| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * cacheinfo support - processor cache information via sysfs |
| * |
| * Based on arch/x86/kernel/cpu/intel_cacheinfo.c |
| * Author: Sudeep Holla <sudeep.holla@arm.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/acpi.h> |
| #include <linux/bitops.h> |
| #include <linux/cacheinfo.h> |
| #include <linux/compiler.h> |
| #include <linux/cpu.h> |
| #include <linux/device.h> |
| #include <linux/init.h> |
| #include <linux/of.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/smp.h> |
| #include <linux/sysfs.h> |
| |
| /* pointer to per cpu cacheinfo */ |
| static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); |
| #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) |
| #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) |
| #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) |
| #define per_cpu_cacheinfo_idx(cpu, idx) \ |
| (per_cpu_cacheinfo(cpu) + (idx)) |
| |
| /* Set if no cache information is found in DT/ACPI. */ |
| static bool use_arch_info; |
| |
| struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) |
| { |
| return ci_cacheinfo(cpu); |
| } |
| |
| static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, |
| struct cacheinfo *sib_leaf) |
| { |
| /* |
| * For non DT/ACPI systems, assume unique level 1 caches, |
| * system-wide shared caches for all other levels. |
| */ |
| if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) || |
| use_arch_info) |
| return (this_leaf->level != 1) && (sib_leaf->level != 1); |
| |
| if ((sib_leaf->attributes & CACHE_ID) && |
| (this_leaf->attributes & CACHE_ID)) |
| return sib_leaf->id == this_leaf->id; |
| |
| return sib_leaf->fw_token == this_leaf->fw_token; |
| } |
| |
| bool last_level_cache_is_valid(unsigned int cpu) |
| { |
| struct cacheinfo *llc; |
| |
| if (!cache_leaves(cpu) || !per_cpu_cacheinfo(cpu)) |
| return false; |
| |
| llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); |
| |
| return (llc->attributes & CACHE_ID) || !!llc->fw_token; |
| |
| } |
| |
| bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y) |
| { |
| struct cacheinfo *llc_x, *llc_y; |
| |
| if (!last_level_cache_is_valid(cpu_x) || |
| !last_level_cache_is_valid(cpu_y)) |
| return false; |
| |
| llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1); |
| llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1); |
| |
| return cache_leaves_are_shared(llc_x, llc_y); |
| } |
| |
| #ifdef CONFIG_OF |
| |
| static bool of_check_cache_nodes(struct device_node *np); |
| |
| /* OF properties to query for a given cache type */ |
| struct cache_type_info { |
| const char *size_prop; |
| const char *line_size_props[2]; |
| const char *nr_sets_prop; |
| }; |
| |
| static const struct cache_type_info cache_type_info[] = { |
| { |
| .size_prop = "cache-size", |
| .line_size_props = { "cache-line-size", |
| "cache-block-size", }, |
| .nr_sets_prop = "cache-sets", |
| }, { |
| .size_prop = "i-cache-size", |
| .line_size_props = { "i-cache-line-size", |
| "i-cache-block-size", }, |
| .nr_sets_prop = "i-cache-sets", |
| }, { |
| .size_prop = "d-cache-size", |
| .line_size_props = { "d-cache-line-size", |
| "d-cache-block-size", }, |
| .nr_sets_prop = "d-cache-sets", |
| }, |
| }; |
| |
| static inline int get_cacheinfo_idx(enum cache_type type) |
| { |
| if (type == CACHE_TYPE_UNIFIED) |
| return 0; |
| return type; |
| } |
| |
| static void cache_size(struct cacheinfo *this_leaf, struct device_node *np) |
| { |
| const char *propname; |
| int ct_idx; |
| |
| ct_idx = get_cacheinfo_idx(this_leaf->type); |
| propname = cache_type_info[ct_idx].size_prop; |
| |
| of_property_read_u32(np, propname, &this_leaf->size); |
| } |
| |
| /* not cache_line_size() because that's a macro in include/linux/cache.h */ |
| static void cache_get_line_size(struct cacheinfo *this_leaf, |
| struct device_node *np) |
| { |
| int i, lim, ct_idx; |
| |
| ct_idx = get_cacheinfo_idx(this_leaf->type); |
| lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); |
| |
| for (i = 0; i < lim; i++) { |
| int ret; |
| u32 line_size; |
| const char *propname; |
| |
| propname = cache_type_info[ct_idx].line_size_props[i]; |
| ret = of_property_read_u32(np, propname, &line_size); |
| if (!ret) { |
| this_leaf->coherency_line_size = line_size; |
| break; |
| } |
| } |
| } |
| |
| static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np) |
| { |
| const char *propname; |
| int ct_idx; |
| |
| ct_idx = get_cacheinfo_idx(this_leaf->type); |
| propname = cache_type_info[ct_idx].nr_sets_prop; |
| |
| of_property_read_u32(np, propname, &this_leaf->number_of_sets); |
| } |
| |
| static void cache_associativity(struct cacheinfo *this_leaf) |
| { |
| unsigned int line_size = this_leaf->coherency_line_size; |
| unsigned int nr_sets = this_leaf->number_of_sets; |
| unsigned int size = this_leaf->size; |
| |
| /* |
| * If the cache is fully associative, there is no need to |
| * check the other properties. |
| */ |
| if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) |
| this_leaf->ways_of_associativity = (size / nr_sets) / line_size; |
| } |
| |
| static bool cache_node_is_unified(struct cacheinfo *this_leaf, |
| struct device_node *np) |
| { |
| return of_property_read_bool(np, "cache-unified"); |
| } |
| |
| static void cache_of_set_props(struct cacheinfo *this_leaf, |
| struct device_node *np) |
| { |
| /* |
| * init_cache_level must setup the cache level correctly |
| * overriding the architecturally specified levels, so |
| * if type is NONE at this stage, it should be unified |
| */ |
| if (this_leaf->type == CACHE_TYPE_NOCACHE && |
| cache_node_is_unified(this_leaf, np)) |
| this_leaf->type = CACHE_TYPE_UNIFIED; |
| cache_size(this_leaf, np); |
| cache_get_line_size(this_leaf, np); |
| cache_nr_sets(this_leaf, np); |
| cache_associativity(this_leaf); |
| } |
| |
| static int cache_setup_of_node(unsigned int cpu) |
| { |
| struct cacheinfo *this_leaf; |
| unsigned int index = 0; |
| |
| struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); |
| if (!np) { |
| pr_err("Failed to find cpu%d device node\n", cpu); |
| return -ENOENT; |
| } |
| |
| if (!of_check_cache_nodes(np)) { |
| return -ENOENT; |
| } |
| |
| while (index < cache_leaves(cpu)) { |
| this_leaf = per_cpu_cacheinfo_idx(cpu, index); |
| if (this_leaf->level != 1) { |
| struct device_node *prev __free(device_node) = np; |
| np = of_find_next_cache_node(np); |
| if (!np) |
| break; |
| } |
| cache_of_set_props(this_leaf, np); |
| this_leaf->fw_token = np; |
| index++; |
| } |
| |
| if (index != cache_leaves(cpu)) /* not all OF nodes populated */ |
| return -ENOENT; |
| |
| return 0; |
| } |
| |
| static bool of_check_cache_nodes(struct device_node *np) |
| { |
| if (of_property_present(np, "cache-size") || |
| of_property_present(np, "i-cache-size") || |
| of_property_present(np, "d-cache-size") || |
| of_property_present(np, "cache-unified")) |
| return true; |
| |
| struct device_node *next __free(device_node) = of_find_next_cache_node(np); |
| if (next) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int of_count_cache_leaves(struct device_node *np) |
| { |
| unsigned int leaves = 0; |
| |
| if (of_property_present(np, "cache-size")) |
| ++leaves; |
| if (of_property_present(np, "i-cache-size")) |
| ++leaves; |
| if (of_property_present(np, "d-cache-size")) |
| ++leaves; |
| |
| if (!leaves) { |
| /* The '[i-|d-|]cache-size' property is required, but |
| * if absent, fallback on the 'cache-unified' property. |
| */ |
| if (of_property_read_bool(np, "cache-unified")) |
| return 1; |
| else |
| return 2; |
| } |
| |
| return leaves; |
| } |
| |
| int init_of_cache_level(unsigned int cpu) |
| { |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu); |
| unsigned int levels = 0, leaves, level; |
| |
| if (!of_check_cache_nodes(np)) { |
| return -ENOENT; |
| } |
| |
| leaves = of_count_cache_leaves(np); |
| if (leaves > 0) |
| levels = 1; |
| |
| while (1) { |
| struct device_node *prev __free(device_node) = np; |
| np = of_find_next_cache_node(np); |
| if (!np) |
| break; |
| |
| if (!of_device_is_compatible(np, "cache")) |
| return -EINVAL; |
| if (of_property_read_u32(np, "cache-level", &level)) |
| return -EINVAL; |
| if (level <= levels) |
| return -EINVAL; |
| |
| leaves += of_count_cache_leaves(np); |
| levels = level; |
| } |
| |
| this_cpu_ci->num_levels = levels; |
| this_cpu_ci->num_leaves = leaves; |
| |
| return 0; |
| } |
| |
| #else |
| static inline int cache_setup_of_node(unsigned int cpu) { return 0; } |
| int init_of_cache_level(unsigned int cpu) { return 0; } |
| #endif |
| |
| int __weak cache_setup_acpi(unsigned int cpu) |
| { |
| return -ENOTSUPP; |
| } |
| |
| unsigned int coherency_max_size; |
| |
| static int cache_setup_properties(unsigned int cpu) |
| { |
| int ret = 0; |
| |
| if (of_have_populated_dt()) |
| ret = cache_setup_of_node(cpu); |
| else if (!acpi_disabled) |
| ret = cache_setup_acpi(cpu); |
| |
| // Assume there is no cache information available in DT/ACPI from now. |
| if (ret && use_arch_cache_info()) |
| use_arch_info = true; |
| |
| return ret; |
| } |
| |
| static int cache_shared_cpu_map_setup(unsigned int cpu) |
| { |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| struct cacheinfo *this_leaf, *sib_leaf; |
| unsigned int index, sib_index; |
| int ret = 0; |
| |
| if (this_cpu_ci->cpu_map_populated) |
| return 0; |
| |
| /* |
| * skip setting up cache properties if LLC is valid, just need |
| * to update the shared cpu_map if the cache attributes were |
| * populated early before all the cpus are brought online |
| */ |
| if (!last_level_cache_is_valid(cpu) && !use_arch_info) { |
| ret = cache_setup_properties(cpu); |
| if (ret) |
| return ret; |
| } |
| |
| for (index = 0; index < cache_leaves(cpu); index++) { |
| unsigned int i; |
| |
| this_leaf = per_cpu_cacheinfo_idx(cpu, index); |
| |
| cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); |
| for_each_online_cpu(i) { |
| if (i == cpu || !per_cpu_cacheinfo(i)) |
| continue;/* skip if itself or no cacheinfo */ |
| for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) { |
| sib_leaf = per_cpu_cacheinfo_idx(i, sib_index); |
| |
| /* |
| * Comparing cache IDs only makes sense if the leaves |
| * belong to the same cache level of same type. Skip |
| * the check if level and type do not match. |
| */ |
| if (sib_leaf->level != this_leaf->level || |
| sib_leaf->type != this_leaf->type) |
| continue; |
| |
| if (cache_leaves_are_shared(this_leaf, sib_leaf)) { |
| cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); |
| cpumask_set_cpu(i, &this_leaf->shared_cpu_map); |
| break; |
| } |
| } |
| } |
| /* record the maximum cache line size */ |
| if (this_leaf->coherency_line_size > coherency_max_size) |
| coherency_max_size = this_leaf->coherency_line_size; |
| } |
| |
| /* shared_cpu_map is now populated for the cpu */ |
| this_cpu_ci->cpu_map_populated = true; |
| return 0; |
| } |
| |
| static void cache_shared_cpu_map_remove(unsigned int cpu) |
| { |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| struct cacheinfo *this_leaf, *sib_leaf; |
| unsigned int sibling, index, sib_index; |
| |
| for (index = 0; index < cache_leaves(cpu); index++) { |
| this_leaf = per_cpu_cacheinfo_idx(cpu, index); |
| for_each_cpu(sibling, &this_leaf->shared_cpu_map) { |
| if (sibling == cpu || !per_cpu_cacheinfo(sibling)) |
| continue;/* skip if itself or no cacheinfo */ |
| |
| for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) { |
| sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index); |
| |
| /* |
| * Comparing cache IDs only makes sense if the leaves |
| * belong to the same cache level of same type. Skip |
| * the check if level and type do not match. |
| */ |
| if (sib_leaf->level != this_leaf->level || |
| sib_leaf->type != this_leaf->type) |
| continue; |
| |
| if (cache_leaves_are_shared(this_leaf, sib_leaf)) { |
| cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); |
| cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* cpu is no longer populated in the shared map */ |
| this_cpu_ci->cpu_map_populated = false; |
| } |
| |
| static void free_cache_attributes(unsigned int cpu) |
| { |
| if (!per_cpu_cacheinfo(cpu)) |
| return; |
| |
| cache_shared_cpu_map_remove(cpu); |
| } |
| |
| int __weak early_cache_level(unsigned int cpu) |
| { |
| return -ENOENT; |
| } |
| |
| int __weak init_cache_level(unsigned int cpu) |
| { |
| return -ENOENT; |
| } |
| |
| int __weak populate_cache_leaves(unsigned int cpu) |
| { |
| return -ENOENT; |
| } |
| |
| static inline int allocate_cache_info(int cpu) |
| { |
| per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), sizeof(struct cacheinfo), GFP_ATOMIC); |
| if (!per_cpu_cacheinfo(cpu)) { |
| cache_leaves(cpu) = 0; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| int fetch_cache_info(unsigned int cpu) |
| { |
| struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); |
| unsigned int levels = 0, split_levels = 0; |
| int ret; |
| |
| if (acpi_disabled) { |
| ret = init_of_cache_level(cpu); |
| } else { |
| ret = acpi_get_cache_info(cpu, &levels, &split_levels); |
| if (!ret) { |
| this_cpu_ci->num_levels = levels; |
| /* |
| * This assumes that: |
| * - there cannot be any split caches (data/instruction) |
| * above a unified cache |
| * - data/instruction caches come by pair |
| */ |
| this_cpu_ci->num_leaves = levels + split_levels; |
| } |
| } |
| |
| if (ret || !cache_leaves(cpu)) { |
| ret = early_cache_level(cpu); |
| if (ret) |
| return ret; |
| |
| if (!cache_leaves(cpu)) |
| return -ENOENT; |
| |
| this_cpu_ci->early_ci_levels = true; |
| } |
| |
| return allocate_cache_info(cpu); |
| } |
| |
| static inline int init_level_allocate_ci(unsigned int cpu) |
| { |
| unsigned int early_leaves = cache_leaves(cpu); |
| |
| /* Since early initialization/allocation of the cacheinfo is allowed |
| * via fetch_cache_info() and this also gets called as CPU hotplug |
| * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped |
| * as it will happen only once (the cacheinfo memory is never freed). |
| * Just populate the cacheinfo. However, if the cacheinfo has been |
| * allocated early through the arch-specific early_cache_level() call, |
| * there is a chance the info is wrong (this can happen on arm64). In |
| * that case, call init_cache_level() anyway to give the arch-specific |
| * code a chance to make things right. |
| */ |
| if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels) |
| return 0; |
| |
| if (init_cache_level(cpu) || !cache_leaves(cpu)) |
| return -ENOENT; |
| |
| /* |
| * Now that we have properly initialized the cache level info, make |
| * sure we don't try to do that again the next time we are called |
| * (e.g. as CPU hotplug callbacks). |
| */ |
| ci_cacheinfo(cpu)->early_ci_levels = false; |
| |
| /* |
| * Some architectures (e.g., x86) do not use early initialization. |
| * Allocate memory now in such case. |
| */ |
| if (cache_leaves(cpu) <= early_leaves && per_cpu_cacheinfo(cpu)) |
| return 0; |
| |
| kfree(per_cpu_cacheinfo(cpu)); |
| return allocate_cache_info(cpu); |
| } |
| |
| int detect_cache_attributes(unsigned int cpu) |
| { |
| int ret; |
| |
| ret = init_level_allocate_ci(cpu); |
| if (ret) |
| return ret; |
| |
| /* |
| * If LLC is valid the cache leaves were already populated so just go to |
| * update the cpu map. |
| */ |
| if (!last_level_cache_is_valid(cpu)) { |
| /* |
| * populate_cache_leaves() may completely setup the cache leaves and |
| * shared_cpu_map or it may leave it partially setup. |
| */ |
| ret = populate_cache_leaves(cpu); |
| if (ret) |
| goto free_ci; |
| } |
| |
| /* |
| * For systems using DT for cache hierarchy, fw_token |
| * and shared_cpu_map will be set up here only if they are |
| * not populated already |
| */ |
| ret = cache_shared_cpu_map_setup(cpu); |
| if (ret) { |
| pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); |
| goto free_ci; |
| } |
| |
| return 0; |
| |
| free_ci: |
| free_cache_attributes(cpu); |
| return ret; |
| } |
| |
| /* pointer to cpuX/cache device */ |
| static DEFINE_PER_CPU(struct device *, ci_cache_dev); |
| #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) |
| |
| static cpumask_t cache_dev_map; |
| |
| /* pointer to array of devices for cpuX/cache/indexY */ |
| static DEFINE_PER_CPU(struct device **, ci_index_dev); |
| #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) |
| #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) |
| |
| #define show_one(file_name, object) \ |
| static ssize_t file_name##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ |
| return sysfs_emit(buf, "%u\n", this_leaf->object); \ |
| } |
| |
| show_one(id, id); |
| show_one(level, level); |
| show_one(coherency_line_size, coherency_line_size); |
| show_one(number_of_sets, number_of_sets); |
| show_one(physical_line_partition, physical_line_partition); |
| show_one(ways_of_associativity, ways_of_associativity); |
| |
| static ssize_t size_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10); |
| } |
| |
| static ssize_t shared_cpu_map_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| const struct cpumask *mask = &this_leaf->shared_cpu_map; |
| |
| return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask); |
| } |
| |
| static ssize_t shared_cpu_list_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| const struct cpumask *mask = &this_leaf->shared_cpu_map; |
| |
| return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask); |
| } |
| |
| static ssize_t type_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| const char *output; |
| |
| switch (this_leaf->type) { |
| case CACHE_TYPE_DATA: |
| output = "Data"; |
| break; |
| case CACHE_TYPE_INST: |
| output = "Instruction"; |
| break; |
| case CACHE_TYPE_UNIFIED: |
| output = "Unified"; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return sysfs_emit(buf, "%s\n", output); |
| } |
| |
| static ssize_t allocation_policy_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| unsigned int ci_attr = this_leaf->attributes; |
| const char *output; |
| |
| if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) |
| output = "ReadWriteAllocate"; |
| else if (ci_attr & CACHE_READ_ALLOCATE) |
| output = "ReadAllocate"; |
| else if (ci_attr & CACHE_WRITE_ALLOCATE) |
| output = "WriteAllocate"; |
| else |
| return 0; |
| |
| return sysfs_emit(buf, "%s\n", output); |
| } |
| |
| static ssize_t write_policy_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| unsigned int ci_attr = this_leaf->attributes; |
| int n = 0; |
| |
| if (ci_attr & CACHE_WRITE_THROUGH) |
| n = sysfs_emit(buf, "WriteThrough\n"); |
| else if (ci_attr & CACHE_WRITE_BACK) |
| n = sysfs_emit(buf, "WriteBack\n"); |
| return n; |
| } |
| |
| static DEVICE_ATTR_RO(id); |
| static DEVICE_ATTR_RO(level); |
| static DEVICE_ATTR_RO(type); |
| static DEVICE_ATTR_RO(coherency_line_size); |
| static DEVICE_ATTR_RO(ways_of_associativity); |
| static DEVICE_ATTR_RO(number_of_sets); |
| static DEVICE_ATTR_RO(size); |
| static DEVICE_ATTR_RO(allocation_policy); |
| static DEVICE_ATTR_RO(write_policy); |
| static DEVICE_ATTR_RO(shared_cpu_map); |
| static DEVICE_ATTR_RO(shared_cpu_list); |
| static DEVICE_ATTR_RO(physical_line_partition); |
| |
| static struct attribute *cache_default_attrs[] = { |
| &dev_attr_id.attr, |
| &dev_attr_type.attr, |
| &dev_attr_level.attr, |
| &dev_attr_shared_cpu_map.attr, |
| &dev_attr_shared_cpu_list.attr, |
| &dev_attr_coherency_line_size.attr, |
| &dev_attr_ways_of_associativity.attr, |
| &dev_attr_number_of_sets.attr, |
| &dev_attr_size.attr, |
| &dev_attr_allocation_policy.attr, |
| &dev_attr_write_policy.attr, |
| &dev_attr_physical_line_partition.attr, |
| NULL |
| }; |
| |
| static umode_t |
| cache_default_attrs_is_visible(struct kobject *kobj, |
| struct attribute *attr, int unused) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct cacheinfo *this_leaf = dev_get_drvdata(dev); |
| const struct cpumask *mask = &this_leaf->shared_cpu_map; |
| umode_t mode = attr->mode; |
| |
| if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) |
| return mode; |
| if ((attr == &dev_attr_type.attr) && this_leaf->type) |
| return mode; |
| if ((attr == &dev_attr_level.attr) && this_leaf->level) |
| return mode; |
| if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) |
| return mode; |
| if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) |
| return mode; |
| if ((attr == &dev_attr_coherency_line_size.attr) && |
| this_leaf->coherency_line_size) |
| return mode; |
| if ((attr == &dev_attr_ways_of_associativity.attr) && |
| this_leaf->size) /* allow 0 = full associativity */ |
| return mode; |
| if ((attr == &dev_attr_number_of_sets.attr) && |
| this_leaf->number_of_sets) |
| return mode; |
| if ((attr == &dev_attr_size.attr) && this_leaf->size) |
| return mode; |
| if ((attr == &dev_attr_write_policy.attr) && |
| (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) |
| return mode; |
| if ((attr == &dev_attr_allocation_policy.attr) && |
| (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) |
| return mode; |
| if ((attr == &dev_attr_physical_line_partition.attr) && |
| this_leaf->physical_line_partition) |
| return mode; |
| |
| return 0; |
| } |
| |
| static const struct attribute_group cache_default_group = { |
| .attrs = cache_default_attrs, |
| .is_visible = cache_default_attrs_is_visible, |
| }; |
| |
| static const struct attribute_group *cache_default_groups[] = { |
| &cache_default_group, |
| NULL, |
| }; |
| |
| static const struct attribute_group *cache_private_groups[] = { |
| &cache_default_group, |
| NULL, /* Place holder for private group */ |
| NULL, |
| }; |
| |
| const struct attribute_group * |
| __weak cache_get_priv_group(struct cacheinfo *this_leaf) |
| { |
| return NULL; |
| } |
| |
| static const struct attribute_group ** |
| cache_get_attribute_groups(struct cacheinfo *this_leaf) |
| { |
| const struct attribute_group *priv_group = |
| cache_get_priv_group(this_leaf); |
| |
| if (!priv_group) |
| return cache_default_groups; |
| |
| if (!cache_private_groups[1]) |
| cache_private_groups[1] = priv_group; |
| |
| return cache_private_groups; |
| } |
| |
| /* Add/Remove cache interface for CPU device */ |
| static void cpu_cache_sysfs_exit(unsigned int cpu) |
| { |
| int i; |
| struct device *ci_dev; |
| |
| if (per_cpu_index_dev(cpu)) { |
| for (i = 0; i < cache_leaves(cpu); i++) { |
| ci_dev = per_cache_index_dev(cpu, i); |
| if (!ci_dev) |
| continue; |
| device_unregister(ci_dev); |
| } |
| kfree(per_cpu_index_dev(cpu)); |
| per_cpu_index_dev(cpu) = NULL; |
| } |
| device_unregister(per_cpu_cache_dev(cpu)); |
| per_cpu_cache_dev(cpu) = NULL; |
| } |
| |
| static int cpu_cache_sysfs_init(unsigned int cpu) |
| { |
| struct device *dev = get_cpu_device(cpu); |
| |
| if (per_cpu_cacheinfo(cpu) == NULL) |
| return -ENOENT; |
| |
| per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); |
| if (IS_ERR(per_cpu_cache_dev(cpu))) |
| return PTR_ERR(per_cpu_cache_dev(cpu)); |
| |
| /* Allocate all required memory */ |
| per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), |
| sizeof(struct device *), GFP_KERNEL); |
| if (unlikely(per_cpu_index_dev(cpu) == NULL)) |
| goto err_out; |
| |
| return 0; |
| |
| err_out: |
| cpu_cache_sysfs_exit(cpu); |
| return -ENOMEM; |
| } |
| |
| static int cache_add_dev(unsigned int cpu) |
| { |
| unsigned int i; |
| int rc; |
| struct device *ci_dev, *parent; |
| struct cacheinfo *this_leaf; |
| const struct attribute_group **cache_groups; |
| |
| rc = cpu_cache_sysfs_init(cpu); |
| if (unlikely(rc < 0)) |
| return rc; |
| |
| parent = per_cpu_cache_dev(cpu); |
| for (i = 0; i < cache_leaves(cpu); i++) { |
| this_leaf = per_cpu_cacheinfo_idx(cpu, i); |
| if (this_leaf->disable_sysfs) |
| continue; |
| if (this_leaf->type == CACHE_TYPE_NOCACHE) |
| break; |
| cache_groups = cache_get_attribute_groups(this_leaf); |
| ci_dev = cpu_device_create(parent, this_leaf, cache_groups, |
| "index%1u", i); |
| if (IS_ERR(ci_dev)) { |
| rc = PTR_ERR(ci_dev); |
| goto err; |
| } |
| per_cache_index_dev(cpu, i) = ci_dev; |
| } |
| cpumask_set_cpu(cpu, &cache_dev_map); |
| |
| return 0; |
| err: |
| cpu_cache_sysfs_exit(cpu); |
| return rc; |
| } |
| |
| static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu, |
| cpumask_t **map) |
| { |
| struct cacheinfo *llc, *sib_llc; |
| unsigned int sibling; |
| |
| if (!last_level_cache_is_valid(cpu)) |
| return 0; |
| |
| llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); |
| |
| if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) |
| return 0; |
| |
| if (online) { |
| *map = &llc->shared_cpu_map; |
| return cpumask_weight(*map); |
| } |
| |
| /* shared_cpu_map of offlined CPU will be cleared, so use sibling map */ |
| for_each_cpu(sibling, &llc->shared_cpu_map) { |
| if (sibling == cpu || !last_level_cache_is_valid(sibling)) |
| continue; |
| sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1); |
| *map = &sib_llc->shared_cpu_map; |
| return cpumask_weight(*map); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate the size of the per-CPU data cache slice. This can be |
| * used to estimate the size of the data cache slice that can be used |
| * by one CPU under ideal circumstances. UNIFIED caches are counted |
| * in addition to DATA caches. So, please consider code cache usage |
| * when use the result. |
| * |
| * Because the cache inclusive/non-inclusive information isn't |
| * available, we just use the size of the per-CPU slice of LLC to make |
| * the result more predictable across architectures. |
| */ |
| static void update_per_cpu_data_slice_size_cpu(unsigned int cpu) |
| { |
| struct cpu_cacheinfo *ci; |
| struct cacheinfo *llc; |
| unsigned int nr_shared; |
| |
| if (!last_level_cache_is_valid(cpu)) |
| return; |
| |
| ci = ci_cacheinfo(cpu); |
| llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1); |
| |
| if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED) |
| return; |
| |
| nr_shared = cpumask_weight(&llc->shared_cpu_map); |
| if (nr_shared) |
| ci->per_cpu_data_slice_size = llc->size / nr_shared; |
| } |
| |
| static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu, |
| cpumask_t *cpu_map) |
| { |
| unsigned int icpu; |
| |
| for_each_cpu(icpu, cpu_map) { |
| if (!cpu_online && icpu == cpu) |
| continue; |
| update_per_cpu_data_slice_size_cpu(icpu); |
| setup_pcp_cacheinfo(icpu); |
| } |
| } |
| |
| static int cacheinfo_cpu_online(unsigned int cpu) |
| { |
| int rc = detect_cache_attributes(cpu); |
| cpumask_t *cpu_map; |
| |
| if (rc) |
| return rc; |
| rc = cache_add_dev(cpu); |
| if (rc) |
| goto err; |
| if (cpu_map_shared_cache(true, cpu, &cpu_map)) |
| update_per_cpu_data_slice_size(true, cpu, cpu_map); |
| return 0; |
| err: |
| free_cache_attributes(cpu); |
| return rc; |
| } |
| |
| static int cacheinfo_cpu_pre_down(unsigned int cpu) |
| { |
| cpumask_t *cpu_map; |
| unsigned int nr_shared; |
| |
| nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map); |
| if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) |
| cpu_cache_sysfs_exit(cpu); |
| |
| free_cache_attributes(cpu); |
| if (nr_shared > 1) |
| update_per_cpu_data_slice_size(false, cpu, cpu_map); |
| return 0; |
| } |
| |
| static int __init cacheinfo_sysfs_init(void) |
| { |
| return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE, |
| "base/cacheinfo:online", |
| cacheinfo_cpu_online, cacheinfo_cpu_pre_down); |
| } |
| device_initcall(cacheinfo_sysfs_init); |