |
| NULL |
| }; |
| |
| ATTRIBUTE_GROUPS(acpi_pad); |
| |
| /* |
| * Query firmware how many CPUs should be idle |
| * return -1 on failure |
| */ |
| static int acpi_pad_pur(acpi_handle handle) |
| { |
| struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; |
| union acpi_object *package; |
| int num = -1; |
| |
| if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer))) |
| return num; |
| |
| if (!buffer.length || !buffer.pointer) |
| return num; |
| |
| package = buffer.pointer; |
| |
| if (package->type == ACPI_TYPE_PACKAGE && |
| package->package.count == 2 && |
| package->package.elements[0].integer.value == 1) /* rev 1 */ |
| |
| num = package->package.elements[1].integer.value; |
| |
| kfree(buffer.pointer); |
| return num; |
| } |
| |
| static void acpi_pad_handle_notify(acpi_handle handle) |
| { |
| int num_cpus; |
| uint32_t idle_cpus; |
| struct acpi_buffer param = { |
| .length = 4, |
| .pointer = (void *)&idle_cpus, |
| }; |
| u32 status; |
| |
| mutex_lock(&isolated_cpus_lock); |
| num_cpus = acpi_pad_pur(handle); |
| if (num_cpus < 0) { |
| /* The ACPI specification says that if no action was performed when |
| * processing the _PUR object, _OST should still be evaluated, albeit |
| * with a different status code. |
| */ |
| status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION; |
| } else { |
| status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS; |
| acpi_pad_idle_cpus(num_cpus); |
| } |
| |
| idle_cpus = acpi_pad_idle_cpus_num(); |
| acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, ¶m); |
| mutex_unlock(&isolated_cpus_lock); |
| } |
| |
| static void acpi_pad_notify(acpi_handle handle, u32 event, |
| void *data) |
| { |
| struct acpi_device *adev = data; |
| |
| switch (event) { |
| case ACPI_PROCESSOR_AGGREGATOR_NOTIFY: |
| acpi_pad_handle_notify(handle); |
| acpi_bus_generate_netlink_event(adev->pnp.device_class, |
| dev_name(&adev->dev), event, 0); |
| break; |
| default: |
| pr_warn("Unsupported event [0x%x]\n", event); |
| break; |
| } |
| } |
| |
| static int acpi_pad_probe(struct platform_device *pdev) |
| { |
| struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); |
| acpi_status status; |
| |
| strscpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME); |
| strscpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS); |
| |
| status = acpi_install_notify_handler(adev->handle, |
| ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev); |
| |
| if (ACPI_FAILURE(status)) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static void acpi_pad_remove(struct platform_device *pdev) |
| { |
| struct acpi_device *adev = ACPI_COMPANION(&pdev->dev); |
| |
| mutex_lock(&isolated_cpus_lock); |
| acpi_pad_idle_cpus(0); |
| mutex_unlock(&isolated_cpus_lock); |
| |
| acpi_remove_notify_handler(adev->handle, |
| ACPI_DEVICE_NOTIFY, acpi_pad_notify); |
| } |
| |
| static const struct acpi_device_id pad_device_ids[] = { |
| {"ACPI000C", 0}, |
| {"", 0}, |
| }; |
| MODULE_DEVICE_TABLE(acpi, pad_device_ids); |
| |
| static struct platform_driver acpi_pad_driver = { |
| .probe = acpi_pad_probe, |
| .remove = acpi_pad_remove, |
| .driver = { |
| .dev_groups = acpi_pad_groups, |
| .name = "processor_aggregator", |
| .acpi_match_table = pad_device_ids, |
| }, |
| }; |
| |
| static int __init acpi_pad_init(void) |
| { |
| /* Xen ACPI PAD is used when running as Xen Dom0. */ |
| if (xen_initial_domain()) |
| return -ENODEV; |
| |
| power_saving_mwait_init(); |
| if (power_saving_mwait_eax == 0) |
| return -EINVAL; |
| |
| return platform_driver_register(&acpi_pad_driver); |
| } |
| |
| static void __exit acpi_pad_exit(void) |
| { |
| platform_driver_unregister(&acpi_pad_driver); |
| } |
| |
| module_init(acpi_pad_init); |
| module_exit(acpi_pad_exit); |
| MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>"); |
| MODULE_DESCRIPTION("ACPI Processor Aggregator Driver"); |
| MODULE_LICENSE("GPL"); |