| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * tda18271c2dd: Driver for the TDA18271C2 tuner |
| * |
| * Copyright (C) 2010 Digital Devices GmbH |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/firmware.h> |
| #include <linux/i2c.h> |
| #include <asm/div64.h> |
| |
| #include <media/dvb_frontend.h> |
| #include "tda18271c2dd.h" |
| |
| /* Max transfer size done by I2C transfer functions */ |
| #define MAX_XFER_SIZE 64 |
| |
| struct SStandardParam { |
| s32 m_IFFrequency; |
| u32 m_BandWidth; |
| u8 m_EP3_4_0; |
| u8 m_EB22; |
| }; |
| |
| struct SMap { |
| u32 m_Frequency; |
| u8 m_Param; |
| }; |
| |
| struct SMapI { |
| u32 m_Frequency; |
| s32 m_Param; |
| }; |
| |
| struct SMap2 { |
| u32 m_Frequency; |
| u8 m_Param1; |
| u8 m_Param2; |
| }; |
| |
| struct SRFBandMap { |
| u32 m_RF_max; |
| u32 m_RF1_Default; |
| u32 m_RF2_Default; |
| u32 m_RF3_Default; |
| }; |
| |
| enum ERegister { |
| ID = 0, |
| TM, |
| PL, |
| EP1, EP2, EP3, EP4, EP5, |
| CPD, CD1, CD2, CD3, |
| MPD, MD1, MD2, MD3, |
| EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, |
| EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, |
| EB21, EB22, EB23, |
| NUM_REGS |
| }; |
| |
| struct tda_state { |
| struct i2c_adapter *i2c; |
| u8 adr; |
| |
| u32 m_Frequency; |
| u32 IF; |
| |
| u8 m_IFLevelAnalog; |
| u8 m_IFLevelDigital; |
| u8 m_IFLevelDVBC; |
| u8 m_IFLevelDVBT; |
| |
| u8 m_EP4; |
| u8 m_EP3_Standby; |
| |
| bool m_bMaster; |
| |
| s32 m_SettlingTime; |
| |
| u8 m_Regs[NUM_REGS]; |
| |
| /* Tracking filter settings for band 0..6 */ |
| u32 m_RF1[7]; |
| s32 m_RF_A1[7]; |
| s32 m_RF_B1[7]; |
| u32 m_RF2[7]; |
| s32 m_RF_A2[7]; |
| s32 m_RF_B2[7]; |
| u32 m_RF3[7]; |
| |
| u8 m_TMValue_RFCal; /* Calibration temperature */ |
| |
| bool m_bFMInput; /* true to use Pin 8 for FM Radio */ |
| |
| }; |
| |
| static int PowerScan(struct tda_state *state, |
| u8 RFBand, u32 RF_in, |
| u32 *pRF_Out, bool *pbcal); |
| |
| static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) |
| { |
| struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD, |
| .buf = data, .len = len} }; |
| return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; |
| } |
| |
| static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) |
| { |
| struct i2c_msg msg = {.addr = adr, .flags = 0, |
| .buf = data, .len = len}; |
| |
| if (i2c_transfer(adap, &msg, 1) != 1) { |
| printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int WriteRegs(struct tda_state *state, |
| u8 SubAddr, u8 *Regs, u16 nRegs) |
| { |
| u8 data[MAX_XFER_SIZE]; |
| |
| if (1 + nRegs > sizeof(data)) { |
| printk(KERN_WARNING |
| "%s: i2c wr: len=%d is too big!\n", |
| KBUILD_MODNAME, nRegs); |
| return -EINVAL; |
| } |
| |
| data[0] = SubAddr; |
| memcpy(data + 1, Regs, nRegs); |
| return i2c_write(state->i2c, state->adr, data, nRegs + 1); |
| } |
| |
| static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg) |
| { |
| u8 msg[2] = {SubAddr, Reg}; |
| |
| return i2c_write(state->i2c, state->adr, msg, 2); |
| } |
| |
| static int Read(struct tda_state *state, u8 * Regs) |
| { |
| return i2c_readn(state->i2c, state->adr, Regs, 16); |
| } |
| |
| static int ReadExtented(struct tda_state *state, u8 * Regs) |
| { |
| return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); |
| } |
| |
| static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo) |
| { |
| return WriteRegs(state, RegFrom, |
| &state->m_Regs[RegFrom], RegTo-RegFrom+1); |
| } |
| static int UpdateReg(struct tda_state *state, u8 Reg) |
| { |
| return WriteReg(state, Reg, state->m_Regs[Reg]); |
| } |
| |
| #include "tda18271c2dd_maps.h" |
| |
| static void reset(struct tda_state *state) |
| { |
| u32 ulIFLevelAnalog = 0; |
| u32 ulIFLevelDigital = 2; |
| u32 ulIFLevelDVBC = 7; |
| u32 ulIFLevelDVBT = 6; |
| u32 ulXTOut = 0; |
| u32 ulStandbyMode = 0x06; /* Send in stdb, but leave osc on */ |
| u32 ulSlave = 0; |
| u32 ulFMInput = 0; |
| u32 ulSettlingTime = 100; |
| |
| state->m_Frequency = 0; |
| state->m_SettlingTime = 100; |
| state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; |
| state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; |
| state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; |
| state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; |
| |
| state->m_EP4 = 0x20; |
| if (ulXTOut != 0) |
| state->m_EP4 |= 0x40; |
| |
| state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; |
| state->m_bMaster = (ulSlave == 0); |
| |
| state->m_SettlingTime = ulSettlingTime; |
| |
| state->m_bFMInput = (ulFMInput == 2); |
| } |
| |
| static bool SearchMap1(const struct SMap map[], u32 frequency, u8 *param) |
| { |
| int i = 0; |
| |
| while ((map[i].m_Frequency != 0) && (frequency > map[i].m_Frequency)) |
| i += 1; |
| if (map[i].m_Frequency == 0) |
| return false; |
| *param = map[i].m_Param; |
| return true; |
| } |
| |
| static bool SearchMap2(const struct SMapI map[], u32 frequency, s32 *param) |
| { |
| int i = 0; |
| |
| while ((map[i].m_Frequency != 0) && |
| (frequency > map[i].m_Frequency)) |
| i += 1; |
| if (map[i].m_Frequency == 0) |
| return false; |
| *param = map[i].m_Param; |
| return true; |
| } |
| |
| static bool SearchMap3(const struct SMap2 map[], u32 frequency, u8 *param1, |
| u8 *param2) |
| { |
| int i = 0; |
| |
| while ((map[i].m_Frequency != 0) && |
| (frequency > map[i].m_Frequency)) |
| i += 1; |
| if (map[i].m_Frequency == 0) |
| return false; |
| *param1 = map[i].m_Param1; |
| *param2 = map[i].m_Param2; |
| return true; |
| } |
| |
| static bool SearchMap4(const struct SRFBandMap map[], u32 frequency, u8 *rfband) |
| { |
| int i = 0; |
| |
| while (i < 7 && (frequency > map[i].m_RF_max)) |
| i += 1; |
| if (i == 7) |
| return false; |
| *rfband = i; |
| return true; |
| } |
| |
| static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) |
| { |
| int status = 0; |
| |
| do { |
| u8 Regs[16]; |
| state->m_Regs[TM] |= 0x10; |
| status = UpdateReg(state, TM); |
| if (status < 0) |
| break; |
| status = Read(state, Regs); |
| if (status < 0) |
| break; |
| if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) || |
| ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) { |
| state->m_Regs[TM] ^= 0x20; |
| status = UpdateReg(state, TM); |
| if (status < 0) |
| break; |
| msleep(10); |
| status = Read(state, Regs); |
| if (status < 0) |
| break; |
| } |
| *pTM_Value = (Regs[TM] & 0x20) |
| ? m_Thermometer_Map_2[Regs[TM] & 0x0F] |
| : m_Thermometer_Map_1[Regs[TM] & 0x0F] ; |
| state->m_Regs[TM] &= ~0x10; /* Thermometer off */ |
| status = UpdateReg(state, TM); |
| if (status < 0) |
| break; |
| state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 ????????? */ |
| status = UpdateReg(state, EP4); |
| if (status < 0) |
| break; |
| } while (0); |
| |
| return status; |
| } |
| |
| static int StandBy(struct tda_state *state) |
| { |
| int status = 0; |
| do { |
| state->m_Regs[EB12] &= ~0x20; /* PD_AGC1_Det = 0 */ |
| status = UpdateReg(state, EB12); |
| if (status < 0) |
| break; |
| state->m_Regs[EB18] &= ~0x83; /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */ |
| status = UpdateReg(state, EB18); |
| if (status < 0) |
| break; |
| state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */ |
| state->m_Regs[EP3] = state->m_EP3_Standby; |
| status = UpdateReg(state, EP3); |
| if (status < 0) |
| break; |
| state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */ |
| status = UpdateRegs(state, EB21, EB23); |
| if (status < 0) |
| break; |
| } while (0); |
| return status; |
| } |
| |
| static int CalcMainPLL(struct tda_state *state, u32 freq) |
| { |
| |
| u8 PostDiv; |
| u8 Div; |
| u64 OscFreq; |
| u32 MainDiv; |
| |
| if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) |
| return -EINVAL; |
| |
| OscFreq = (u64) freq * (u64) Div; |
| OscFreq *= (u64) 16384; |
| do_div(OscFreq, 16000000); |
| MainDiv = OscFreq; |
| |
| state->m_Regs[MPD] = PostDiv & 0x77; |
| state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); |
| state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF); |
| state->m_Regs[MD3] = (MainDiv & 0xFF); |
| |
| return UpdateRegs(state, MPD, MD3); |
| } |
| |
| static int CalcCalPLL(struct tda_state *state, u32 freq) |
| { |
| u8 PostDiv; |
| u8 Div; |
| u64 OscFreq; |
| u32 CalDiv; |
| |
| if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div)) |
| return -EINVAL; |
| |
| OscFreq = (u64)freq * (u64)Div; |
| /* CalDiv = u32( OscFreq * 16384 / 16000000 ); */ |
| OscFreq *= (u64)16384; |
| do_div(OscFreq, 16000000); |
| CalDiv = OscFreq; |
| |
| state->m_Regs[CPD] = PostDiv; |
| state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); |
| state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF); |
| state->m_Regs[CD3] = (CalDiv & 0xFF); |
| |
| return UpdateRegs(state, CPD, CD3); |
| } |
| |
| static int CalibrateRF(struct tda_state *state, |
| u8 RFBand, u32 freq, s32 *pCprog) |
| { |
| int status = 0; |
| u8 Regs[NUM_REGS]; |
| do { |
| u8 BP_Filter = 0; |
| u8 GainTaper = 0; |
| u8 RFC_K = 0; |
| u8 RFC_M = 0; |
| |
| state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */ |
| status = UpdateReg(state, EP4); |
| if (status < 0) |
| break; |
| state->m_Regs[EB18] |= 0x03; /* AGC1_Gain = 3 */ |
| status = UpdateReg(state, EB18); |
| if (status < 0) |
| break; |
| |
| /* Switching off LT (as datasheet says) causes calibration on C1 to fail */ |
| /* (Readout of Cprog is always 255) */ |
| if (state->m_Regs[ID] != 0x83) /* C1: ID == 83, C2: ID == 84 */ |
| state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */ |
| |
| if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) && |
| SearchMap1(m_GainTaper_Map, freq, &GainTaper) && |
| SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M))) |
| return -EINVAL; |
| |
| state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; |
| state->m_Regs[EP2] = (RFBand << 5) | GainTaper; |
| |
| state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); |
| |
| status = UpdateRegs(state, EP1, EP3); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EB13); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB4] |= 0x20; /* LO_ForceSrce = 1 */ |
| status = UpdateReg(state, EB4); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB7] |= 0x20; /* CAL_ForceSrce = 1 */ |
| status = UpdateReg(state, EB7); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */ |
| status = UpdateReg(state, EB14); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB20] &= ~0x20; /* ForceLock = 0; */ |
| status = UpdateReg(state, EB20); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EP4] |= 0x03; /* CAL_Mode = 3 */ |
| status = UpdateRegs(state, EP4, EP5); |
| if (status < 0) |
| break; |
| |
| status = CalcCalPLL(state, freq); |
| if (status < 0) |
| break; |
| status = CalcMainPLL(state, freq + 1000000); |
| if (status < 0) |
| break; |
| |
| msleep(5); |
| status = UpdateReg(state, EP2); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EP2); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB4] &= ~0x20; /* LO_ForceSrce = 0 */ |
| status = UpdateReg(state, EB4); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB7] &= ~0x20; /* CAL_ForceSrce = 0 */ |
| status = UpdateReg(state, EB7); |
| if (status < 0) |
| break; |
| msleep(10); |
| |
| state->m_Regs[EB20] |= 0x20; /* ForceLock = 1; */ |
| status = UpdateReg(state, EB20); |
| if (status < 0) |
| break; |
| msleep(60); |
| |
| state->m_Regs[EP4] &= ~0x03; /* CAL_Mode = 0 */ |
| state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */ |
| state->m_Regs[EB18] &= ~0x03; /* AGC1_Gain = 0 */ |
| status = UpdateReg(state, EB18); |
| if (status < 0) |
| break; |
| status = UpdateRegs(state, EP3, EP4); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| |
| status = ReadExtented(state, Regs); |
| if (status < 0) |
| break; |
| |
| *pCprog = Regs[EB14]; |
| |
| } while (0); |
| return status; |
| } |
| |
| static int RFTrackingFiltersInit(struct tda_state *state, |
| u8 RFBand) |
| { |
| int status = 0; |
| |
| u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; |
| u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; |
| u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; |
| bool bcal = false; |
| |
| s32 Cprog_cal1 = 0; |
| s32 Cprog_table1 = 0; |
| s32 Cprog_cal2 = 0; |
| s32 Cprog_table2 = 0; |
| s32 Cprog_cal3 = 0; |
| s32 Cprog_table3 = 0; |
| |
| state->m_RF_A1[RFBand] = 0; |
| state->m_RF_B1[RFBand] = 0; |
| state->m_RF_A2[RFBand] = 0; |
| state->m_RF_B2[RFBand] = 0; |
| |
| do { |
| status = PowerScan(state, RFBand, RF1, &RF1, &bcal); |
| if (status < 0) |
| break; |
| if (bcal) { |
| status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1); |
| if (status < 0) |
| break; |
| } |
| SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1); |
| if (!bcal) |
| Cprog_cal1 = Cprog_table1; |
| state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; |
| /* state->m_RF_A1[RF_Band] = ???? */ |
| |
| if (RF2 == 0) |
| break; |
| |
| status = PowerScan(state, RFBand, RF2, &RF2, &bcal); |
| if (status < 0) |
| break; |
| if (bcal) { |
| status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2); |
| if (status < 0) |
| break; |
| } |
| SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2); |
| if (!bcal) |
| Cprog_cal2 = Cprog_table2; |
| |
| state->m_RF_A1[RFBand] = |
| (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / |
| ((s32)(RF2) - (s32)(RF1)); |
| |
| if (RF3 == 0) |
| break; |
| |
| status = PowerScan(state, RFBand, RF3, &RF3, &bcal); |
| if (status < 0) |
| break; |
| if (bcal) { |
| status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3); |
| if (status < 0) |
| break; |
| } |
| SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3); |
| if (!bcal) |
| Cprog_cal3 = Cprog_table3; |
| state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2)); |
| state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; |
| |
| } while (0); |
| |
| state->m_RF1[RFBand] = RF1; |
| state->m_RF2[RFBand] = RF2; |
| state->m_RF3[RFBand] = RF3; |
| |
| #if 0 |
| printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__, |
| RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2, |
| state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3); |
| #endif |
| |
| return status; |
| } |
| |
| static int PowerScan(struct tda_state *state, |
| u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal) |
| { |
| int status = 0; |
| do { |
| u8 Gain_Taper = 0; |
| s32 RFC_Cprog = 0; |
| u8 CID_Target = 0; |
| u8 CountLimit = 0; |
| u32 freq_MainPLL; |
| u8 Regs[NUM_REGS]; |
| u8 CID_Gain; |
| s32 Count = 0; |
| int sign = 1; |
| bool wait = false; |
| |
| if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) && |
| SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) && |
| SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) { |
| |
| printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__); |
| return -EINVAL; |
| } |
| |
| state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; |
| state->m_Regs[EB14] = (RFC_Cprog); |
| status = UpdateReg(state, EP2); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EB14); |
| if (status < 0) |
| break; |
| |
| freq_MainPLL = RF_in + 1000000; |
| status = CalcMainPLL(state, freq_MainPLL); |
| if (status < 0) |
| break; |
| msleep(5); |
| state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; /* CAL_mode = 1 */ |
| status = UpdateReg(state, EP4); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EP2); /* Launch power measurement */ |
| if (status < 0) |
| break; |
| status = ReadExtented(state, Regs); |
| if (status < 0) |
| break; |
| CID_Gain = Regs[EB10] & 0x3F; |
| state->m_Regs[ID] = Regs[ID]; /* Chip version, (needed for C1 workaround in CalibrateRF) */ |
| |
| *pRF_Out = RF_in; |
| |
| while (CID_Gain < CID_Target) { |
| freq_MainPLL = RF_in + sign * Count + 1000000; |
| status = CalcMainPLL(state, freq_MainPLL); |
| if (status < 0) |
| break; |
| msleep(wait ? 5 : 1); |
| wait = false; |
| status = UpdateReg(state, EP2); /* Launch power measurement */ |
| if (status < 0) |
| break; |
| status = ReadExtented(state, Regs); |
| if (status < 0) |
| break; |
| CID_Gain = Regs[EB10] & 0x3F; |
| Count += 200000; |
| |
| if (Count < CountLimit * 100000) |
| continue; |
| if (sign < 0) |
| break; |
| |
| sign = -sign; |
| Count = 200000; |
| wait = true; |
| } |
| if (status < 0) |
| break; |
| if (CID_Gain >= CID_Target) { |
| *pbcal = true; |
| *pRF_Out = freq_MainPLL - 1000000; |
| } else |
| *pbcal = false; |
| } while (0); |
| |
| return status; |
| } |
| |
| static int PowerScanInit(struct tda_state *state) |
| { |
| int status = 0; |
| do { |
| state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; |
| state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */ |
| status = UpdateRegs(state, EP3, EP4); |
| if (status < 0) |
| break; |
| state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */ |
| status = UpdateReg(state, EB18); |
| if (status < 0) |
| break; |
| state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */ |
| state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ |
| status = UpdateRegs(state, EB21, EB23); |
| if (status < 0) |
| break; |
| } while (0); |
| return status; |
| } |
| |
| static int CalcRFFilterCurve(struct tda_state *state) |
| { |
| int status = 0; |
| do { |
| msleep(200); /* Temperature stabilisation */ |
| status = PowerScanInit(state); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 0); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 1); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 2); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 3); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 4); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 5); |
| if (status < 0) |
| break; |
| status = RFTrackingFiltersInit(state, 6); |
| if (status < 0) |
| break; |
| status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */ |
| if (status < 0) |
| break; |
| } while (0); |
| |
| return status; |
| } |
| |
| static int FixedContentsI2CUpdate(struct tda_state *state) |
| { |
| static u8 InitRegs[] = { |
| 0x08, 0x80, 0xC6, |
| 0xDF, 0x16, 0x60, 0x80, |
| 0x80, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0xFC, 0x01, 0x84, 0x41, |
| 0x01, 0x84, 0x40, 0x07, |
| 0x00, 0x00, 0x96, 0x3F, |
| 0xC1, 0x00, 0x8F, 0x00, |
| 0x00, 0x8C, 0x00, 0x20, |
| 0xB3, 0x48, 0xB0, |
| }; |
| int status = 0; |
| memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1); |
| do { |
| status = UpdateRegs(state, TM, EB23); |
| if (status < 0) |
| break; |
| |
| /* AGC1 gain setup */ |
| state->m_Regs[EB17] = 0x00; |
| status = UpdateReg(state, EB17); |
| if (status < 0) |
| break; |
| state->m_Regs[EB17] = 0x03; |
| status = UpdateReg(state, EB17); |
| if (status < 0) |
| break; |
| state->m_Regs[EB17] = 0x43; |
| status = UpdateReg(state, EB17); |
| if (status < 0) |
| break; |
| state->m_Regs[EB17] = 0x4C; |
| status = UpdateReg(state, EB17); |
| if (status < 0) |
| break; |
| |
| /* IRC Cal Low band */ |
| state->m_Regs[EP3] = 0x1F; |
| state->m_Regs[EP4] = 0x66; |
| state->m_Regs[EP5] = 0x81; |
| state->m_Regs[CPD] = 0xCC; |
| state->m_Regs[CD1] = 0x6C; |
| state->m_Regs[CD2] = 0x00; |
| state->m_Regs[CD3] = 0x00; |
| state->m_Regs[MPD] = 0xC5; |
| state->m_Regs[MD1] = 0x77; |
| state->m_Regs[MD2] = 0x08; |
| state->m_Regs[MD3] = 0x00; |
| status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */ |
| if (status < 0) |
| break; |
| |
| #if 0 |
| state->m_Regs[EB4] = 0x61; /* missing in sw */ |
| status = UpdateReg(state, EB4); |
| if (status < 0) |
| break; |
| msleep(1); |
| state->m_Regs[EB4] = 0x41; |
| status = UpdateReg(state, EB4); |
| if (status < 0) |
| break; |
| #endif |
| |
| msleep(5); |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| msleep(5); |
| |
| state->m_Regs[EP5] = 0x85; |
| state->m_Regs[CPD] = 0xCB; |
| state->m_Regs[CD1] = 0x66; |
| state->m_Regs[CD2] = 0x70; |
| status = UpdateRegs(state, EP3, CD3); |
| if (status < 0) |
| break; |
| msleep(5); |
| status = UpdateReg(state, EP2); |
| if (status < 0) |
| break; |
| msleep(30); |
| |
| /* IRC Cal mid band */ |
| state->m_Regs[EP5] = 0x82; |
| state->m_Regs[CPD] = 0xA8; |
| state->m_Regs[CD2] = 0x00; |
| state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */ |
| state->m_Regs[MD1] = 0x73; |
| state->m_Regs[MD2] = 0x1A; |
| status = UpdateRegs(state, EP3, MD3); |
| if (status < 0) |
| break; |
| |
| msleep(5); |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| msleep(5); |
| |
| state->m_Regs[EP5] = 0x86; |
| state->m_Regs[CPD] = 0xA8; |
| state->m_Regs[CD1] = 0x66; |
| state->m_Regs[CD2] = 0xA0; |
| status = UpdateRegs(state, EP3, CD3); |
| if (status < 0) |
| break; |
| msleep(5); |
| status = UpdateReg(state, EP2); |
| if (status < 0) |
| break; |
| msleep(30); |
| |
| /* IRC Cal high band */ |
| state->m_Regs[EP5] = 0x83; |
| state->m_Regs[CPD] = 0x98; |
| state->m_Regs[CD1] = 0x65; |
| state->m_Regs[CD2] = 0x00; |
| state->m_Regs[MPD] = 0x91; /* Datasheet = 0x91 */ |
| state->m_Regs[MD1] = 0x71; |
| state->m_Regs[MD2] = 0xCD; |
| status = UpdateRegs(state, EP3, MD3); |
| if (status < 0) |
| break; |
| msleep(5); |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| msleep(5); |
| state->m_Regs[EP5] = 0x87; |
| state->m_Regs[CD1] = 0x65; |
| state->m_Regs[CD2] = 0x50; |
| status = UpdateRegs(state, EP3, CD3); |
| if (status < 0) |
| break; |
| msleep(5); |
| status = UpdateReg(state, EP2); |
| if (status < 0) |
| break; |
| msleep(30); |
| |
| /* Back to normal */ |
| state->m_Regs[EP4] = 0x64; |
| status = UpdateReg(state, EP4); |
| if (status < 0) |
| break; |
| status = UpdateReg(state, EP1); |
| if (status < 0) |
| break; |
| |
| } while (0); |
| return status; |
| } |
| |
| static int InitCal(struct tda_state *state) |
| { |
| int status = 0; |
| |
| do { |
| status = FixedContentsI2CUpdate(state); |
| if (status < 0) |
| break; |
| status = CalcRFFilterCurve(state); |
| if (status < 0) |
| break; |
| status = StandBy(state); |
| if (status < 0) |
| break; |
| /* m_bInitDone = true; */ |
| } while (0); |
| return status; |
| }; |
| |
| static int RFTrackingFiltersCorrection(struct tda_state *state, |
| u32 Frequency) |
| { |
| int status = 0; |
| s32 Cprog_table; |
| u8 RFBand; |
| u8 dCoverdT; |
| |
| if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) || |
| !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) || |
| !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT)) |
| |
| return -EINVAL; |
| |
| do { |
| u8 TMValue_Current; |
| u32 RF1 = state->m_RF1[RFBand]; |
| u32 RF2 = state->m_RF1[RFBand]; |
| u32 RF3 = state->m_RF1[RFBand]; |
| s32 RF_A1 = state->m_RF_A1[RFBand]; |
| s32 RF_B1 = state->m_RF_B1[RFBand]; |
| s32 RF_A2 = state->m_RF_A2[RFBand]; |
| s32 RF_B2 = state->m_RF_B2[RFBand]; |
| s32 Capprox = 0; |
| int TComp; |
| |
| state->m_Regs[EP3] &= ~0xE0; /* Power up */ |
| status = UpdateReg(state, EP3); |
| if (status < 0) |
| break; |
| |
| status = ThermometerRead(state, &TMValue_Current); |
| if (status < 0) |
| break; |
| |
| if (RF3 == 0 || Frequency < RF2) |
| Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; |
| else |
| Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; |
| |
| TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; |
| |
| Capprox += TComp; |
| |
| if (Capprox < 0) |
| Capprox = 0; |
| else if (Capprox > 255) |
| Capprox = 255; |
| |
| |
| /* TODO Temperature compensation. There is definitely a scale factor */ |
| /* missing in the datasheet, so leave it out for now. */ |
| state->m_Regs[EB14] = Capprox; |
| |
| status = UpdateReg(state, EB14); |
| if (status < 0) |
| break; |
| |
| } while (0); |
| return status; |
| } |
| |
| static int ChannelConfiguration(struct tda_state *state, |
| u32 Frequency, int Standard) |
| { |
| |
| s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; |
| int status = 0; |
| |
| u8 BP_Filter = 0; |
| u8 RF_Band = 0; |
| u8 GainTaper = 0; |
| u8 IR_Meas = 0; |
| |
| state->IF = IntermediateFrequency; |
| /* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */ |
| /* get values from tables */ |
| |
| if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) && |
| SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) && |
| SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) && |
| SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) { |
| |
| printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__); |
| return -EINVAL; |
| } |
| |
| do { |
| state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; |
| state->m_Regs[EP3] &= ~0x04; /* switch RFAGC to high speed mode */ |
| |
| /* m_EP4 default for XToutOn, CAL_Mode (0) */ |
| state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog); |
| /* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */ |
| if (Standard <= HF_AnalogMax) |
| state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; |
| else if (Standard <= HF_ATSC) |
| state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; |
| else if (Standard <= HF_DVBC) |
| state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; |
| else |
| state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; |
| |
| if ((Standard == HF_FM_Radio) && state->m_bFMInput) |
| state->m_Regs[EP4] |= 0x80; |
| |
| state->m_Regs[MPD] &= ~0x80; |
| if (Standard > HF_AnalogMax) |
| state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */ |
| |
| state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; |
| |
| /* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */ |
| if (Standard == HF_FM_Radio) |
| state->m_Regs[EB23] |= 0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ |
| else |
| state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */ |
| |
| status = UpdateRegs(state, EB22, EB23); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; /* Dis_Power_level = 1, Filter */ |
| state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; |
| state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; |
| |
| state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | |
| (state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */ |
| /* AGC1_always_master = 0 */ |
| /* AGC_firstn = 0 */ |
| status = UpdateReg(state, EB1); |
| if (status < 0) |
| break; |
| |
| if (state->m_bMaster) { |
| status = CalcMainPLL(state, Frequency + IntermediateFrequency); |
| if (status < 0) |
| break; |
| status = UpdateRegs(state, TM, EP5); |
| if (status < 0) |
| break; |
| state->m_Regs[EB4] |= 0x20; /* LO_forceSrce = 1 */ |
| status = UpdateReg(state, EB4); |
| if (status < 0) |
| break; |
| msleep(1); |
| state->m_Regs[EB4] &= ~0x20; /* LO_forceSrce = 0 */ |
| status = UpdateReg(state, EB4); |
| if (status < 0) |
| break; |
| } else { |
| u8 PostDiv = 0; |
| u8 Div; |
| status = CalcCalPLL(state, Frequency + IntermediateFrequency); |
| if (status < 0) |
| break; |
| |
| SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div); |
| state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); |
| status = UpdateReg(state, MPD); |
| if (status < 0) |
| break; |
| status = UpdateRegs(state, TM, EP5); |
| if (status < 0) |
| break; |
| |
| state->m_Regs[EB7] |= 0x20; /* CAL_forceSrce = 1 */ |
| status = UpdateReg(state, EB7); |
| if (status < 0) |
| break; |
| msleep(1); |
| state->m_Regs[EB7] &= ~0x20; /* CAL_forceSrce = 0 */ |
| status = UpdateReg(state, EB7); |
| if (status < 0) |
| break; |
| } |
| msleep(20); |
| if (Standard != HF_FM_Radio) |
| state->m_Regs[EP3] |= 0x04; /* RFAGC to normal mode */ |
| status = UpdateReg(state, EP3); |
| if (status < 0) |
| break; |
| |
| } while (0); |
| return status; |
| } |
| |
| static int sleep(struct dvb_frontend *fe) |
| { |
| struct tda_state *state = fe->tuner_priv; |
| |
| StandBy(state); |
| return 0; |
| } |
| |
| static int init(struct dvb_frontend *fe) |
| { |
| return 0; |
| } |
| |
| static void release(struct dvb_frontend *fe) |
| { |
| kfree(fe->tuner_priv); |
| fe->tuner_priv = NULL; |
| } |
| |
| |
| static int set_params(struct dvb_frontend *fe) |
| { |
| struct tda_state *state = fe->tuner_priv; |
| int status = 0; |
| int Standard; |
| u32 bw = fe->dtv_property_cache.bandwidth_hz; |
| u32 delsys = fe->dtv_property_cache.delivery_system; |
| |
| state->m_Frequency = fe->dtv_property_cache.frequency; |
| |
| switch (delsys) { |
| case SYS_DVBT: |
| case SYS_DVBT2: |
| switch (bw) { |
| case 6000000: |
| Standard = HF_DVBT_6MHZ; |
| break; |
| case 7000000: |
| Standard = HF_DVBT_7MHZ; |
| break; |
| case 8000000: |
| Standard = HF_DVBT_8MHZ; |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| case SYS_DVBC_ANNEX_A: |
| case SYS_DVBC_ANNEX_C: |
| if (bw <= 6000000) |
| Standard = HF_DVBC_6MHZ; |
| else if (bw <= 7000000) |
| Standard = HF_DVBC_7MHZ; |
| else |
| Standard = HF_DVBC_8MHZ; |
| break; |
| default: |
| return -EINVAL; |
| } |
| do { |
| status = RFTrackingFiltersCorrection(state, state->m_Frequency); |
| if (status < 0) |
| break; |
| status = ChannelConfiguration(state, state->m_Frequency, |
| Standard); |
| if (status < 0) |
| break; |
| |
| msleep(state->m_SettlingTime); /* Allow AGC's to settle down */ |
| } while (0); |
| return status; |
| } |
| |
| #if 0 |
| static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc) |
| { |
| if (IFAgc < 500) { |
| /* Scale this from 0 to 50000 */ |
| *pSignalStrength = IFAgc * 100; |
| } else { |
| /* Scale range 500-1500 to 50000-80000 */ |
| *pSignalStrength = 50000 + (IFAgc - 500) * 30; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency) |
| { |
| struct tda_state *state = fe->tuner_priv; |
| |
| *frequency = state->IF; |
| return 0; |
| } |
| |
| static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) |
| { |
| /* struct tda_state *state = fe->tuner_priv; */ |
| /* *bandwidth = priv->bandwidth; */ |
| return 0; |
| } |
| |
| |
| static const struct dvb_tuner_ops tuner_ops = { |
| .info = { |
| .name = "NXP TDA18271C2D", |
| .frequency_min_hz = 47125 * kHz, |
| .frequency_max_hz = 865 * MHz, |
| .frequency_step_hz = 62500 |
| }, |
| .init = init, |
| .sleep = sleep, |
| .set_params = set_params, |
| .release = release, |
| .get_if_frequency = get_if_frequency, |
| .get_bandwidth = get_bandwidth, |
| }; |
| |
| struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, |
| struct i2c_adapter *i2c, u8 adr) |
| { |
| struct tda_state *state; |
| |
| state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| fe->tuner_priv = state; |
| state->adr = adr; |
| state->i2c = i2c; |
| memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); |
| reset(state); |
| InitCal(state); |
| |
| return fe; |
| } |
| EXPORT_SYMBOL_GPL(tda18271c2dd_attach); |
| |
| MODULE_DESCRIPTION("TDA18271C2 driver"); |
| MODULE_AUTHOR("DD"); |
| MODULE_LICENSE("GPL"); |