blob: 96720adcfee033567a0ddd15f6eeb9804d44226c [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "bkey_buf.h"
#include "bset.h"
#include "btree_update.h"
#include "buckets.h"
#include "checksum.h"
#include "clock.h"
#include "compress.h"
#include "debug.h"
#include "ec.h"
#include "error.h"
#include "extent_update.h"
#include "inode.h"
#include "io_write.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "nocow_locking.h"
#include "rebalance.h"
#include "subvolume.h"
#include "super.h"
#include "super-io.h"
#include "trace.h"
#include <linux/blkdev.h>
#include <linux/prefetch.h>
#include <linux/random.h>
#include <linux/sched/mm.h>
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
u64 now, int rw)
{
u64 latency_capable =
ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
/* ideally we'd be taking into account the device's variance here: */
u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
s64 latency_over = io_latency - latency_threshold;
if (latency_threshold && latency_over > 0) {
/*
* bump up congested by approximately latency_over * 4 /
* latency_threshold - we don't need much accuracy here so don't
* bother with the divide:
*/
if (atomic_read(&ca->congested) < CONGESTED_MAX)
atomic_add(latency_over >>
max_t(int, ilog2(latency_threshold) - 2, 0),
&ca->congested);
ca->congested_last = now;
} else if (atomic_read(&ca->congested) > 0) {
atomic_dec(&ca->congested);
}
}
void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
{
atomic64_t *latency = &ca->cur_latency[rw];
u64 now = local_clock();
u64 io_latency = time_after64(now, submit_time)
? now - submit_time
: 0;
u64 old, new;
old = atomic64_read(latency);
do {
/*
* If the io latency was reasonably close to the current
* latency, skip doing the update and atomic operation - most of
* the time:
*/
if (abs((int) (old - io_latency)) < (old >> 1) &&
now & ~(~0U << 5))
break;
new = ewma_add(old, io_latency, 5);
} while (!atomic64_try_cmpxchg(latency, &old, new));
bch2_congested_acct(ca, io_latency, now, rw);
__bch2_time_stats_update(&ca->io_latency[rw].stats, submit_time, now);
}
#endif
/* Allocate, free from mempool: */
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
{
struct bvec_iter_all iter;
struct bio_vec *bv;
bio_for_each_segment_all(bv, bio, iter)
if (bv->bv_page != ZERO_PAGE(0))
mempool_free(bv->bv_page, &c->bio_bounce_pages);
bio->bi_vcnt = 0;
}
static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
{
struct page *page;
if (likely(!*using_mempool)) {
page = alloc_page(GFP_NOFS);
if (unlikely(!page)) {
mutex_lock(&c->bio_bounce_pages_lock);
*using_mempool = true;
goto pool_alloc;
}
} else {
pool_alloc:
page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS);
}
return page;
}
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
size_t size)
{
bool using_mempool = false;
while (size) {
struct page *page = __bio_alloc_page_pool(c, &using_mempool);
unsigned len = min_t(size_t, PAGE_SIZE, size);
BUG_ON(!bio_add_page(bio, page, len, 0));
size -= len;
}
if (using_mempool)
mutex_unlock(&c->bio_bounce_pages_lock);
}
/* Extent update path: */
int bch2_sum_sector_overwrites(struct btree_trans *trans,
struct btree_iter *extent_iter,
struct bkey_i *new,
bool *usage_increasing,
s64 *i_sectors_delta,
s64 *disk_sectors_delta)
{
struct bch_fs *c = trans->c;
struct btree_iter iter;
struct bkey_s_c old;
unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new));
bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new));
int ret = 0;
*usage_increasing = false;
*i_sectors_delta = 0;
*disk_sectors_delta = 0;
bch2_trans_copy_iter(&iter, extent_iter);
for_each_btree_key_upto_continue_norestart(iter,
new->k.p, BTREE_ITER_slots, old, ret) {
s64 sectors = min(new->k.p.offset, old.k->p.offset) -
max(bkey_start_offset(&new->k),
bkey_start_offset(old.k));
*i_sectors_delta += sectors *
(bkey_extent_is_allocation(&new->k) -
bkey_extent_is_allocation(old.k));
*disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new));
*disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot
? sectors * bch2_bkey_nr_ptrs_fully_allocated(old)
: 0;
if (!*usage_increasing &&
(new->k.p.snapshot != old.k->p.snapshot ||
new_replicas > bch2_bkey_replicas(c, old) ||
(!new_compressed && bch2_bkey_sectors_compressed(old))))
*usage_increasing = true;
if (bkey_ge(old.k->p, new->k.p))
break;
}
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans,
struct btree_iter *extent_iter,
u64 new_i_size,
s64 i_sectors_delta)
{
/*
* Crazy performance optimization:
* Every extent update needs to also update the inode: the inode trigger
* will set bi->journal_seq to the journal sequence number of this
* transaction - for fsync.
*
* But if that's the only reason we're updating the inode (we're not
* updating bi_size or bi_sectors), then we don't need the inode update
* to be journalled - if we crash, the bi_journal_seq update will be
* lost, but that's fine.
*/
unsigned inode_update_flags = BTREE_UPDATE_nojournal;
struct btree_iter iter;
struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes,
SPOS(0,
extent_iter->pos.inode,
extent_iter->snapshot),
BTREE_ITER_cached);
int ret = bkey_err(k);
if (unlikely(ret))
return ret;
/*
* varint_decode_fast(), in the inode .invalid method, reads up to 7
* bytes past the end of the buffer:
*/
struct bkey_i *k_mut = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + 8);
ret = PTR_ERR_OR_ZERO(k_mut);
if (unlikely(ret))
goto err;
bkey_reassemble(k_mut, k);
if (unlikely(k_mut->k.type != KEY_TYPE_inode_v3)) {
k_mut = bch2_inode_to_v3(trans, k_mut);
ret = PTR_ERR_OR_ZERO(k_mut);
if (unlikely(ret))
goto err;
}
struct bkey_i_inode_v3 *inode = bkey_i_to_inode_v3(k_mut);
if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_i_size_dirty) &&
new_i_size > le64_to_cpu(inode->v.bi_size)) {
inode->v.bi_size = cpu_to_le64(new_i_size);
inode_update_flags = 0;
}
if (i_sectors_delta) {
le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta);
inode_update_flags = 0;
}
if (inode->k.p.snapshot != iter.snapshot) {
inode->k.p.snapshot = iter.snapshot;
inode_update_flags = 0;
}
ret = bch2_trans_update(trans, &iter, &inode->k_i,
BTREE_UPDATE_internal_snapshot_node|
inode_update_flags);
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int bch2_extent_update(struct btree_trans *trans,
subvol_inum inum,
struct btree_iter *iter,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 new_i_size,
s64 *i_sectors_delta_total,
bool check_enospc)
{
struct bpos next_pos;
bool usage_increasing;
s64 i_sectors_delta = 0, disk_sectors_delta = 0;
int ret;
/*
* This traverses us the iterator without changing iter->path->pos to
* search_key() (which is pos + 1 for extents): we want there to be a
* path already traversed at iter->pos because
* bch2_trans_extent_update() will use it to attempt extent merging
*/
ret = __bch2_btree_iter_traverse(iter);
if (ret)
return ret;
ret = bch2_extent_trim_atomic(trans, iter, k);
if (ret)
return ret;
next_pos = k->k.p;
ret = bch2_sum_sector_overwrites(trans, iter, k,
&usage_increasing,
&i_sectors_delta,
&disk_sectors_delta);
if (ret)
return ret;
if (disk_res &&
disk_sectors_delta > (s64) disk_res->sectors) {
ret = bch2_disk_reservation_add(trans->c, disk_res,
disk_sectors_delta - disk_res->sectors,
!check_enospc || !usage_increasing
? BCH_DISK_RESERVATION_NOFAIL : 0);
if (ret)
return ret;
}
/*
* Note:
* We always have to do an inode update - even when i_size/i_sectors
* aren't changing - for fsync to work properly; fsync relies on
* inode->bi_journal_seq which is updated by the trigger code:
*/
ret = bch2_extent_update_i_size_sectors(trans, iter,
min(k->k.p.offset << 9, new_i_size),
i_sectors_delta) ?:
bch2_trans_update(trans, iter, k, 0) ?:
bch2_trans_commit(trans, disk_res, NULL,
BCH_TRANS_COMMIT_no_check_rw|
BCH_TRANS_COMMIT_no_enospc);
if (unlikely(ret))
return ret;
if (i_sectors_delta_total)
*i_sectors_delta_total += i_sectors_delta;
bch2_btree_iter_set_pos(iter, next_pos);
return 0;
}
static int bch2_write_index_default(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct bkey_buf sk;
struct keylist *keys = &op->insert_keys;
struct bkey_i *k = bch2_keylist_front(keys);
struct btree_trans *trans = bch2_trans_get(c);
struct btree_iter iter;
subvol_inum inum = {
.subvol = op->subvol,
.inum = k->k.p.inode,
};
int ret;
BUG_ON(!inum.subvol);
bch2_bkey_buf_init(&sk);
do {
bch2_trans_begin(trans);
k = bch2_keylist_front(keys);
bch2_bkey_buf_copy(&sk, c, k);
ret = bch2_subvolume_get_snapshot(trans, inum.subvol,
&sk.k->k.p.snapshot);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
bkey_start_pos(&sk.k->k),
BTREE_ITER_slots|BTREE_ITER_intent);
ret = bch2_bkey_set_needs_rebalance(c, sk.k, &op->opts) ?:
bch2_extent_update(trans, inum, &iter, sk.k,
&op->res,
op->new_i_size, &op->i_sectors_delta,
op->flags & BCH_WRITE_CHECK_ENOSPC);
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
if (bkey_ge(iter.pos, k->k.p))
bch2_keylist_pop_front(&op->insert_keys);
else
bch2_cut_front(iter.pos, k);
} while (!bch2_keylist_empty(keys));
bch2_trans_put(trans);
bch2_bkey_buf_exit(&sk, c);
return ret;
}
/* Writes */
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
enum bch_data_type type,
const struct bkey_i *k,
bool nocow)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
struct bch_write_bio *n;
BUG_ON(c->opts.nochanges);
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = nocow
? bch2_dev_have_ref(c, ptr->dev)
: bch2_dev_get_ioref(c, ptr->dev, type == BCH_DATA_btree ? READ : WRITE);
if (to_entry(ptr + 1) < ptrs.end) {
n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, GFP_NOFS, &c->replica_set));
n->bio.bi_end_io = wbio->bio.bi_end_io;
n->bio.bi_private = wbio->bio.bi_private;
n->parent = wbio;
n->split = true;
n->bounce = false;
n->put_bio = true;
n->bio.bi_opf = wbio->bio.bi_opf;
bio_inc_remaining(&wbio->bio);
} else {
n = wbio;
n->split = false;
}
n->c = c;
n->dev = ptr->dev;
n->have_ioref = ca != NULL;
n->nocow = nocow;
n->submit_time = local_clock();
n->inode_offset = bkey_start_offset(&k->k);
if (nocow)
n->nocow_bucket = PTR_BUCKET_NR(ca, ptr);
n->bio.bi_iter.bi_sector = ptr->offset;
if (likely(n->have_ioref)) {
this_cpu_add(ca->io_done->sectors[WRITE][type],
bio_sectors(&n->bio));
bio_set_dev(&n->bio, ca->disk_sb.bdev);
if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) {
bio_endio(&n->bio);
continue;
}
submit_bio(&n->bio);
} else {
n->bio.bi_status = BLK_STS_REMOVED;
bio_endio(&n->bio);
}
}
}
static void __bch2_write(struct bch_write_op *);
static void bch2_write_done(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_fs *c = op->c;
EBUG_ON(op->open_buckets.nr);
bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
bch2_disk_reservation_put(c, &op->res);
if (!(op->flags & BCH_WRITE_MOVE))
bch2_write_ref_put(c, BCH_WRITE_REF_write);
bch2_keylist_free(&op->insert_keys, op->inline_keys);
EBUG_ON(cl->parent);
closure_debug_destroy(cl);
if (op->end_io)
op->end_io(op);
}
static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op)
{
struct keylist *keys = &op->insert_keys;
struct bkey_i *src, *dst = keys->keys, *n;
for (src = keys->keys; src != keys->top; src = n) {
n = bkey_next(src);
if (bkey_extent_is_direct_data(&src->k)) {
bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
test_bit(ptr->dev, op->failed.d));
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src)))
return -EIO;
}
if (dst != src)
memmove_u64s_down(dst, src, src->k.u64s);
dst = bkey_next(dst);
}
keys->top = dst;
return 0;
}
/**
* __bch2_write_index - after a write, update index to point to new data
* @op: bch_write_op to process
*/
static void __bch2_write_index(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct keylist *keys = &op->insert_keys;
unsigned dev;
int ret = 0;
if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
ret = bch2_write_drop_io_error_ptrs(op);
if (ret)
goto err;
}
if (!bch2_keylist_empty(keys)) {
u64 sectors_start = keylist_sectors(keys);
ret = !(op->flags & BCH_WRITE_MOVE)
? bch2_write_index_default(op)
: bch2_data_update_index_update(op);
BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart));
BUG_ON(keylist_sectors(keys) && !ret);
op->written += sectors_start - keylist_sectors(keys);
if (ret && !bch2_err_matches(ret, EROFS)) {
struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
bch_err_inum_offset_ratelimited(c,
insert->k.p.inode, insert->k.p.offset << 9,
"%s write error while doing btree update: %s",
op->flags & BCH_WRITE_MOVE ? "move" : "user",
bch2_err_str(ret));
}
if (ret)
goto err;
}
out:
/* If some a bucket wasn't written, we can't erasure code it: */
for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
bch2_open_bucket_write_error(c, &op->open_buckets, dev);
bch2_open_buckets_put(c, &op->open_buckets);
return;
err:
keys->top = keys->keys;
op->error = ret;
op->flags |= BCH_WRITE_SUBMITTED;
goto out;
}
static inline void __wp_update_state(struct write_point *wp, enum write_point_state state)
{
if (state != wp->state) {
u64 now = ktime_get_ns();
if (wp->last_state_change &&
time_after64(now, wp->last_state_change))
wp->time[wp->state] += now - wp->last_state_change;
wp->state = state;
wp->last_state_change = now;
}
}
static inline void wp_update_state(struct write_point *wp, bool running)
{
enum write_point_state state;
state = running ? WRITE_POINT_running :
!list_empty(&wp->writes) ? WRITE_POINT_waiting_io
: WRITE_POINT_stopped;
__wp_update_state(wp, state);
}
static CLOSURE_CALLBACK(bch2_write_index)
{
closure_type(op, struct bch_write_op, cl);
struct write_point *wp = op->wp;
struct workqueue_struct *wq = index_update_wq(op);
unsigned long flags;
if ((op->flags & BCH_WRITE_SUBMITTED) &&
(op->flags & BCH_WRITE_MOVE))
bch2_bio_free_pages_pool(op->c, &op->wbio.bio);
spin_lock_irqsave(&wp->writes_lock, flags);
if (wp->state == WRITE_POINT_waiting_io)
__wp_update_state(wp, WRITE_POINT_waiting_work);
list_add_tail(&op->wp_list, &wp->writes);
spin_unlock_irqrestore (&wp->writes_lock, flags);
queue_work(wq, &wp->index_update_work);
}
static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp)
{
op->wp = wp;
if (wp->state == WRITE_POINT_stopped) {
spin_lock_irq(&wp->writes_lock);
__wp_update_state(wp, WRITE_POINT_waiting_io);
spin_unlock_irq(&wp->writes_lock);
}
}
void bch2_write_point_do_index_updates(struct work_struct *work)
{
struct write_point *wp =
container_of(work, struct write_point, index_update_work);
struct bch_write_op *op;
while (1) {
spin_lock_irq(&wp->writes_lock);
op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list);
if (op)
list_del(&op->wp_list);
wp_update_state(wp, op != NULL);
spin_unlock_irq(&wp->writes_lock);
if (!op)
break;
op->flags |= BCH_WRITE_IN_WORKER;
__bch2_write_index(op);
if (!(op->flags & BCH_WRITE_SUBMITTED))
__bch2_write(op);
else
bch2_write_done(&op->cl);
}
}
static void bch2_write_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_write_bio *wbio = to_wbio(bio);
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
struct bch_fs *c = wbio->c;
struct bch_dev *ca = wbio->have_ioref
? bch2_dev_have_ref(c, wbio->dev)
: NULL;
if (bch2_dev_inum_io_err_on(bio->bi_status, ca, BCH_MEMBER_ERROR_write,
op->pos.inode,
wbio->inode_offset << 9,
"data write error: %s",
bch2_blk_status_to_str(bio->bi_status))) {
set_bit(wbio->dev, op->failed.d);
op->flags |= BCH_WRITE_IO_ERROR;
}
if (wbio->nocow) {
bch2_bucket_nocow_unlock(&c->nocow_locks,
POS(ca->dev_idx, wbio->nocow_bucket),
BUCKET_NOCOW_LOCK_UPDATE);
set_bit(wbio->dev, op->devs_need_flush->d);
}
if (wbio->have_ioref) {
bch2_latency_acct(ca, wbio->submit_time, WRITE);
percpu_ref_put(&ca->io_ref);
}
if (wbio->bounce)
bch2_bio_free_pages_pool(c, bio);
if (wbio->put_bio)
bio_put(bio);
if (parent)
bio_endio(&parent->bio);
else
closure_put(cl);
}
static void init_append_extent(struct bch_write_op *op,
struct write_point *wp,
struct bversion version,
struct bch_extent_crc_unpacked crc)
{
struct bkey_i_extent *e;
op->pos.offset += crc.uncompressed_size;
e = bkey_extent_init(op->insert_keys.top);
e->k.p = op->pos;
e->k.size = crc.uncompressed_size;
e->k.bversion = version;
if (crc.csum_type ||
crc.compression_type ||
crc.nonce)
bch2_extent_crc_append(&e->k_i, crc);
bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size,
op->flags & BCH_WRITE_CACHED);
bch2_keylist_push(&op->insert_keys);
}
static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
struct write_point *wp,
struct bio *src,
bool *page_alloc_failed,
void *buf)
{
struct bch_write_bio *wbio;
struct bio *bio;
unsigned output_available =
min(wp->sectors_free << 9, src->bi_iter.bi_size);
unsigned pages = DIV_ROUND_UP(output_available +
(buf
? ((unsigned long) buf & (PAGE_SIZE - 1))
: 0), PAGE_SIZE);
pages = min(pages, BIO_MAX_VECS);
bio = bio_alloc_bioset(NULL, pages, 0,
GFP_NOFS, &c->bio_write);
wbio = wbio_init(bio);
wbio->put_bio = true;
/* copy WRITE_SYNC flag */
wbio->bio.bi_opf = src->bi_opf;
if (buf) {
bch2_bio_map(bio, buf, output_available);
return bio;
}
wbio->bounce = true;
/*
* We can't use mempool for more than c->sb.encoded_extent_max
* worth of pages, but we'd like to allocate more if we can:
*/
bch2_bio_alloc_pages_pool(c, bio,
min_t(unsigned, output_available,
c->opts.encoded_extent_max));
if (bio->bi_iter.bi_size < output_available)
*page_alloc_failed =
bch2_bio_alloc_pages(bio,
output_available -
bio->bi_iter.bi_size,
GFP_NOFS) != 0;
return bio;
}
static int bch2_write_rechecksum(struct bch_fs *c,
struct bch_write_op *op,
unsigned new_csum_type)
{
struct bio *bio = &op->wbio.bio;
struct bch_extent_crc_unpacked new_crc;
int ret;
/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
bch2_csum_type_is_encryption(new_csum_type))
new_csum_type = op->crc.csum_type;
ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
NULL, &new_crc,
op->crc.offset, op->crc.live_size,
new_csum_type);
if (ret)
return ret;
bio_advance(bio, op->crc.offset << 9);
bio->bi_iter.bi_size = op->crc.live_size << 9;
op->crc = new_crc;
return 0;
}
static int bch2_write_decrypt(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct nonce nonce = extent_nonce(op->version, op->crc);
struct bch_csum csum;
int ret;
if (!bch2_csum_type_is_encryption(op->crc.csum_type))
return 0;
/*
* If we need to decrypt data in the write path, we'll no longer be able
* to verify the existing checksum (poly1305 mac, in this case) after
* it's decrypted - this is the last point we'll be able to reverify the
* checksum:
*/
csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
return -EIO;
ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
op->crc.csum_type = 0;
op->crc.csum = (struct bch_csum) { 0, 0 };
return ret;
}
static enum prep_encoded_ret {
PREP_ENCODED_OK,
PREP_ENCODED_ERR,
PREP_ENCODED_CHECKSUM_ERR,
PREP_ENCODED_DO_WRITE,
} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
{
struct bch_fs *c = op->c;
struct bio *bio = &op->wbio.bio;
if (!(op->flags & BCH_WRITE_DATA_ENCODED))
return PREP_ENCODED_OK;
BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
/* Can we just write the entire extent as is? */
if (op->crc.uncompressed_size == op->crc.live_size &&
op->crc.uncompressed_size <= c->opts.encoded_extent_max >> 9 &&
op->crc.compressed_size <= wp->sectors_free &&
(op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) ||
op->incompressible)) {
if (!crc_is_compressed(op->crc) &&
op->csum_type != op->crc.csum_type &&
bch2_write_rechecksum(c, op, op->csum_type) &&
!c->opts.no_data_io)
return PREP_ENCODED_CHECKSUM_ERR;
return PREP_ENCODED_DO_WRITE;
}
/*
* If the data is compressed and we couldn't write the entire extent as
* is, we have to decompress it:
*/
if (crc_is_compressed(op->crc)) {
struct bch_csum csum;
if (bch2_write_decrypt(op))
return PREP_ENCODED_CHECKSUM_ERR;
/* Last point we can still verify checksum: */
csum = bch2_checksum_bio(c, op->crc.csum_type,
extent_nonce(op->version, op->crc),
bio);
if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io)
return PREP_ENCODED_CHECKSUM_ERR;
if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
return PREP_ENCODED_ERR;
}
/*
* No longer have compressed data after this point - data might be
* encrypted:
*/
/*
* If the data is checksummed and we're only writing a subset,
* rechecksum and adjust bio to point to currently live data:
*/
if ((op->crc.live_size != op->crc.uncompressed_size ||
op->crc.csum_type != op->csum_type) &&
bch2_write_rechecksum(c, op, op->csum_type) &&
!c->opts.no_data_io)
return PREP_ENCODED_CHECKSUM_ERR;
/*
* If we want to compress the data, it has to be decrypted:
*/
if ((op->compression_opt ||
bch2_csum_type_is_encryption(op->crc.csum_type) !=
bch2_csum_type_is_encryption(op->csum_type)) &&
bch2_write_decrypt(op))
return PREP_ENCODED_CHECKSUM_ERR;
return PREP_ENCODED_OK;
}
static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
struct bio **_dst)
{
struct bch_fs *c = op->c;
struct bio *src = &op->wbio.bio, *dst = src;
struct bvec_iter saved_iter;
void *ec_buf;
unsigned total_output = 0, total_input = 0;
bool bounce = false;
bool page_alloc_failed = false;
int ret, more = 0;
BUG_ON(!bio_sectors(src));
ec_buf = bch2_writepoint_ec_buf(c, wp);
switch (bch2_write_prep_encoded_data(op, wp)) {
case PREP_ENCODED_OK:
break;
case PREP_ENCODED_ERR:
ret = -EIO;
goto err;
case PREP_ENCODED_CHECKSUM_ERR:
goto csum_err;
case PREP_ENCODED_DO_WRITE:
/* XXX look for bug here */
if (ec_buf) {
dst = bch2_write_bio_alloc(c, wp, src,
&page_alloc_failed,
ec_buf);
bio_copy_data(dst, src);
bounce = true;
}
init_append_extent(op, wp, op->version, op->crc);
goto do_write;
}
if (ec_buf ||
op->compression_opt ||
(op->csum_type &&
!(op->flags & BCH_WRITE_PAGES_STABLE)) ||
(bch2_csum_type_is_encryption(op->csum_type) &&
!(op->flags & BCH_WRITE_PAGES_OWNED))) {
dst = bch2_write_bio_alloc(c, wp, src,
&page_alloc_failed,
ec_buf);
bounce = true;
}
saved_iter = dst->bi_iter;
do {
struct bch_extent_crc_unpacked crc = { 0 };
struct bversion version = op->version;
size_t dst_len = 0, src_len = 0;
if (page_alloc_failed &&
dst->bi_iter.bi_size < (wp->sectors_free << 9) &&
dst->bi_iter.bi_size < c->opts.encoded_extent_max)
break;
BUG_ON(op->compression_opt &&
(op->flags & BCH_WRITE_DATA_ENCODED) &&
bch2_csum_type_is_encryption(op->crc.csum_type));
BUG_ON(op->compression_opt && !bounce);
crc.compression_type = op->incompressible
? BCH_COMPRESSION_TYPE_incompressible
: op->compression_opt
? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
op->compression_opt)
: 0;
if (!crc_is_compressed(crc)) {
dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
if (op->csum_type)
dst_len = min_t(unsigned, dst_len,
c->opts.encoded_extent_max);
if (bounce) {
swap(dst->bi_iter.bi_size, dst_len);
bio_copy_data(dst, src);
swap(dst->bi_iter.bi_size, dst_len);
}
src_len = dst_len;
}
BUG_ON(!src_len || !dst_len);
if (bch2_csum_type_is_encryption(op->csum_type)) {
if (bversion_zero(version)) {
version.lo = atomic64_inc_return(&c->key_version);
} else {
crc.nonce = op->nonce;
op->nonce += src_len >> 9;
}
}
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
!crc_is_compressed(crc) &&
bch2_csum_type_is_encryption(op->crc.csum_type) ==
bch2_csum_type_is_encryption(op->csum_type)) {
u8 compression_type = crc.compression_type;
u16 nonce = crc.nonce;
/*
* Note: when we're using rechecksum(), we need to be
* checksumming @src because it has all the data our
* existing checksum covers - if we bounced (because we
* were trying to compress), @dst will only have the
* part of the data the new checksum will cover.
*
* But normally we want to be checksumming post bounce,
* because part of the reason for bouncing is so the
* data can't be modified (by userspace) while it's in
* flight.
*/
if (bch2_rechecksum_bio(c, src, version, op->crc,
&crc, &op->crc,
src_len >> 9,
bio_sectors(src) - (src_len >> 9),
op->csum_type))
goto csum_err;
/*
* rchecksum_bio sets compression_type on crc from op->crc,
* this isn't always correct as sometimes we're changing
* an extent from uncompressed to incompressible.
*/
crc.compression_type = compression_type;
crc.nonce = nonce;
} else {
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
bch2_rechecksum_bio(c, src, version, op->crc,
NULL, &op->crc,
src_len >> 9,
bio_sectors(src) - (src_len >> 9),
op->crc.csum_type))
goto csum_err;
crc.compressed_size = dst_len >> 9;
crc.uncompressed_size = src_len >> 9;
crc.live_size = src_len >> 9;
swap(dst->bi_iter.bi_size, dst_len);
ret = bch2_encrypt_bio(c, op->csum_type,
extent_nonce(version, crc), dst);
if (ret)
goto err;
crc.csum = bch2_checksum_bio(c, op->csum_type,
extent_nonce(version, crc), dst);
crc.csum_type = op->csum_type;
swap(dst->bi_iter.bi_size, dst_len);
}
init_append_extent(op, wp, version, crc);
if (dst != src)
bio_advance(dst, dst_len);
bio_advance(src, src_len);
total_output += dst_len;
total_input += src_len;
} while (dst->bi_iter.bi_size &&
src->bi_iter.bi_size &&
wp->sectors_free &&
!bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_EXTENT_U64s_MAX));
more = src->bi_iter.bi_size != 0;
dst->bi_iter = saved_iter;
if (dst == src && more) {
BUG_ON(total_output != total_input);
dst = bio_split(src, total_input >> 9,
GFP_NOFS, &c->bio_write);
wbio_init(dst)->put_bio = true;
/* copy WRITE_SYNC flag */
dst->bi_opf = src->bi_opf;
}
dst->bi_iter.bi_size = total_output;
do_write:
*_dst = dst;
return more;
csum_err:
bch_err_inum_offset_ratelimited(c,
op->pos.inode,
op->pos.offset << 9,
"%s write error: error verifying existing checksum while rewriting existing data (memory corruption?)",
op->flags & BCH_WRITE_MOVE ? "move" : "user");
ret = -EIO;
err:
if (to_wbio(dst)->bounce)
bch2_bio_free_pages_pool(c, dst);
if (to_wbio(dst)->put_bio)
bio_put(dst);
return ret;
}
static bool bch2_extent_is_writeable(struct bch_write_op *op,
struct bkey_s_c k)
{
struct bch_fs *c = op->c;
struct bkey_s_c_extent e;
struct extent_ptr_decoded p;
const union bch_extent_entry *entry;
unsigned replicas = 0;
if (k.k->type != KEY_TYPE_extent)
return false;
e = bkey_s_c_to_extent(k);
rcu_read_lock();
extent_for_each_ptr_decode(e, p, entry) {
if (crc_is_encoded(p.crc) || p.has_ec) {
rcu_read_unlock();
return false;
}
replicas += bch2_extent_ptr_durability(c, &p);
}
rcu_read_unlock();
return replicas >= op->opts.data_replicas;
}
static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *orig,
struct bkey_s_c k,
u64 new_i_size)
{
if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) {
/* trace this */
return 0;
}
struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k);
int ret = PTR_ERR_OR_ZERO(new);
if (ret)
return ret;
bch2_cut_front(bkey_start_pos(&orig->k), new);
bch2_cut_back(orig->k.p, new);
struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
bkey_for_each_ptr(ptrs, ptr)
ptr->unwritten = 0;
/*
* Note that we're not calling bch2_subvol_get_snapshot() in this path -
* that was done when we kicked off the write, and here it's important
* that we update the extent that we wrote to - even if a snapshot has
* since been created. The write is still outstanding, so we're ok
* w.r.t. snapshot atomicity:
*/
return bch2_extent_update_i_size_sectors(trans, iter,
min(new->k.p.offset << 9, new_i_size), 0) ?:
bch2_trans_update(trans, iter, new,
BTREE_UPDATE_internal_snapshot_node);
}
static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct btree_trans *trans = bch2_trans_get(c);
for_each_keylist_key(&op->insert_keys, orig) {
int ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents,
bkey_start_pos(&orig->k), orig->k.p,
BTREE_ITER_intent, k,
NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ({
bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size);
}));
if (ret && !bch2_err_matches(ret, EROFS)) {
struct bkey_i *insert = bch2_keylist_front(&op->insert_keys);
bch_err_inum_offset_ratelimited(c,
insert->k.p.inode, insert->k.p.offset << 9,
"%s write error while doing btree update: %s",
op->flags & BCH_WRITE_MOVE ? "move" : "user",
bch2_err_str(ret));
}
if (ret) {
op->error = ret;
break;
}
}
bch2_trans_put(trans);
}
static void __bch2_nocow_write_done(struct bch_write_op *op)
{
if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) {
op->error = -EIO;
} else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN))
bch2_nocow_write_convert_unwritten(op);
}
static CLOSURE_CALLBACK(bch2_nocow_write_done)
{
closure_type(op, struct bch_write_op, cl);
__bch2_nocow_write_done(op);
bch2_write_done(cl);
}
struct bucket_to_lock {
struct bpos b;
unsigned gen;
struct nocow_lock_bucket *l;
};
static void bch2_nocow_write(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct btree_trans *trans;
struct btree_iter iter;
struct bkey_s_c k;
DARRAY_PREALLOCATED(struct bucket_to_lock, 3) buckets;
u32 snapshot;
struct bucket_to_lock *stale_at;
int stale, ret;
if (op->flags & BCH_WRITE_MOVE)
return;
darray_init(&buckets);
trans = bch2_trans_get(c);
retry:
bch2_trans_begin(trans);
ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot);
if (unlikely(ret))
goto err;
bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
SPOS(op->pos.inode, op->pos.offset, snapshot),
BTREE_ITER_slots);
while (1) {
struct bio *bio = &op->wbio.bio;
buckets.nr = 0;
ret = bch2_trans_relock(trans);
if (ret)
break;
k = bch2_btree_iter_peek_slot(&iter);
ret = bkey_err(k);
if (ret)
break;
/* fall back to normal cow write path? */
if (unlikely(k.k->p.snapshot != snapshot ||
!bch2_extent_is_writeable(op, k)))
break;
if (bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
k.k->u64s))
break;
/* Get iorefs before dropping btree locks: */
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, WRITE);
if (unlikely(!ca))
goto err_get_ioref;
struct bpos b = PTR_BUCKET_POS(ca, ptr);
struct nocow_lock_bucket *l =
bucket_nocow_lock(&c->nocow_locks, bucket_to_u64(b));
prefetch(l);
/* XXX allocating memory with btree locks held - rare */
darray_push_gfp(&buckets, ((struct bucket_to_lock) {
.b = b, .gen = ptr->gen, .l = l,
}), GFP_KERNEL|__GFP_NOFAIL);
if (ptr->unwritten)
op->flags |= BCH_WRITE_CONVERT_UNWRITTEN;
}
/* Unlock before taking nocow locks, doing IO: */
bkey_reassemble(op->insert_keys.top, k);
bch2_trans_unlock(trans);
bch2_cut_front(op->pos, op->insert_keys.top);
if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN)
bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top);
darray_for_each(buckets, i) {
struct bch_dev *ca = bch2_dev_have_ref(c, i->b.inode);
__bch2_bucket_nocow_lock(&c->nocow_locks, i->l,
bucket_to_u64(i->b),
BUCKET_NOCOW_LOCK_UPDATE);
int gen = bucket_gen_get(ca, i->b.offset);
stale = gen < 0 ? gen : gen_after(gen, i->gen);
if (unlikely(stale)) {
stale_at = i;
goto err_bucket_stale;
}
}
bio = &op->wbio.bio;
if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) {
bio = bio_split(bio, k.k->p.offset - op->pos.offset,
GFP_KERNEL, &c->bio_write);
wbio_init(bio)->put_bio = true;
bio->bi_opf = op->wbio.bio.bi_opf;
} else {
op->flags |= BCH_WRITE_SUBMITTED;
}
op->pos.offset += bio_sectors(bio);
op->written += bio_sectors(bio);
bio->bi_end_io = bch2_write_endio;
bio->bi_private = &op->cl;
bio->bi_opf |= REQ_OP_WRITE;
closure_get(&op->cl);
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
op->insert_keys.top, true);
bch2_keylist_push(&op->insert_keys);
if (op->flags & BCH_WRITE_SUBMITTED)
break;
bch2_btree_iter_advance(&iter);
}
out:
bch2_trans_iter_exit(trans, &iter);
err:
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
if (ret) {
bch_err_inum_offset_ratelimited(c,
op->pos.inode, op->pos.offset << 9,
"%s: btree lookup error %s", __func__, bch2_err_str(ret));
op->error = ret;
op->flags |= BCH_WRITE_SUBMITTED;
}
bch2_trans_put(trans);
darray_exit(&buckets);
/* fallback to cow write path? */
if (!(op->flags & BCH_WRITE_SUBMITTED)) {
closure_sync(&op->cl);
__bch2_nocow_write_done(op);
op->insert_keys.top = op->insert_keys.keys;
} else if (op->flags & BCH_WRITE_SYNC) {
closure_sync(&op->cl);
bch2_nocow_write_done(&op->cl.work);
} else {
/*
* XXX
* needs to run out of process context because ei_quota_lock is
* a mutex
*/
continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op));
}
return;
err_get_ioref:
darray_for_each(buckets, i)
percpu_ref_put(&bch2_dev_have_ref(c, i->b.inode)->io_ref);
/* Fall back to COW path: */
goto out;
err_bucket_stale:
darray_for_each(buckets, i) {
bch2_bucket_nocow_unlock(&c->nocow_locks, i->b, BUCKET_NOCOW_LOCK_UPDATE);
if (i == stale_at)
break;
}
struct printbuf buf = PRINTBUF;
if (bch2_fs_inconsistent_on(stale < 0, c,
"pointer to invalid bucket in nocow path on device %llu\n %s",
stale_at->b.inode,
(bch2_bkey_val_to_text(&buf, c, k), buf.buf))) {
ret = -EIO;
} else {
/* We can retry this: */
ret = -BCH_ERR_transaction_restart;
}
printbuf_exit(&buf);
goto err_get_ioref;
}
static void __bch2_write(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct write_point *wp = NULL;
struct bio *bio = NULL;
unsigned nofs_flags;
int ret;
nofs_flags = memalloc_nofs_save();
if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) {
bch2_nocow_write(op);
if (op->flags & BCH_WRITE_SUBMITTED)
goto out_nofs_restore;
}
again:
memset(&op->failed, 0, sizeof(op->failed));
do {
struct bkey_i *key_to_write;
unsigned key_to_write_offset = op->insert_keys.top_p -
op->insert_keys.keys_p;
/* +1 for possible cache device: */
if (op->open_buckets.nr + op->nr_replicas + 1 >
ARRAY_SIZE(op->open_buckets.v))
break;
if (bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_EXTENT_U64s_MAX))
break;
/*
* The copygc thread is now global, which means it's no longer
* freeing up space on specific disks, which means that
* allocations for specific disks may hang arbitrarily long:
*/
ret = bch2_trans_run(c, lockrestart_do(trans,
bch2_alloc_sectors_start_trans(trans,
op->target,
op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED),
op->write_point,
&op->devs_have,
op->nr_replicas,
op->nr_replicas_required,
op->watermark,
op->flags,
&op->cl, &wp)));
if (unlikely(ret)) {
if (bch2_err_matches(ret, BCH_ERR_operation_blocked))
break;
goto err;
}
EBUG_ON(!wp);
bch2_open_bucket_get(c, wp, &op->open_buckets);
ret = bch2_write_extent(op, wp, &bio);
bch2_alloc_sectors_done_inlined(c, wp);
err:
if (ret <= 0) {
op->flags |= BCH_WRITE_SUBMITTED;
if (ret < 0) {
if (!(op->flags & BCH_WRITE_ALLOC_NOWAIT))
bch_err_inum_offset_ratelimited(c,
op->pos.inode,
op->pos.offset << 9,
"%s(): %s error: %s", __func__,
op->flags & BCH_WRITE_MOVE ? "move" : "user",
bch2_err_str(ret));
op->error = ret;
break;
}
}
bio->bi_end_io = bch2_write_endio;
bio->bi_private = &op->cl;
bio->bi_opf |= REQ_OP_WRITE;
closure_get(bio->bi_private);
key_to_write = (void *) (op->insert_keys.keys_p +
key_to_write_offset);
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user,
key_to_write, false);
} while (ret);
/*
* Sync or no?
*
* If we're running asynchronously, wne may still want to block
* synchronously here if we weren't able to submit all of the IO at
* once, as that signals backpressure to the caller.
*/
if ((op->flags & BCH_WRITE_SYNC) ||
(!(op->flags & BCH_WRITE_SUBMITTED) &&
!(op->flags & BCH_WRITE_IN_WORKER))) {
bch2_wait_on_allocator(c, &op->cl);
__bch2_write_index(op);
if (!(op->flags & BCH_WRITE_SUBMITTED))
goto again;
bch2_write_done(&op->cl);
} else {
bch2_write_queue(op, wp);
continue_at(&op->cl, bch2_write_index, NULL);
}
out_nofs_restore:
memalloc_nofs_restore(nofs_flags);
}
static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
{
struct bio *bio = &op->wbio.bio;
struct bvec_iter iter;
struct bkey_i_inline_data *id;
unsigned sectors;
int ret;
memset(&op->failed, 0, sizeof(op->failed));
op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
op->flags |= BCH_WRITE_SUBMITTED;
bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_U64s + DIV_ROUND_UP(data_len, 8));
if (ret) {
op->error = ret;
goto err;
}
sectors = bio_sectors(bio);
op->pos.offset += sectors;
id = bkey_inline_data_init(op->insert_keys.top);
id->k.p = op->pos;
id->k.bversion = op->version;
id->k.size = sectors;
iter = bio->bi_iter;
iter.bi_size = data_len;
memcpy_from_bio(id->v.data, bio, iter);
while (data_len & 7)
id->v.data[data_len++] = '\0';
set_bkey_val_bytes(&id->k, data_len);
bch2_keylist_push(&op->insert_keys);
__bch2_write_index(op);
err:
bch2_write_done(&op->cl);
}
/**
* bch2_write() - handle a write to a cache device or flash only volume
* @cl: &bch_write_op->cl
*
* This is the starting point for any data to end up in a cache device; it could
* be from a normal write, or a writeback write, or a write to a flash only
* volume - it's also used by the moving garbage collector to compact data in
* mostly empty buckets.
*
* It first writes the data to the cache, creating a list of keys to be inserted
* (if the data won't fit in a single open bucket, there will be multiple keys);
* after the data is written it calls bch_journal, and after the keys have been
* added to the next journal write they're inserted into the btree.
*
* If op->discard is true, instead of inserting the data it invalidates the
* region of the cache represented by op->bio and op->inode.
*/
CLOSURE_CALLBACK(bch2_write)
{
closure_type(op, struct bch_write_op, cl);
struct bio *bio = &op->wbio.bio;
struct bch_fs *c = op->c;
unsigned data_len;
EBUG_ON(op->cl.parent);
BUG_ON(!op->nr_replicas);
BUG_ON(!op->write_point.v);
BUG_ON(bkey_eq(op->pos, POS_MAX));
if (op->flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)
op->flags |= BCH_WRITE_ALLOC_NOWAIT;
op->nr_replicas_required = min_t(unsigned, op->nr_replicas_required, op->nr_replicas);
op->start_time = local_clock();
bch2_keylist_init(&op->insert_keys, op->inline_keys);
wbio_init(bio)->put_bio = false;
if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) {
bch_err_inum_offset_ratelimited(c,
op->pos.inode,
op->pos.offset << 9,
"%s write error: misaligned write",
op->flags & BCH_WRITE_MOVE ? "move" : "user");
op->error = -EIO;
goto err;
}
if (c->opts.nochanges) {
op->error = -BCH_ERR_erofs_no_writes;
goto err;
}
if (!(op->flags & BCH_WRITE_MOVE) &&
!bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) {
op->error = -BCH_ERR_erofs_no_writes;
goto err;
}
this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio));
bch2_increment_clock(c, bio_sectors(bio), WRITE);
data_len = min_t(u64, bio->bi_iter.bi_size,
op->new_i_size - (op->pos.offset << 9));
if (c->opts.inline_data &&
data_len <= min(block_bytes(c) / 2, 1024U)) {
bch2_write_data_inline(op, data_len);
return;
}
__bch2_write(op);
return;
err:
bch2_disk_reservation_put(c, &op->res);
closure_debug_destroy(&op->cl);
if (op->end_io)
op->end_io(op);
}
static const char * const bch2_write_flags[] = {
#define x(f) #f,
BCH_WRITE_FLAGS()
#undef x
NULL
};
void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op)
{
prt_str(out, "pos: ");
bch2_bpos_to_text(out, op->pos);
prt_newline(out);
printbuf_indent_add(out, 2);
prt_str(out, "started: ");
bch2_pr_time_units(out, local_clock() - op->start_time);
prt_newline(out);
prt_str(out, "flags: ");
prt_bitflags(out, bch2_write_flags, op->flags);
prt_newline(out);
prt_printf(out, "ref: %u\n", closure_nr_remaining(&op->cl));
printbuf_indent_sub(out, 2);
}
void bch2_fs_io_write_exit(struct bch_fs *c)
{
mempool_exit(&c->bio_bounce_pages);
bioset_exit(&c->replica_set);
bioset_exit(&c->bio_write);
}
int bch2_fs_io_write_init(struct bch_fs *c)
{
if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), BIOSET_NEED_BVECS) ||
bioset_init(&c->replica_set, 4, offsetof(struct bch_write_bio, bio), 0))
return -BCH_ERR_ENOMEM_bio_write_init;
if (mempool_init_page_pool(&c->bio_bounce_pages,
max_t(unsigned,
c->opts.btree_node_size,
c->opts.encoded_extent_max) /
PAGE_SIZE, 0))
return -BCH_ERR_ENOMEM_bio_bounce_pages_init;
return 0;
}