blob: 16f92c4a775a13f053c636598df70702b8fe7c4d [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org>
*/
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <hash.h>
#include <xalloc.h>
#include "internal.h"
#include "lkc.h"
#define DEBUG_EXPR 0
HASHTABLE_DEFINE(expr_hashtable, EXPR_HASHSIZE);
static struct expr *expr_eliminate_yn(struct expr *e);
/**
* expr_lookup - return the expression with the given type and sub-nodes
* This looks up an expression with the specified type and sub-nodes. If such
* an expression is found in the hash table, it is returned. Otherwise, a new
* expression node is allocated and added to the hash table.
* @type: expression type
* @l: left node
* @r: right node
* return: expression
*/
static struct expr *expr_lookup(enum expr_type type, void *l, void *r)
{
struct expr *e;
int hash;
hash = hash_32((unsigned int)type ^ hash_ptr(l) ^ hash_ptr(r));
hash_for_each_possible(expr_hashtable, e, node, hash) {
if (e->type == type && e->left._initdata == l &&
e->right._initdata == r)
return e;
}
e = xmalloc(sizeof(*e));
e->type = type;
e->left._initdata = l;
e->right._initdata = r;
e->val_is_valid = false;
hash_add(expr_hashtable, &e->node, hash);
return e;
}
struct expr *expr_alloc_symbol(struct symbol *sym)
{
return expr_lookup(E_SYMBOL, sym, NULL);
}
struct expr *expr_alloc_one(enum expr_type type, struct expr *ce)
{
return expr_lookup(type, ce, NULL);
}
struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2)
{
return expr_lookup(type, e1, e2);
}
struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2)
{
return expr_lookup(type, s1, s2);
}
struct expr *expr_alloc_and(struct expr *e1, struct expr *e2)
{
if (!e1)
return e2;
return e2 ? expr_alloc_two(E_AND, e1, e2) : e1;
}
struct expr *expr_alloc_or(struct expr *e1, struct expr *e2)
{
if (!e1)
return e2;
return e2 ? expr_alloc_two(E_OR, e1, e2) : e1;
}
static int trans_count;
/*
* expr_eliminate_eq() helper.
*
* Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does
* not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared
* against all other leaves. Two equal leaves are both replaced with either 'y'
* or 'n' as appropriate for 'type', to be eliminated later.
*/
static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
struct expr *l, *r;
/* Recurse down to leaves */
if ((*ep1)->type == type) {
l = (*ep1)->left.expr;
r = (*ep1)->right.expr;
__expr_eliminate_eq(type, &l, ep2);
__expr_eliminate_eq(type, &r, ep2);
*ep1 = expr_alloc_two(type, l, r);
return;
}
if ((*ep2)->type == type) {
l = (*ep2)->left.expr;
r = (*ep2)->right.expr;
__expr_eliminate_eq(type, ep1, &l);
__expr_eliminate_eq(type, ep1, &r);
*ep2 = expr_alloc_two(type, l, r);
return;
}
/* *ep1 and *ep2 are leaves. Compare them. */
if ((*ep1)->type == E_SYMBOL && (*ep2)->type == E_SYMBOL &&
(*ep1)->left.sym == (*ep2)->left.sym &&
((*ep1)->left.sym == &symbol_yes || (*ep1)->left.sym == &symbol_no))
return;
if (!expr_eq(*ep1, *ep2))
return;
/* *ep1 and *ep2 are equal leaves. Prepare them for elimination. */
trans_count++;
switch (type) {
case E_OR:
*ep1 = expr_alloc_symbol(&symbol_no);
*ep2 = expr_alloc_symbol(&symbol_no);
break;
case E_AND:
*ep1 = expr_alloc_symbol(&symbol_yes);
*ep2 = expr_alloc_symbol(&symbol_yes);
break;
default:
;
}
}
/*
* Rewrites the expressions 'ep1' and 'ep2' to remove operands common to both.
* Example reductions:
*
* ep1: A && B -> ep1: y
* ep2: A && B && C -> ep2: C
*
* ep1: A || B -> ep1: n
* ep2: A || B || C -> ep2: C
*
* ep1: A && (B && FOO) -> ep1: FOO
* ep2: (BAR && B) && A -> ep2: BAR
*
* ep1: A && (B || C) -> ep1: y
* ep2: (C || B) && A -> ep2: y
*
* Comparisons are done between all operands at the same "level" of && or ||.
* For example, in the expression 'e1 && (e2 || e3) && (e4 || e5)', the
* following operands will be compared:
*
* - 'e1', 'e2 || e3', and 'e4 || e5', against each other
* - e2 against e3
* - e4 against e5
*
* Parentheses are irrelevant within a single level. 'e1 && (e2 && e3)' and
* '(e1 && e2) && e3' are both a single level.
*
* See __expr_eliminate_eq() as well.
*/
void expr_eliminate_eq(struct expr **ep1, struct expr **ep2)
{
if (!*ep1 || !*ep2)
return;
switch ((*ep1)->type) {
case E_OR:
case E_AND:
__expr_eliminate_eq((*ep1)->type, ep1, ep2);
default:
;
}
if ((*ep1)->type != (*ep2)->type) switch ((*ep2)->type) {
case E_OR:
case E_AND:
__expr_eliminate_eq((*ep2)->type, ep1, ep2);
default:
;
}
*ep1 = expr_eliminate_yn(*ep1);
*ep2 = expr_eliminate_yn(*ep2);
}
/*
* Returns true if 'e1' and 'e2' are equal, after minor simplification. Two
* &&/|| expressions are considered equal if every operand in one expression
* equals some operand in the other (operands do not need to appear in the same
* order), recursively.
*/
bool expr_eq(struct expr *e1, struct expr *e2)
{
int old_count;
bool res;
/*
* A NULL expr is taken to be yes, but there's also a different way to
* represent yes. expr_is_yes() checks for either representation.
*/
if (!e1 || !e2)
return expr_is_yes(e1) && expr_is_yes(e2);
if (e1->type != e2->type)
return false;
switch (e1->type) {
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym;
case E_SYMBOL:
return e1->left.sym == e2->left.sym;
case E_NOT:
return expr_eq(e1->left.expr, e2->left.expr);
case E_AND:
case E_OR:
old_count = trans_count;
expr_eliminate_eq(&e1, &e2);
res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL &&
e1->left.sym == e2->left.sym);
trans_count = old_count;
return res;
case E_RANGE:
case E_NONE:
/* panic */;
}
if (DEBUG_EXPR) {
expr_fprint(e1, stdout);
printf(" = ");
expr_fprint(e2, stdout);
printf(" ?\n");
}
return false;
}
/*
* Recursively performs the following simplifications (as well as the
* corresponding simplifications with swapped operands):
*
* expr && n -> n
* expr && y -> expr
* expr || n -> expr
* expr || y -> y
*
* Returns the optimized expression.
*/
static struct expr *expr_eliminate_yn(struct expr *e)
{
struct expr *l, *r;
if (e) switch (e->type) {
case E_AND:
l = expr_eliminate_yn(e->left.expr);
r = expr_eliminate_yn(e->right.expr);
if (l->type == E_SYMBOL) {
if (l->left.sym == &symbol_no)
return l;
else if (l->left.sym == &symbol_yes)
return r;
}
if (r->type == E_SYMBOL) {
if (r->left.sym == &symbol_no)
return r;
else if (r->left.sym == &symbol_yes)
return l;
}
break;
case E_OR:
l = expr_eliminate_yn(e->left.expr);
r = expr_eliminate_yn(e->right.expr);
if (l->type == E_SYMBOL) {
if (l->left.sym == &symbol_no)
return r;
else if (l->left.sym == &symbol_yes)
return l;
}
if (r->type == E_SYMBOL) {
if (r->left.sym == &symbol_no)
return l;
else if (r->left.sym == &symbol_yes)
return r;
}
break;
default:
;
}
return e;
}
/*
* e1 || e2 -> ?
*/
static struct expr *expr_join_or(struct expr *e1, struct expr *e2)
{
struct expr *tmp;
struct symbol *sym1, *sym2;
if (expr_eq(e1, e2))
return e1;
if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
return NULL;
if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
return NULL;
if (e1->type == E_NOT) {
tmp = e1->left.expr;
if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
return NULL;
sym1 = tmp->left.sym;
} else
sym1 = e1->left.sym;
if (e2->type == E_NOT) {
if (e2->left.expr->type != E_SYMBOL)
return NULL;
sym2 = e2->left.expr->left.sym;
} else
sym2 = e2->left.sym;
if (sym1 != sym2)
return NULL;
if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
return NULL;
if (sym1->type == S_TRISTATE) {
if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
(e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) {
// (a='y') || (a='m') -> (a!='n')
return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_no);
}
if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) {
// (a='y') || (a='n') -> (a!='m')
return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_mod);
}
if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) {
// (a='m') || (a='n') -> (a!='y')
return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_yes);
}
}
if (sym1->type == S_BOOLEAN) {
// a || !a -> y
if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) ||
(e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL))
return expr_alloc_symbol(&symbol_yes);
}
if (DEBUG_EXPR) {
printf("optimize (");
expr_fprint(e1, stdout);
printf(") || (");
expr_fprint(e2, stdout);
printf(")?\n");
}
return NULL;
}
static struct expr *expr_join_and(struct expr *e1, struct expr *e2)
{
struct expr *tmp;
struct symbol *sym1, *sym2;
if (expr_eq(e1, e2))
return e1;
if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
return NULL;
if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
return NULL;
if (e1->type == E_NOT) {
tmp = e1->left.expr;
if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
return NULL;
sym1 = tmp->left.sym;
} else
sym1 = e1->left.sym;
if (e2->type == E_NOT) {
if (e2->left.expr->type != E_SYMBOL)
return NULL;
sym2 = e2->left.expr->left.sym;
} else
sym2 = e2->left.sym;
if (sym1 != sym2)
return NULL;
if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
return NULL;
if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) ||
(e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes))
// (a) && (a='y') -> (a='y')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) ||
(e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no))
// (a) && (a!='n') -> (a)
return expr_alloc_symbol(sym1);
if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) ||
(e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod))
// (a) && (a!='m') -> (a='y')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
if (sym1->type == S_TRISTATE) {
if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) {
// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
sym2 = e1->right.sym;
if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
return sym2 != e2->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
: expr_alloc_symbol(&symbol_no);
}
if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) {
// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
sym2 = e2->right.sym;
if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
return sym2 != e1->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
: expr_alloc_symbol(&symbol_no);
}
if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes)))
// (a!='y') && (a!='n') -> (a='m')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_mod);
if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
(e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes)))
// (a!='y') && (a!='m') -> (a='n')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_no);
if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod)))
// (a!='m') && (a!='n') -> (a='m')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) ||
(e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) ||
(e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) ||
(e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes))
return NULL;
}
if (DEBUG_EXPR) {
printf("optimize (");
expr_fprint(e1, stdout);
printf(") && (");
expr_fprint(e2, stdout);
printf(")?\n");
}
return NULL;
}
/*
* expr_eliminate_dups() helper.
*
* Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does
* not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared
* against all other leaves to look for simplifications.
*/
static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
struct expr *tmp, *l, *r;
/* Recurse down to leaves */
if ((*ep1)->type == type) {
l = (*ep1)->left.expr;
r = (*ep1)->right.expr;
expr_eliminate_dups1(type, &l, ep2);
expr_eliminate_dups1(type, &r, ep2);
*ep1 = expr_alloc_two(type, l, r);
return;
}
if ((*ep2)->type == type) {
l = (*ep2)->left.expr;
r = (*ep2)->right.expr;
expr_eliminate_dups1(type, ep1, &l);
expr_eliminate_dups1(type, ep1, &r);
*ep2 = expr_alloc_two(type, l, r);
return;
}
/* *ep1 and *ep2 are leaves. Compare and process them. */
switch (type) {
case E_OR:
tmp = expr_join_or(*ep1, *ep2);
if (tmp) {
*ep1 = expr_alloc_symbol(&symbol_no);
*ep2 = tmp;
trans_count++;
}
break;
case E_AND:
tmp = expr_join_and(*ep1, *ep2);
if (tmp) {
*ep1 = expr_alloc_symbol(&symbol_yes);
*ep2 = tmp;
trans_count++;
}
break;
default:
;
}
}
/*
* Rewrites 'e' in-place to remove ("join") duplicate and other redundant
* operands.
*
* Example simplifications:
*
* A || B || A -> A || B
* A && B && A=y -> A=y && B
*
* Returns the deduplicated expression.
*/
struct expr *expr_eliminate_dups(struct expr *e)
{
int oldcount;
if (!e)
return e;
oldcount = trans_count;
do {
struct expr *l, *r;
trans_count = 0;
switch (e->type) {
case E_OR: case E_AND:
l = expr_eliminate_dups(e->left.expr);
r = expr_eliminate_dups(e->right.expr);
expr_eliminate_dups1(e->type, &l, &r);
e = expr_alloc_two(e->type, l, r);
default:
;
}
e = expr_eliminate_yn(e);
} while (trans_count); /* repeat until we get no more simplifications */
trans_count = oldcount;
return e;
}
/*
* Performs various simplifications involving logical operators and
* comparisons.
*
* For bool type:
* A=n -> !A
* A=m -> n
* A=y -> A
* A!=n -> A
* A!=m -> y
* A!=y -> !A
*
* For any type:
* !!A -> A
* !(A=B) -> A!=B
* !(A!=B) -> A=B
* !(A<=B) -> A>B
* !(A>=B) -> A<B
* !(A<B) -> A>=B
* !(A>B) -> A<=B
* !(A || B) -> !A && !B
* !(A && B) -> !A || !B
*
* For constant:
* !y -> n
* !m -> m
* !n -> y
*
* Allocates and returns a new expression.
*/
struct expr *expr_transform(struct expr *e)
{
if (!e)
return NULL;
switch (e->type) {
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
case E_SYMBOL:
break;
default:
e = expr_alloc_two(e->type,
expr_transform(e->left.expr),
expr_transform(e->right.expr));
}
switch (e->type) {
case E_EQUAL:
if (e->left.sym->type != S_BOOLEAN)
break;
if (e->right.sym == &symbol_no) {
// A=n -> !A
e = expr_alloc_one(E_NOT, expr_alloc_symbol(e->left.sym));
break;
}
if (e->right.sym == &symbol_mod) {
// A=m -> n
printf("boolean symbol %s tested for 'm'? test forced to 'n'\n", e->left.sym->name);
e = expr_alloc_symbol(&symbol_no);
break;
}
if (e->right.sym == &symbol_yes) {
// A=y -> A
e = expr_alloc_symbol(e->left.sym);
break;
}
break;
case E_UNEQUAL:
if (e->left.sym->type != S_BOOLEAN)
break;
if (e->right.sym == &symbol_no) {
// A!=n -> A
e = expr_alloc_symbol(e->left.sym);
break;
}
if (e->right.sym == &symbol_mod) {
// A!=m -> y
printf("boolean symbol %s tested for 'm'? test forced to 'y'\n", e->left.sym->name);
e = expr_alloc_symbol(&symbol_yes);
break;
}
if (e->right.sym == &symbol_yes) {
// A!=y -> !A
e = expr_alloc_one(E_NOT, e->left.expr);
break;
}
break;
case E_NOT:
switch (e->left.expr->type) {
case E_NOT:
// !!A -> A
e = e->left.expr->left.expr;
break;
case E_EQUAL:
case E_UNEQUAL:
// !(A=B) -> A!=B
e = expr_alloc_comp(e->left.expr->type == E_EQUAL ? E_UNEQUAL : E_EQUAL,
e->left.expr->left.sym,
e->left.expr->right.sym);
break;
case E_LEQ:
case E_GEQ:
// !(A<=B) -> A>B
e = expr_alloc_comp(e->left.expr->type == E_LEQ ? E_GTH : E_LTH,
e->left.expr->left.sym,
e->left.expr->right.sym);
break;
case E_LTH:
case E_GTH:
// !(A<B) -> A>=B
e = expr_alloc_comp(e->left.expr->type == E_LTH ? E_GEQ : E_LEQ,
e->left.expr->left.sym,
e->left.expr->right.sym);
break;
case E_OR:
// !(A || B) -> !A && !B
e = expr_alloc_and(expr_alloc_one(E_NOT, e->left.expr->left.expr),
expr_alloc_one(E_NOT, e->left.expr->right.expr));
e = expr_transform(e);
break;
case E_AND:
// !(A && B) -> !A || !B
e = expr_alloc_or(expr_alloc_one(E_NOT, e->left.expr->left.expr),
expr_alloc_one(E_NOT, e->left.expr->right.expr));
e = expr_transform(e);
break;
case E_SYMBOL:
if (e->left.expr->left.sym == &symbol_yes)
// !'y' -> 'n'
e = expr_alloc_symbol(&symbol_no);
else if (e->left.expr->left.sym == &symbol_mod)
// !'m' -> 'm'
e = expr_alloc_symbol(&symbol_mod);
else if (e->left.expr->left.sym == &symbol_no)
// !'n' -> 'y'
e = expr_alloc_symbol(&symbol_yes);
break;
default:
;
}
break;
default:
;
}
return e;
}
bool expr_contains_symbol(struct expr *dep, struct symbol *sym)
{
if (!dep)
return false;
switch (dep->type) {
case E_AND:
case E_OR:
return expr_contains_symbol(dep->left.expr, sym) ||
expr_contains_symbol(dep->right.expr, sym);
case E_SYMBOL:
return dep->left.sym == sym;
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
return dep->left.sym == sym ||
dep->right.sym == sym;
case E_NOT:
return expr_contains_symbol(dep->left.expr, sym);
default:
;
}
return false;
}
bool expr_depends_symbol(struct expr *dep, struct symbol *sym)
{
if (!dep)
return false;
switch (dep->type) {
case E_AND:
return expr_depends_symbol(dep->left.expr, sym) ||
expr_depends_symbol(dep->right.expr, sym);
case E_SYMBOL:
return dep->left.sym == sym;
case E_EQUAL:
if (dep->left.sym == sym) {
if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod)
return true;
}
break;
case E_UNEQUAL:
if (dep->left.sym == sym) {
if (dep->right.sym == &symbol_no)
return true;
}
break;
default:
;
}
return false;
}
/*
* Inserts explicit comparisons of type 'type' to symbol 'sym' into the
* expression 'e'.
*
* Examples transformations for type == E_UNEQUAL, sym == &symbol_no:
*
* A -> A!=n
* !A -> A=n
* A && B -> !(A=n || B=n)
* A || B -> !(A=n && B=n)
* A && (B || C) -> !(A=n || (B=n && C=n))
*
* Allocates and returns a new expression.
*/
struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym)
{
struct expr *e1, *e2;
if (!e) {
e = expr_alloc_symbol(sym);
if (type == E_UNEQUAL)
e = expr_alloc_one(E_NOT, e);
return e;
}
switch (e->type) {
case E_AND:
e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
if (sym == &symbol_yes)
e = expr_alloc_two(E_AND, e1, e2);
if (sym == &symbol_no)
e = expr_alloc_two(E_OR, e1, e2);
if (type == E_UNEQUAL)
e = expr_alloc_one(E_NOT, e);
return e;
case E_OR:
e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
if (sym == &symbol_yes)
e = expr_alloc_two(E_OR, e1, e2);
if (sym == &symbol_no)
e = expr_alloc_two(E_AND, e1, e2);
if (type == E_UNEQUAL)
e = expr_alloc_one(E_NOT, e);
return e;
case E_NOT:
return expr_trans_compare(e->left.expr, type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym);
case E_UNEQUAL:
case E_LTH:
case E_LEQ:
case E_GTH:
case E_GEQ:
case E_EQUAL:
if (type == E_EQUAL) {
if (sym == &symbol_yes)
return e;
if (sym == &symbol_mod)
return expr_alloc_symbol(&symbol_no);
if (sym == &symbol_no)
return expr_alloc_one(E_NOT, e);
} else {
if (sym == &symbol_yes)
return expr_alloc_one(E_NOT, e);
if (sym == &symbol_mod)
return expr_alloc_symbol(&symbol_yes);
if (sym == &symbol_no)
return e;
}
break;
case E_SYMBOL:
return expr_alloc_comp(type, e->left.sym, sym);
case E_RANGE:
case E_NONE:
/* panic */;
}
return NULL;
}
enum string_value_kind {
k_string,
k_signed,
k_unsigned,
};
union string_value {
unsigned long long u;
signed long long s;
};
static enum string_value_kind expr_parse_string(const char *str,
enum symbol_type type,
union string_value *val)
{
char *tail;
enum string_value_kind kind;
errno = 0;
switch (type) {
case S_BOOLEAN:
case S_TRISTATE:
val->s = !strcmp(str, "n") ? 0 :
!strcmp(str, "m") ? 1 :
!strcmp(str, "y") ? 2 : -1;
return k_signed;
case S_INT:
val->s = strtoll(str, &tail, 10);
kind = k_signed;
break;
case S_HEX:
val->u = strtoull(str, &tail, 16);
kind = k_unsigned;
break;
default:
val->s = strtoll(str, &tail, 0);
kind = k_signed;
break;
}
return !errno && !*tail && tail > str && isxdigit(tail[-1])
? kind : k_string;
}
static tristate __expr_calc_value(struct expr *e)
{
tristate val1, val2;
const char *str1, *str2;
enum string_value_kind k1 = k_string, k2 = k_string;
union string_value lval = {}, rval = {};
int res;
switch (e->type) {
case E_SYMBOL:
sym_calc_value(e->left.sym);
return e->left.sym->curr.tri;
case E_AND:
val1 = expr_calc_value(e->left.expr);
val2 = expr_calc_value(e->right.expr);
return EXPR_AND(val1, val2);
case E_OR:
val1 = expr_calc_value(e->left.expr);
val2 = expr_calc_value(e->right.expr);
return EXPR_OR(val1, val2);
case E_NOT:
val1 = expr_calc_value(e->left.expr);
return EXPR_NOT(val1);
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
break;
default:
printf("expr_calc_value: %d?\n", e->type);
return no;
}
sym_calc_value(e->left.sym);
sym_calc_value(e->right.sym);
str1 = sym_get_string_value(e->left.sym);
str2 = sym_get_string_value(e->right.sym);
if (e->left.sym->type != S_STRING || e->right.sym->type != S_STRING) {
k1 = expr_parse_string(str1, e->left.sym->type, &lval);
k2 = expr_parse_string(str2, e->right.sym->type, &rval);
}
if (k1 == k_string || k2 == k_string)
res = strcmp(str1, str2);
else if (k1 == k_unsigned || k2 == k_unsigned)
res = (lval.u > rval.u) - (lval.u < rval.u);
else /* if (k1 == k_signed && k2 == k_signed) */
res = (lval.s > rval.s) - (lval.s < rval.s);
switch(e->type) {
case E_EQUAL:
return res ? no : yes;
case E_GEQ:
return res >= 0 ? yes : no;
case E_GTH:
return res > 0 ? yes : no;
case E_LEQ:
return res <= 0 ? yes : no;
case E_LTH:
return res < 0 ? yes : no;
case E_UNEQUAL:
return res ? yes : no;
default:
printf("expr_calc_value: relation %d?\n", e->type);
return no;
}
}
/**
* expr_calc_value - return the tristate value of the given expression
* @e: expression
* return: tristate value of the expression
*/
tristate expr_calc_value(struct expr *e)
{
if (!e)
return yes;
if (!e->val_is_valid) {
e->val = __expr_calc_value(e);
e->val_is_valid = true;
}
return e->val;
}
/**
* expr_invalidate_all - invalidate all cached expression values
*/
void expr_invalidate_all(void)
{
struct expr *e;
hash_for_each(expr_hashtable, e, node)
e->val_is_valid = false;
}
static int expr_compare_type(enum expr_type t1, enum expr_type t2)
{
if (t1 == t2)
return 0;
switch (t1) {
case E_LEQ:
case E_LTH:
case E_GEQ:
case E_GTH:
if (t2 == E_EQUAL || t2 == E_UNEQUAL)
return 1;
/* fallthrough */
case E_EQUAL:
case E_UNEQUAL:
if (t2 == E_NOT)
return 1;
/* fallthrough */
case E_NOT:
if (t2 == E_AND)
return 1;
/* fallthrough */
case E_AND:
if (t2 == E_OR)
return 1;
/* fallthrough */
default:
break;
}
return 0;
}
void expr_print(const struct expr *e,
void (*fn)(void *, struct symbol *, const char *),
void *data, int prevtoken)
{
if (!e) {
fn(data, NULL, "y");
return;
}
if (expr_compare_type(prevtoken, e->type) > 0)
fn(data, NULL, "(");
switch (e->type) {
case E_SYMBOL:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
break;
case E_NOT:
fn(data, NULL, "!");
expr_print(e->left.expr, fn, data, E_NOT);
break;
case E_EQUAL:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, "=");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_LEQ:
case E_LTH:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, e->type == E_LEQ ? "<=" : "<");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_GEQ:
case E_GTH:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, e->type == E_GEQ ? ">=" : ">");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_UNEQUAL:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, "!=");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_OR:
expr_print(e->left.expr, fn, data, E_OR);
fn(data, NULL, " || ");
expr_print(e->right.expr, fn, data, E_OR);
break;
case E_AND:
expr_print(e->left.expr, fn, data, E_AND);
fn(data, NULL, " && ");
expr_print(e->right.expr, fn, data, E_AND);
break;
case E_RANGE:
fn(data, NULL, "[");
fn(data, e->left.sym, e->left.sym->name);
fn(data, NULL, " ");
fn(data, e->right.sym, e->right.sym->name);
fn(data, NULL, "]");
break;
default:
{
char buf[32];
sprintf(buf, "<unknown type %d>", e->type);
fn(data, NULL, buf);
break;
}
}
if (expr_compare_type(prevtoken, e->type) > 0)
fn(data, NULL, ")");
}
static void expr_print_file_helper(void *data, struct symbol *sym, const char *str)
{
xfwrite(str, strlen(str), 1, data);
}
void expr_fprint(struct expr *e, FILE *out)
{
expr_print(e, expr_print_file_helper, out, E_NONE);
}
static void expr_print_gstr_helper(void *data, struct symbol *sym, const char *str)
{
struct gstr *gs = (struct gstr*)data;
const char *sym_str = NULL;
if (sym)
sym_str = sym_get_string_value(sym);
if (gs->max_width) {
unsigned extra_length = strlen(str);
const char *last_cr = strrchr(gs->s, '\n');
unsigned last_line_length;
if (sym_str)
extra_length += 4 + strlen(sym_str);
if (!last_cr)
last_cr = gs->s;
last_line_length = strlen(gs->s) - (last_cr - gs->s);
if ((last_line_length + extra_length) > gs->max_width)
str_append(gs, "\\\n");
}
str_append(gs, str);
if (sym && sym->type != S_UNKNOWN)
str_printf(gs, " [=%s]", sym_str);
}
void expr_gstr_print(const struct expr *e, struct gstr *gs)
{
expr_print(e, expr_print_gstr_helper, gs, E_NONE);
}
/*
* Transform the top level "||" tokens into newlines and prepend each
* line with a minus. This makes expressions much easier to read.
* Suitable for reverse dependency expressions.
*/
static void expr_print_revdep(struct expr *e,
void (*fn)(void *, struct symbol *, const char *),
void *data, tristate pr_type, const char **title)
{
if (e->type == E_OR) {
expr_print_revdep(e->left.expr, fn, data, pr_type, title);
expr_print_revdep(e->right.expr, fn, data, pr_type, title);
} else if (expr_calc_value(e) == pr_type) {
if (*title) {
fn(data, NULL, *title);
*title = NULL;
}
fn(data, NULL, " - ");
expr_print(e, fn, data, E_NONE);
fn(data, NULL, "\n");
}
}
void expr_gstr_print_revdep(struct expr *e, struct gstr *gs,
tristate pr_type, const char *title)
{
expr_print_revdep(e, expr_print_gstr_helper, gs, pr_type, &title);
}