| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
| * |
| * NOHZ implementation for low and high resolution timers |
| * |
| * Started by: Thomas Gleixner and Ingo Molnar |
| */ |
| #include <linux/compiler.h> |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/hrtimer.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/percpu.h> |
| #include <linux/nmi.h> |
| #include <linux/profile.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched/stat.h> |
| #include <linux/sched/nohz.h> |
| #include <linux/sched/loadavg.h> |
| #include <linux/module.h> |
| #include <linux/irq_work.h> |
| #include <linux/posix-timers.h> |
| #include <linux/context_tracking.h> |
| #include <linux/mm.h> |
| |
| #include <asm/irq_regs.h> |
| |
| #include "tick-internal.h" |
| |
| #include <trace/events/timer.h> |
| |
| /* |
| * Per-CPU nohz control structure |
| */ |
| static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); |
| |
| struct tick_sched *tick_get_tick_sched(int cpu) |
| { |
| return &per_cpu(tick_cpu_sched, cpu); |
| } |
| |
| /* |
| * The time when the last jiffy update happened. Write access must hold |
| * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a |
| * consistent view of jiffies and last_jiffies_update. |
| */ |
| static ktime_t last_jiffies_update; |
| |
| /* |
| * Must be called with interrupts disabled ! |
| */ |
| static void tick_do_update_jiffies64(ktime_t now) |
| { |
| unsigned long ticks = 1; |
| ktime_t delta, nextp; |
| |
| /* |
| * 64-bit can do a quick check without holding the jiffies lock and |
| * without looking at the sequence count. The smp_load_acquire() |
| * pairs with the update done later in this function. |
| * |
| * 32-bit cannot do that because the store of 'tick_next_period' |
| * consists of two 32-bit stores, and the first store could be |
| * moved by the CPU to a random point in the future. |
| */ |
| if (IS_ENABLED(CONFIG_64BIT)) { |
| if (ktime_before(now, smp_load_acquire(&tick_next_period))) |
| return; |
| } else { |
| unsigned int seq; |
| |
| /* |
| * Avoid contention on 'jiffies_lock' and protect the quick |
| * check with the sequence count. |
| */ |
| do { |
| seq = read_seqcount_begin(&jiffies_seq); |
| nextp = tick_next_period; |
| } while (read_seqcount_retry(&jiffies_seq, seq)); |
| |
| if (ktime_before(now, nextp)) |
| return; |
| } |
| |
| /* Quick check failed, i.e. update is required. */ |
| raw_spin_lock(&jiffies_lock); |
| /* |
| * Re-evaluate with the lock held. Another CPU might have done the |
| * update already. |
| */ |
| if (ktime_before(now, tick_next_period)) { |
| raw_spin_unlock(&jiffies_lock); |
| return; |
| } |
| |
| write_seqcount_begin(&jiffies_seq); |
| |
| delta = ktime_sub(now, tick_next_period); |
| if (unlikely(delta >= TICK_NSEC)) { |
| /* Slow path for long idle sleep times */ |
| s64 incr = TICK_NSEC; |
| |
| ticks += ktime_divns(delta, incr); |
| |
| last_jiffies_update = ktime_add_ns(last_jiffies_update, |
| incr * ticks); |
| } else { |
| last_jiffies_update = ktime_add_ns(last_jiffies_update, |
| TICK_NSEC); |
| } |
| |
| /* Advance jiffies to complete the 'jiffies_seq' protected job */ |
| jiffies_64 += ticks; |
| |
| /* Keep the tick_next_period variable up to date */ |
| nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC); |
| |
| if (IS_ENABLED(CONFIG_64BIT)) { |
| /* |
| * Pairs with smp_load_acquire() in the lockless quick |
| * check above, and ensures that the update to 'jiffies_64' is |
| * not reordered vs. the store to 'tick_next_period', neither |
| * by the compiler nor by the CPU. |
| */ |
| smp_store_release(&tick_next_period, nextp); |
| } else { |
| /* |
| * A plain store is good enough on 32-bit, as the quick check |
| * above is protected by the sequence count. |
| */ |
| tick_next_period = nextp; |
| } |
| |
| /* |
| * Release the sequence count. calc_global_load() below is not |
| * protected by it, but 'jiffies_lock' needs to be held to prevent |
| * concurrent invocations. |
| */ |
| write_seqcount_end(&jiffies_seq); |
| |
| calc_global_load(); |
| |
| raw_spin_unlock(&jiffies_lock); |
| update_wall_time(); |
| } |
| |
| /* |
| * Initialize and return retrieve the jiffies update. |
| */ |
| static ktime_t tick_init_jiffy_update(void) |
| { |
| ktime_t period; |
| |
| raw_spin_lock(&jiffies_lock); |
| write_seqcount_begin(&jiffies_seq); |
| |
| /* Have we started the jiffies update yet ? */ |
| if (last_jiffies_update == 0) { |
| u32 rem; |
| |
| /* |
| * Ensure that the tick is aligned to a multiple of |
| * TICK_NSEC. |
| */ |
| div_u64_rem(tick_next_period, TICK_NSEC, &rem); |
| if (rem) |
| tick_next_period += TICK_NSEC - rem; |
| |
| last_jiffies_update = tick_next_period; |
| } |
| period = last_jiffies_update; |
| |
| write_seqcount_end(&jiffies_seq); |
| raw_spin_unlock(&jiffies_lock); |
| |
| return period; |
| } |
| |
| static inline int tick_sched_flag_test(struct tick_sched *ts, |
| unsigned long flag) |
| { |
| return !!(ts->flags & flag); |
| } |
| |
| static inline void tick_sched_flag_set(struct tick_sched *ts, |
| unsigned long flag) |
| { |
| lockdep_assert_irqs_disabled(); |
| ts->flags |= flag; |
| } |
| |
| static inline void tick_sched_flag_clear(struct tick_sched *ts, |
| unsigned long flag) |
| { |
| lockdep_assert_irqs_disabled(); |
| ts->flags &= ~flag; |
| } |
| |
| #define MAX_STALLED_JIFFIES 5 |
| |
| static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) |
| { |
| int tick_cpu, cpu = smp_processor_id(); |
| |
| /* |
| * Check if the do_timer duty was dropped. We don't care about |
| * concurrency: This happens only when the CPU in charge went |
| * into a long sleep. If two CPUs happen to assign themselves to |
| * this duty, then the jiffies update is still serialized by |
| * 'jiffies_lock'. |
| * |
| * If nohz_full is enabled, this should not happen because the |
| * 'tick_do_timer_cpu' CPU never relinquishes. |
| */ |
| tick_cpu = READ_ONCE(tick_do_timer_cpu); |
| |
| if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) { |
| #ifdef CONFIG_NO_HZ_FULL |
| WARN_ON_ONCE(tick_nohz_full_running); |
| #endif |
| WRITE_ONCE(tick_do_timer_cpu, cpu); |
| tick_cpu = cpu; |
| } |
| |
| /* Check if jiffies need an update */ |
| if (tick_cpu == cpu) |
| tick_do_update_jiffies64(now); |
| |
| /* |
| * If the jiffies update stalled for too long (timekeeper in stop_machine() |
| * or VMEXIT'ed for several msecs), force an update. |
| */ |
| if (ts->last_tick_jiffies != jiffies) { |
| ts->stalled_jiffies = 0; |
| ts->last_tick_jiffies = READ_ONCE(jiffies); |
| } else { |
| if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { |
| tick_do_update_jiffies64(now); |
| ts->stalled_jiffies = 0; |
| ts->last_tick_jiffies = READ_ONCE(jiffies); |
| } |
| } |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) |
| ts->got_idle_tick = 1; |
| } |
| |
| static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) |
| { |
| /* |
| * When we are idle and the tick is stopped, we have to touch |
| * the watchdog as we might not schedule for a really long |
| * time. This happens on completely idle SMP systems while |
| * waiting on the login prompt. We also increment the "start of |
| * idle" jiffy stamp so the idle accounting adjustment we do |
| * when we go busy again does not account too many ticks. |
| */ |
| if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && |
| tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { |
| touch_softlockup_watchdog_sched(); |
| if (is_idle_task(current)) |
| ts->idle_jiffies++; |
| /* |
| * In case the current tick fired too early past its expected |
| * expiration, make sure we don't bypass the next clock reprogramming |
| * to the same deadline. |
| */ |
| ts->next_tick = 0; |
| } |
| |
| update_process_times(user_mode(regs)); |
| profile_tick(CPU_PROFILING); |
| } |
| |
| /* |
| * We rearm the timer until we get disabled by the idle code. |
| * Called with interrupts disabled. |
| */ |
| static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer) |
| { |
| struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); |
| struct pt_regs *regs = get_irq_regs(); |
| ktime_t now = ktime_get(); |
| |
| tick_sched_do_timer(ts, now); |
| |
| /* |
| * Do not call when we are not in IRQ context and have |
| * no valid 'regs' pointer |
| */ |
| if (regs) |
| tick_sched_handle(ts, regs); |
| else |
| ts->next_tick = 0; |
| |
| /* |
| * In dynticks mode, tick reprogram is deferred: |
| * - to the idle task if in dynticks-idle |
| * - to IRQ exit if in full-dynticks. |
| */ |
| if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED))) |
| return HRTIMER_NORESTART; |
| |
| hrtimer_forward(timer, now, TICK_NSEC); |
| |
| return HRTIMER_RESTART; |
| } |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| cpumask_var_t tick_nohz_full_mask; |
| EXPORT_SYMBOL_GPL(tick_nohz_full_mask); |
| bool tick_nohz_full_running; |
| EXPORT_SYMBOL_GPL(tick_nohz_full_running); |
| static atomic_t tick_dep_mask; |
| |
| static bool check_tick_dependency(atomic_t *dep) |
| { |
| int val = atomic_read(dep); |
| |
| if (val & TICK_DEP_MASK_POSIX_TIMER) { |
| trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); |
| return true; |
| } |
| |
| if (val & TICK_DEP_MASK_PERF_EVENTS) { |
| trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); |
| return true; |
| } |
| |
| if (val & TICK_DEP_MASK_SCHED) { |
| trace_tick_stop(0, TICK_DEP_MASK_SCHED); |
| return true; |
| } |
| |
| if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { |
| trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); |
| return true; |
| } |
| |
| if (val & TICK_DEP_MASK_RCU) { |
| trace_tick_stop(0, TICK_DEP_MASK_RCU); |
| return true; |
| } |
| |
| if (val & TICK_DEP_MASK_RCU_EXP) { |
| trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool can_stop_full_tick(int cpu, struct tick_sched *ts) |
| { |
| lockdep_assert_irqs_disabled(); |
| |
| if (unlikely(!cpu_online(cpu))) |
| return false; |
| |
| if (check_tick_dependency(&tick_dep_mask)) |
| return false; |
| |
| if (check_tick_dependency(&ts->tick_dep_mask)) |
| return false; |
| |
| if (check_tick_dependency(¤t->tick_dep_mask)) |
| return false; |
| |
| if (check_tick_dependency(¤t->signal->tick_dep_mask)) |
| return false; |
| |
| return true; |
| } |
| |
| static void nohz_full_kick_func(struct irq_work *work) |
| { |
| /* Empty, the tick restart happens on tick_nohz_irq_exit() */ |
| } |
| |
| static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = |
| IRQ_WORK_INIT_HARD(nohz_full_kick_func); |
| |
| /* |
| * Kick this CPU if it's full dynticks in order to force it to |
| * re-evaluate its dependency on the tick and restart it if necessary. |
| * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), |
| * is NMI safe. |
| */ |
| static void tick_nohz_full_kick(void) |
| { |
| if (!tick_nohz_full_cpu(smp_processor_id())) |
| return; |
| |
| irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); |
| } |
| |
| /* |
| * Kick the CPU if it's full dynticks in order to force it to |
| * re-evaluate its dependency on the tick and restart it if necessary. |
| */ |
| void tick_nohz_full_kick_cpu(int cpu) |
| { |
| if (!tick_nohz_full_cpu(cpu)) |
| return; |
| |
| irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); |
| } |
| |
| static void tick_nohz_kick_task(struct task_struct *tsk) |
| { |
| int cpu; |
| |
| /* |
| * If the task is not running, run_posix_cpu_timers() |
| * has nothing to elapse, and an IPI can then be optimized out. |
| * |
| * activate_task() STORE p->tick_dep_mask |
| * STORE p->on_rq |
| * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or()) |
| * LOCK rq->lock LOAD p->on_rq |
| * smp_mb__after_spin_lock() |
| * tick_nohz_task_switch() |
| * LOAD p->tick_dep_mask |
| * |
| * XXX given a task picks up the dependency on schedule(), should we |
| * only care about tasks that are currently on the CPU instead of all |
| * that are on the runqueue? |
| * |
| * That is, does this want to be: task_on_cpu() / task_curr()? |
| */ |
| if (!sched_task_on_rq(tsk)) |
| return; |
| |
| /* |
| * If the task concurrently migrates to another CPU, |
| * we guarantee it sees the new tick dependency upon |
| * schedule. |
| * |
| * set_task_cpu(p, cpu); |
| * STORE p->cpu = @cpu |
| * __schedule() (switch to task 'p') |
| * LOCK rq->lock |
| * smp_mb__after_spin_lock() STORE p->tick_dep_mask |
| * tick_nohz_task_switch() smp_mb() (atomic_fetch_or()) |
| * LOAD p->tick_dep_mask LOAD p->cpu |
| */ |
| cpu = task_cpu(tsk); |
| |
| preempt_disable(); |
| if (cpu_online(cpu)) |
| tick_nohz_full_kick_cpu(cpu); |
| preempt_enable(); |
| } |
| |
| /* |
| * Kick all full dynticks CPUs in order to force these to re-evaluate |
| * their dependency on the tick and restart it if necessary. |
| */ |
| static void tick_nohz_full_kick_all(void) |
| { |
| int cpu; |
| |
| if (!tick_nohz_full_running) |
| return; |
| |
| preempt_disable(); |
| for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) |
| tick_nohz_full_kick_cpu(cpu); |
| preempt_enable(); |
| } |
| |
| static void tick_nohz_dep_set_all(atomic_t *dep, |
| enum tick_dep_bits bit) |
| { |
| int prev; |
| |
| prev = atomic_fetch_or(BIT(bit), dep); |
| if (!prev) |
| tick_nohz_full_kick_all(); |
| } |
| |
| /* |
| * Set a global tick dependency. Used by perf events that rely on freq and |
| * unstable clocks. |
| */ |
| void tick_nohz_dep_set(enum tick_dep_bits bit) |
| { |
| tick_nohz_dep_set_all(&tick_dep_mask, bit); |
| } |
| |
| void tick_nohz_dep_clear(enum tick_dep_bits bit) |
| { |
| atomic_andnot(BIT(bit), &tick_dep_mask); |
| } |
| |
| /* |
| * Set per-CPU tick dependency. Used by scheduler and perf events in order to |
| * manage event-throttling. |
| */ |
| void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) |
| { |
| int prev; |
| struct tick_sched *ts; |
| |
| ts = per_cpu_ptr(&tick_cpu_sched, cpu); |
| |
| prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); |
| if (!prev) { |
| preempt_disable(); |
| /* Perf needs local kick that is NMI safe */ |
| if (cpu == smp_processor_id()) { |
| tick_nohz_full_kick(); |
| } else { |
| /* Remote IRQ work not NMI-safe */ |
| if (!WARN_ON_ONCE(in_nmi())) |
| tick_nohz_full_kick_cpu(cpu); |
| } |
| preempt_enable(); |
| } |
| } |
| EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); |
| |
| void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) |
| { |
| struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); |
| |
| atomic_andnot(BIT(bit), &ts->tick_dep_mask); |
| } |
| EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); |
| |
| /* |
| * Set a per-task tick dependency. RCU needs this. Also posix CPU timers |
| * in order to elapse per task timers. |
| */ |
| void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) |
| { |
| if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) |
| tick_nohz_kick_task(tsk); |
| } |
| EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); |
| |
| void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) |
| { |
| atomic_andnot(BIT(bit), &tsk->tick_dep_mask); |
| } |
| EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); |
| |
| /* |
| * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse |
| * per process timers. |
| */ |
| void tick_nohz_dep_set_signal(struct task_struct *tsk, |
| enum tick_dep_bits bit) |
| { |
| int prev; |
| struct signal_struct *sig = tsk->signal; |
| |
| prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask); |
| if (!prev) { |
| struct task_struct *t; |
| |
| lockdep_assert_held(&tsk->sighand->siglock); |
| __for_each_thread(sig, t) |
| tick_nohz_kick_task(t); |
| } |
| } |
| |
| void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) |
| { |
| atomic_andnot(BIT(bit), &sig->tick_dep_mask); |
| } |
| |
| /* |
| * Re-evaluate the need for the tick as we switch the current task. |
| * It might need the tick due to per task/process properties: |
| * perf events, posix CPU timers, ... |
| */ |
| void __tick_nohz_task_switch(void) |
| { |
| struct tick_sched *ts; |
| |
| if (!tick_nohz_full_cpu(smp_processor_id())) |
| return; |
| |
| ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { |
| if (atomic_read(¤t->tick_dep_mask) || |
| atomic_read(¤t->signal->tick_dep_mask)) |
| tick_nohz_full_kick(); |
| } |
| } |
| |
| /* Get the boot-time nohz CPU list from the kernel parameters. */ |
| void __init tick_nohz_full_setup(cpumask_var_t cpumask) |
| { |
| alloc_bootmem_cpumask_var(&tick_nohz_full_mask); |
| cpumask_copy(tick_nohz_full_mask, cpumask); |
| tick_nohz_full_running = true; |
| } |
| |
| bool tick_nohz_cpu_hotpluggable(unsigned int cpu) |
| { |
| /* |
| * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound |
| * timers, workqueues, timekeeping, ...) on behalf of full dynticks |
| * CPUs. It must remain online when nohz full is enabled. |
| */ |
| if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu) |
| return false; |
| return true; |
| } |
| |
| static int tick_nohz_cpu_down(unsigned int cpu) |
| { |
| return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; |
| } |
| |
| void __init tick_nohz_init(void) |
| { |
| int cpu, ret; |
| |
| if (!tick_nohz_full_running) |
| return; |
| |
| /* |
| * Full dynticks uses IRQ work to drive the tick rescheduling on safe |
| * locking contexts. But then we need IRQ work to raise its own |
| * interrupts to avoid circular dependency on the tick. |
| */ |
| if (!arch_irq_work_has_interrupt()) { |
| pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n"); |
| cpumask_clear(tick_nohz_full_mask); |
| tick_nohz_full_running = false; |
| return; |
| } |
| |
| if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && |
| !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { |
| cpu = smp_processor_id(); |
| |
| if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { |
| pr_warn("NO_HZ: Clearing %d from nohz_full range " |
| "for timekeeping\n", cpu); |
| cpumask_clear_cpu(cpu, tick_nohz_full_mask); |
| } |
| } |
| |
| for_each_cpu(cpu, tick_nohz_full_mask) |
| ct_cpu_track_user(cpu); |
| |
| ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, |
| "kernel/nohz:predown", NULL, |
| tick_nohz_cpu_down); |
| WARN_ON(ret < 0); |
| pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", |
| cpumask_pr_args(tick_nohz_full_mask)); |
| } |
| #endif /* #ifdef CONFIG_NO_HZ_FULL */ |
| |
| /* |
| * NOHZ - aka dynamic tick functionality |
| */ |
| #ifdef CONFIG_NO_HZ_COMMON |
| /* |
| * NO HZ enabled ? |
| */ |
| bool tick_nohz_enabled __read_mostly = true; |
| unsigned long tick_nohz_active __read_mostly; |
| /* |
| * Enable / Disable tickless mode |
| */ |
| static int __init setup_tick_nohz(char *str) |
| { |
| return (kstrtobool(str, &tick_nohz_enabled) == 0); |
| } |
| |
| __setup("nohz=", setup_tick_nohz); |
| |
| bool tick_nohz_tick_stopped(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| return tick_sched_flag_test(ts, TS_FLAG_STOPPED); |
| } |
| |
| bool tick_nohz_tick_stopped_cpu(int cpu) |
| { |
| struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); |
| |
| return tick_sched_flag_test(ts, TS_FLAG_STOPPED); |
| } |
| |
| /** |
| * tick_nohz_update_jiffies - update jiffies when idle was interrupted |
| * @now: current ktime_t |
| * |
| * Called from interrupt entry when the CPU was idle |
| * |
| * In case the sched_tick was stopped on this CPU, we have to check if jiffies |
| * must be updated. Otherwise an interrupt handler could use a stale jiffy |
| * value. We do this unconditionally on any CPU, as we don't know whether the |
| * CPU, which has the update task assigned, is in a long sleep. |
| */ |
| static void tick_nohz_update_jiffies(ktime_t now) |
| { |
| unsigned long flags; |
| |
| __this_cpu_write(tick_cpu_sched.idle_waketime, now); |
| |
| local_irq_save(flags); |
| tick_do_update_jiffies64(now); |
| local_irq_restore(flags); |
| |
| touch_softlockup_watchdog_sched(); |
| } |
| |
| static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) |
| { |
| ktime_t delta; |
| |
| if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))) |
| return; |
| |
| delta = ktime_sub(now, ts->idle_entrytime); |
| |
| write_seqcount_begin(&ts->idle_sleeptime_seq); |
| if (nr_iowait_cpu(smp_processor_id()) > 0) |
| ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); |
| else |
| ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); |
| |
| ts->idle_entrytime = now; |
| tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE); |
| write_seqcount_end(&ts->idle_sleeptime_seq); |
| |
| sched_clock_idle_wakeup_event(); |
| } |
| |
| static void tick_nohz_start_idle(struct tick_sched *ts) |
| { |
| write_seqcount_begin(&ts->idle_sleeptime_seq); |
| ts->idle_entrytime = ktime_get(); |
| tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE); |
| write_seqcount_end(&ts->idle_sleeptime_seq); |
| |
| sched_clock_idle_sleep_event(); |
| } |
| |
| static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime, |
| bool compute_delta, u64 *last_update_time) |
| { |
| ktime_t now, idle; |
| unsigned int seq; |
| |
| if (!tick_nohz_active) |
| return -1; |
| |
| now = ktime_get(); |
| if (last_update_time) |
| *last_update_time = ktime_to_us(now); |
| |
| do { |
| seq = read_seqcount_begin(&ts->idle_sleeptime_seq); |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) { |
| ktime_t delta = ktime_sub(now, ts->idle_entrytime); |
| |
| idle = ktime_add(*sleeptime, delta); |
| } else { |
| idle = *sleeptime; |
| } |
| } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq)); |
| |
| return ktime_to_us(idle); |
| |
| } |
| |
| /** |
| * get_cpu_idle_time_us - get the total idle time of a CPU |
| * @cpu: CPU number to query |
| * @last_update_time: variable to store update time in. Do not update |
| * counters if NULL. |
| * |
| * Return the cumulative idle time (since boot) for a given |
| * CPU, in microseconds. Note that this is partially broken due to |
| * the counter of iowait tasks that can be remotely updated without |
| * any synchronization. Therefore it is possible to observe backward |
| * values within two consecutive reads. |
| * |
| * This time is measured via accounting rather than sampling, |
| * and is as accurate as ktime_get() is. |
| * |
| * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu |
| */ |
| u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime, |
| !nr_iowait_cpu(cpu), last_update_time); |
| } |
| EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); |
| |
| /** |
| * get_cpu_iowait_time_us - get the total iowait time of a CPU |
| * @cpu: CPU number to query |
| * @last_update_time: variable to store update time in. Do not update |
| * counters if NULL. |
| * |
| * Return the cumulative iowait time (since boot) for a given |
| * CPU, in microseconds. Note this is partially broken due to |
| * the counter of iowait tasks that can be remotely updated without |
| * any synchronization. Therefore it is possible to observe backward |
| * values within two consecutive reads. |
| * |
| * This time is measured via accounting rather than sampling, |
| * and is as accurate as ktime_get() is. |
| * |
| * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu |
| */ |
| u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| |
| return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime, |
| nr_iowait_cpu(cpu), last_update_time); |
| } |
| EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); |
| |
| static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) |
| { |
| hrtimer_cancel(&ts->sched_timer); |
| hrtimer_set_expires(&ts->sched_timer, ts->last_tick); |
| |
| /* Forward the time to expire in the future */ |
| hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { |
| hrtimer_start_expires(&ts->sched_timer, |
| HRTIMER_MODE_ABS_PINNED_HARD); |
| } else { |
| tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); |
| } |
| |
| /* |
| * Reset to make sure the next tick stop doesn't get fooled by past |
| * cached clock deadline. |
| */ |
| ts->next_tick = 0; |
| } |
| |
| static inline bool local_timer_softirq_pending(void) |
| { |
| return local_timers_pending() & BIT(TIMER_SOFTIRQ); |
| } |
| |
| /* |
| * Read jiffies and the time when jiffies were updated last |
| */ |
| u64 get_jiffies_update(unsigned long *basej) |
| { |
| unsigned long basejiff; |
| unsigned int seq; |
| u64 basemono; |
| |
| do { |
| seq = read_seqcount_begin(&jiffies_seq); |
| basemono = last_jiffies_update; |
| basejiff = jiffies; |
| } while (read_seqcount_retry(&jiffies_seq, seq)); |
| *basej = basejiff; |
| return basemono; |
| } |
| |
| /** |
| * tick_nohz_next_event() - return the clock monotonic based next event |
| * @ts: pointer to tick_sched struct |
| * @cpu: CPU number |
| * |
| * Return: |
| * *%0 - When the next event is a maximum of TICK_NSEC in the future |
| * and the tick is not stopped yet |
| * *%next_event - Next event based on clock monotonic |
| */ |
| static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) |
| { |
| u64 basemono, next_tick, delta, expires; |
| unsigned long basejiff; |
| int tick_cpu; |
| |
| basemono = get_jiffies_update(&basejiff); |
| ts->last_jiffies = basejiff; |
| ts->timer_expires_base = basemono; |
| |
| /* |
| * Keep the periodic tick, when RCU, architecture or irq_work |
| * requests it. |
| * Aside of that, check whether the local timer softirq is |
| * pending. If so, its a bad idea to call get_next_timer_interrupt(), |
| * because there is an already expired timer, so it will request |
| * immediate expiry, which rearms the hardware timer with a |
| * minimal delta, which brings us back to this place |
| * immediately. Lather, rinse and repeat... |
| */ |
| if (rcu_needs_cpu() || arch_needs_cpu() || |
| irq_work_needs_cpu() || local_timer_softirq_pending()) { |
| next_tick = basemono + TICK_NSEC; |
| } else { |
| /* |
| * Get the next pending timer. If high resolution |
| * timers are enabled this only takes the timer wheel |
| * timers into account. If high resolution timers are |
| * disabled this also looks at the next expiring |
| * hrtimer. |
| */ |
| next_tick = get_next_timer_interrupt(basejiff, basemono); |
| ts->next_timer = next_tick; |
| } |
| |
| /* Make sure next_tick is never before basemono! */ |
| if (WARN_ON_ONCE(basemono > next_tick)) |
| next_tick = basemono; |
| |
| /* |
| * If the tick is due in the next period, keep it ticking or |
| * force prod the timer. |
| */ |
| delta = next_tick - basemono; |
| if (delta <= (u64)TICK_NSEC) { |
| /* |
| * We've not stopped the tick yet, and there's a timer in the |
| * next period, so no point in stopping it either, bail. |
| */ |
| if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { |
| ts->timer_expires = 0; |
| goto out; |
| } |
| } |
| |
| /* |
| * If this CPU is the one which had the do_timer() duty last, we limit |
| * the sleep time to the timekeeping 'max_deferment' value. |
| * Otherwise we can sleep as long as we want. |
| */ |
| delta = timekeeping_max_deferment(); |
| tick_cpu = READ_ONCE(tick_do_timer_cpu); |
| if (tick_cpu != cpu && |
| (tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST))) |
| delta = KTIME_MAX; |
| |
| /* Calculate the next expiry time */ |
| if (delta < (KTIME_MAX - basemono)) |
| expires = basemono + delta; |
| else |
| expires = KTIME_MAX; |
| |
| ts->timer_expires = min_t(u64, expires, next_tick); |
| |
| out: |
| return ts->timer_expires; |
| } |
| |
| static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) |
| { |
| struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); |
| unsigned long basejiff = ts->last_jiffies; |
| u64 basemono = ts->timer_expires_base; |
| bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED); |
| int tick_cpu; |
| u64 expires; |
| |
| /* Make sure we won't be trying to stop it twice in a row. */ |
| ts->timer_expires_base = 0; |
| |
| /* |
| * Now the tick should be stopped definitely - so the timer base needs |
| * to be marked idle as well to not miss a newly queued timer. |
| */ |
| expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle); |
| if (expires > ts->timer_expires) { |
| /* |
| * This path could only happen when the first timer was removed |
| * between calculating the possible sleep length and now (when |
| * high resolution mode is not active, timer could also be a |
| * hrtimer). |
| * |
| * We have to stick to the original calculated expiry value to |
| * not stop the tick for too long with a shallow C-state (which |
| * was programmed by cpuidle because of an early next expiration |
| * value). |
| */ |
| expires = ts->timer_expires; |
| } |
| |
| /* If the timer base is not idle, retain the not yet stopped tick. */ |
| if (!timer_idle) |
| return; |
| |
| /* |
| * If this CPU is the one which updates jiffies, then give up |
| * the assignment and let it be taken by the CPU which runs |
| * the tick timer next, which might be this CPU as well. If we |
| * don't drop this here, the jiffies might be stale and |
| * do_timer() never gets invoked. Keep track of the fact that it |
| * was the one which had the do_timer() duty last. |
| */ |
| tick_cpu = READ_ONCE(tick_do_timer_cpu); |
| if (tick_cpu == cpu) { |
| WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE); |
| tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST); |
| } else if (tick_cpu != TICK_DO_TIMER_NONE) { |
| tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST); |
| } |
| |
| /* Skip reprogram of event if it's not changed */ |
| if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) { |
| /* Sanity check: make sure clockevent is actually programmed */ |
| if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) |
| return; |
| |
| WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu " |
| "timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, |
| dev->next_event, hrtimer_active(&ts->sched_timer), |
| hrtimer_get_expires(&ts->sched_timer)); |
| } |
| |
| /* |
| * tick_nohz_stop_tick() can be called several times before |
| * tick_nohz_restart_sched_tick() is called. This happens when |
| * interrupts arrive which do not cause a reschedule. In the first |
| * call we save the current tick time, so we can restart the |
| * scheduler tick in tick_nohz_restart_sched_tick(). |
| */ |
| if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { |
| calc_load_nohz_start(); |
| quiet_vmstat(); |
| |
| ts->last_tick = hrtimer_get_expires(&ts->sched_timer); |
| tick_sched_flag_set(ts, TS_FLAG_STOPPED); |
| trace_tick_stop(1, TICK_DEP_MASK_NONE); |
| } |
| |
| ts->next_tick = expires; |
| |
| /* |
| * If the expiration time == KTIME_MAX, then we simply stop |
| * the tick timer. |
| */ |
| if (unlikely(expires == KTIME_MAX)) { |
| if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) |
| hrtimer_cancel(&ts->sched_timer); |
| else |
| tick_program_event(KTIME_MAX, 1); |
| return; |
| } |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) { |
| hrtimer_start(&ts->sched_timer, expires, |
| HRTIMER_MODE_ABS_PINNED_HARD); |
| } else { |
| hrtimer_set_expires(&ts->sched_timer, expires); |
| tick_program_event(expires, 1); |
| } |
| } |
| |
| static void tick_nohz_retain_tick(struct tick_sched *ts) |
| { |
| ts->timer_expires_base = 0; |
| } |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu) |
| { |
| if (tick_nohz_next_event(ts, cpu)) |
| tick_nohz_stop_tick(ts, cpu); |
| else |
| tick_nohz_retain_tick(ts); |
| } |
| #endif /* CONFIG_NO_HZ_FULL */ |
| |
| static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) |
| { |
| /* Update jiffies first */ |
| tick_do_update_jiffies64(now); |
| |
| /* |
| * Clear the timer idle flag, so we avoid IPIs on remote queueing and |
| * the clock forward checks in the enqueue path: |
| */ |
| timer_clear_idle(); |
| |
| calc_load_nohz_stop(); |
| touch_softlockup_watchdog_sched(); |
| |
| /* Cancel the scheduled timer and restore the tick: */ |
| tick_sched_flag_clear(ts, TS_FLAG_STOPPED); |
| tick_nohz_restart(ts, now); |
| } |
| |
| static void __tick_nohz_full_update_tick(struct tick_sched *ts, |
| ktime_t now) |
| { |
| #ifdef CONFIG_NO_HZ_FULL |
| int cpu = smp_processor_id(); |
| |
| if (can_stop_full_tick(cpu, ts)) |
| tick_nohz_full_stop_tick(ts, cpu); |
| else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) |
| tick_nohz_restart_sched_tick(ts, now); |
| #endif |
| } |
| |
| static void tick_nohz_full_update_tick(struct tick_sched *ts) |
| { |
| if (!tick_nohz_full_cpu(smp_processor_id())) |
| return; |
| |
| if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ)) |
| return; |
| |
| __tick_nohz_full_update_tick(ts, ktime_get()); |
| } |
| |
| /* |
| * A pending softirq outside an IRQ (or softirq disabled section) context |
| * should be waiting for ksoftirqd to handle it. Therefore we shouldn't |
| * reach this code due to the need_resched() early check in can_stop_idle_tick(). |
| * |
| * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the |
| * cpu_down() process, softirqs can still be raised while ksoftirqd is parked, |
| * triggering the code below, since wakep_softirqd() is ignored. |
| * |
| */ |
| static bool report_idle_softirq(void) |
| { |
| static int ratelimit; |
| unsigned int pending = local_softirq_pending(); |
| |
| if (likely(!pending)) |
| return false; |
| |
| /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */ |
| if (!cpu_active(smp_processor_id())) { |
| pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK; |
| if (!pending) |
| return false; |
| } |
| |
| if (ratelimit >= 10) |
| return false; |
| |
| /* On RT, softirq handling may be waiting on some lock */ |
| if (local_bh_blocked()) |
| return false; |
| |
| pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n", |
| pending); |
| ratelimit++; |
| |
| return true; |
| } |
| |
| static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) |
| { |
| WARN_ON_ONCE(cpu_is_offline(cpu)); |
| |
| if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ))) |
| return false; |
| |
| if (need_resched()) |
| return false; |
| |
| if (unlikely(report_idle_softirq())) |
| return false; |
| |
| if (tick_nohz_full_enabled()) { |
| int tick_cpu = READ_ONCE(tick_do_timer_cpu); |
| |
| /* |
| * Keep the tick alive to guarantee timekeeping progression |
| * if there are full dynticks CPUs around |
| */ |
| if (tick_cpu == cpu) |
| return false; |
| |
| /* Should not happen for nohz-full */ |
| if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * tick_nohz_idle_stop_tick - stop the idle tick from the idle task |
| * |
| * When the next event is more than a tick into the future, stop the idle tick |
| */ |
| void tick_nohz_idle_stop_tick(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| int cpu = smp_processor_id(); |
| ktime_t expires; |
| |
| /* |
| * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the |
| * tick timer expiration time is known already. |
| */ |
| if (ts->timer_expires_base) |
| expires = ts->timer_expires; |
| else if (can_stop_idle_tick(cpu, ts)) |
| expires = tick_nohz_next_event(ts, cpu); |
| else |
| return; |
| |
| ts->idle_calls++; |
| |
| if (expires > 0LL) { |
| int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); |
| |
| tick_nohz_stop_tick(ts, cpu); |
| |
| ts->idle_sleeps++; |
| ts->idle_expires = expires; |
| |
| if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { |
| ts->idle_jiffies = ts->last_jiffies; |
| nohz_balance_enter_idle(cpu); |
| } |
| } else { |
| tick_nohz_retain_tick(ts); |
| } |
| } |
| |
| void tick_nohz_idle_retain_tick(void) |
| { |
| tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); |
| } |
| |
| /** |
| * tick_nohz_idle_enter - prepare for entering idle on the current CPU |
| * |
| * Called when we start the idle loop. |
| */ |
| void tick_nohz_idle_enter(void) |
| { |
| struct tick_sched *ts; |
| |
| lockdep_assert_irqs_enabled(); |
| |
| local_irq_disable(); |
| |
| ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| WARN_ON_ONCE(ts->timer_expires_base); |
| |
| tick_sched_flag_set(ts, TS_FLAG_INIDLE); |
| tick_nohz_start_idle(ts); |
| |
| local_irq_enable(); |
| } |
| |
| /** |
| * tick_nohz_irq_exit - Notify the tick about IRQ exit |
| * |
| * A timer may have been added/modified/deleted either by the current IRQ, |
| * or by another place using this IRQ as a notification. This IRQ may have |
| * also updated the RCU callback list. These events may require a |
| * re-evaluation of the next tick. Depending on the context: |
| * |
| * 1) If the CPU is idle and no resched is pending, just proceed with idle |
| * time accounting. The next tick will be re-evaluated on the next idle |
| * loop iteration. |
| * |
| * 2) If the CPU is nohz_full: |
| * |
| * 2.1) If there is any tick dependency, restart the tick if stopped. |
| * |
| * 2.2) If there is no tick dependency, (re-)evaluate the next tick and |
| * stop/update it accordingly. |
| */ |
| void tick_nohz_irq_exit(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_INIDLE)) |
| tick_nohz_start_idle(ts); |
| else |
| tick_nohz_full_update_tick(ts); |
| } |
| |
| /** |
| * tick_nohz_idle_got_tick - Check whether or not the tick handler has run |
| * |
| * Return: %true if the tick handler has run, otherwise %false |
| */ |
| bool tick_nohz_idle_got_tick(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| if (ts->got_idle_tick) { |
| ts->got_idle_tick = 0; |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer |
| * or the tick, whichever expires first. Note that, if the tick has been |
| * stopped, it returns the next hrtimer. |
| * |
| * Called from power state control code with interrupts disabled |
| * |
| * Return: the next expiration time |
| */ |
| ktime_t tick_nohz_get_next_hrtimer(void) |
| { |
| return __this_cpu_read(tick_cpu_device.evtdev)->next_event; |
| } |
| |
| /** |
| * tick_nohz_get_sleep_length - return the expected length of the current sleep |
| * @delta_next: duration until the next event if the tick cannot be stopped |
| * |
| * Called from power state control code with interrupts disabled. |
| * |
| * The return value of this function and/or the value returned by it through the |
| * @delta_next pointer can be negative which must be taken into account by its |
| * callers. |
| * |
| * Return: the expected length of the current sleep |
| */ |
| ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) |
| { |
| struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| int cpu = smp_processor_id(); |
| /* |
| * The idle entry time is expected to be a sufficient approximation of |
| * the current time at this point. |
| */ |
| ktime_t now = ts->idle_entrytime; |
| ktime_t next_event; |
| |
| WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); |
| |
| *delta_next = ktime_sub(dev->next_event, now); |
| |
| if (!can_stop_idle_tick(cpu, ts)) |
| return *delta_next; |
| |
| next_event = tick_nohz_next_event(ts, cpu); |
| if (!next_event) |
| return *delta_next; |
| |
| /* |
| * If the next highres timer to expire is earlier than 'next_event', the |
| * idle governor needs to know that. |
| */ |
| next_event = min_t(u64, next_event, |
| hrtimer_next_event_without(&ts->sched_timer)); |
| |
| return ktime_sub(next_event, now); |
| } |
| |
| /** |
| * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value |
| * for a particular CPU. |
| * @cpu: target CPU number |
| * |
| * Called from the schedutil frequency scaling governor in scheduler context. |
| * |
| * Return: the current idle calls counter value for @cpu |
| */ |
| unsigned long tick_nohz_get_idle_calls_cpu(int cpu) |
| { |
| struct tick_sched *ts = tick_get_tick_sched(cpu); |
| |
| return ts->idle_calls; |
| } |
| |
| static void tick_nohz_account_idle_time(struct tick_sched *ts, |
| ktime_t now) |
| { |
| unsigned long ticks; |
| |
| ts->idle_exittime = now; |
| |
| if (vtime_accounting_enabled_this_cpu()) |
| return; |
| /* |
| * We stopped the tick in idle. update_process_times() would miss the |
| * time we slept, as it does only a 1 tick accounting. |
| * Enforce that this is accounted to idle ! |
| */ |
| ticks = jiffies - ts->idle_jiffies; |
| /* |
| * We might be one off. Do not randomly account a huge number of ticks! |
| */ |
| if (ticks && ticks < LONG_MAX) |
| account_idle_ticks(ticks); |
| } |
| |
| void tick_nohz_idle_restart_tick(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) { |
| ktime_t now = ktime_get(); |
| tick_nohz_restart_sched_tick(ts, now); |
| tick_nohz_account_idle_time(ts, now); |
| } |
| } |
| |
| static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now) |
| { |
| if (tick_nohz_full_cpu(smp_processor_id())) |
| __tick_nohz_full_update_tick(ts, now); |
| else |
| tick_nohz_restart_sched_tick(ts, now); |
| |
| tick_nohz_account_idle_time(ts, now); |
| } |
| |
| /** |
| * tick_nohz_idle_exit - Update the tick upon idle task exit |
| * |
| * When the idle task exits, update the tick depending on the |
| * following situations: |
| * |
| * 1) If the CPU is not in nohz_full mode (most cases), then |
| * restart the tick. |
| * |
| * 2) If the CPU is in nohz_full mode (corner case): |
| * 2.1) If the tick can be kept stopped (no tick dependencies) |
| * then re-evaluate the next tick and try to keep it stopped |
| * as long as possible. |
| * 2.2) If the tick has dependencies, restart the tick. |
| * |
| */ |
| void tick_nohz_idle_exit(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| bool idle_active, tick_stopped; |
| ktime_t now; |
| |
| local_irq_disable(); |
| |
| WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE)); |
| WARN_ON_ONCE(ts->timer_expires_base); |
| |
| tick_sched_flag_clear(ts, TS_FLAG_INIDLE); |
| idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE); |
| tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED); |
| |
| if (idle_active || tick_stopped) |
| now = ktime_get(); |
| |
| if (idle_active) |
| tick_nohz_stop_idle(ts, now); |
| |
| if (tick_stopped) |
| tick_nohz_idle_update_tick(ts, now); |
| |
| local_irq_enable(); |
| } |
| |
| /* |
| * In low-resolution mode, the tick handler must be implemented directly |
| * at the clockevent level. hrtimer can't be used instead, because its |
| * infrastructure actually relies on the tick itself as a backend in |
| * low-resolution mode (see hrtimer_run_queues()). |
| */ |
| static void tick_nohz_lowres_handler(struct clock_event_device *dev) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| dev->next_event = KTIME_MAX; |
| |
| if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART)) |
| tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); |
| } |
| |
| static inline void tick_nohz_activate(struct tick_sched *ts) |
| { |
| if (!tick_nohz_enabled) |
| return; |
| tick_sched_flag_set(ts, TS_FLAG_NOHZ); |
| /* One update is enough */ |
| if (!test_and_set_bit(0, &tick_nohz_active)) |
| timers_update_nohz(); |
| } |
| |
| /** |
| * tick_nohz_switch_to_nohz - switch to NOHZ mode |
| */ |
| static void tick_nohz_switch_to_nohz(void) |
| { |
| if (!tick_nohz_enabled) |
| return; |
| |
| if (tick_switch_to_oneshot(tick_nohz_lowres_handler)) |
| return; |
| |
| /* |
| * Recycle the hrtimer in 'ts', so we can share the |
| * highres code. |
| */ |
| tick_setup_sched_timer(false); |
| } |
| |
| static inline void tick_nohz_irq_enter(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| ktime_t now; |
| |
| if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE)) |
| return; |
| now = ktime_get(); |
| if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)) |
| tick_nohz_stop_idle(ts, now); |
| /* |
| * If all CPUs are idle we may need to update a stale jiffies value. |
| * Note nohz_full is a special case: a timekeeper is guaranteed to stay |
| * alive but it might be busy looping with interrupts disabled in some |
| * rare case (typically stop machine). So we must make sure we have a |
| * last resort. |
| */ |
| if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) |
| tick_nohz_update_jiffies(now); |
| } |
| |
| #else |
| |
| static inline void tick_nohz_switch_to_nohz(void) { } |
| static inline void tick_nohz_irq_enter(void) { } |
| static inline void tick_nohz_activate(struct tick_sched *ts) { } |
| |
| #endif /* CONFIG_NO_HZ_COMMON */ |
| |
| /* |
| * Called from irq_enter() to notify about the possible interruption of idle() |
| */ |
| void tick_irq_enter(void) |
| { |
| tick_check_oneshot_broadcast_this_cpu(); |
| tick_nohz_irq_enter(); |
| } |
| |
| static int sched_skew_tick; |
| |
| static int __init skew_tick(char *str) |
| { |
| get_option(&str, &sched_skew_tick); |
| |
| return 0; |
| } |
| early_param("skew_tick", skew_tick); |
| |
| /** |
| * tick_setup_sched_timer - setup the tick emulation timer |
| * @hrtimer: whether to use the hrtimer or not |
| */ |
| void tick_setup_sched_timer(bool hrtimer) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| /* Emulate tick processing via per-CPU hrtimers: */ |
| hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); |
| |
| if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) { |
| tick_sched_flag_set(ts, TS_FLAG_HIGHRES); |
| ts->sched_timer.function = tick_nohz_handler; |
| } |
| |
| /* Get the next period (per-CPU) */ |
| hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); |
| |
| /* Offset the tick to avert 'jiffies_lock' contention. */ |
| if (sched_skew_tick) { |
| u64 offset = TICK_NSEC >> 1; |
| do_div(offset, num_possible_cpus()); |
| offset *= smp_processor_id(); |
| hrtimer_add_expires_ns(&ts->sched_timer, offset); |
| } |
| |
| hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); |
| if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) |
| hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); |
| else |
| tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); |
| tick_nohz_activate(ts); |
| } |
| |
| /* |
| * Shut down the tick and make sure the CPU won't try to retake the timekeeping |
| * duty before disabling IRQs in idle for the last time. |
| */ |
| void tick_sched_timer_dying(int cpu) |
| { |
| struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
| ktime_t idle_sleeptime, iowait_sleeptime; |
| unsigned long idle_calls, idle_sleeps; |
| |
| /* This must happen before hrtimers are migrated! */ |
| if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) |
| hrtimer_cancel(&ts->sched_timer); |
| |
| idle_sleeptime = ts->idle_sleeptime; |
| iowait_sleeptime = ts->iowait_sleeptime; |
| idle_calls = ts->idle_calls; |
| idle_sleeps = ts->idle_sleeps; |
| memset(ts, 0, sizeof(*ts)); |
| ts->idle_sleeptime = idle_sleeptime; |
| ts->iowait_sleeptime = iowait_sleeptime; |
| ts->idle_calls = idle_calls; |
| ts->idle_sleeps = idle_sleeps; |
| } |
| |
| /* |
| * Async notification about clocksource changes |
| */ |
| void tick_clock_notify(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); |
| } |
| |
| /* |
| * Async notification about clock event changes |
| */ |
| void tick_oneshot_notify(void) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| set_bit(0, &ts->check_clocks); |
| } |
| |
| /* |
| * Check if a change happened, which makes oneshot possible. |
| * |
| * Called cyclically from the hrtimer softirq (driven by the timer |
| * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ |
| * mode, because high resolution timers are disabled (either compile |
| * or runtime). Called with interrupts disabled. |
| */ |
| int tick_check_oneshot_change(int allow_nohz) |
| { |
| struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); |
| |
| if (!test_and_clear_bit(0, &ts->check_clocks)) |
| return 0; |
| |
| if (tick_sched_flag_test(ts, TS_FLAG_NOHZ)) |
| return 0; |
| |
| if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) |
| return 0; |
| |
| if (!allow_nohz) |
| return 1; |
| |
| tick_nohz_switch_to_nohz(); |
| return 0; |
| } |