blob: 12d093437ba9b6d2763aaafdac4c7c43edaa8ff7 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
//
// ALSA SoC Texas Instruments TAS2563/TAS2781 Audio Smart Amplifier
//
// Copyright (C) 2022 - 2024 Texas Instruments Incorporated
// https://www.ti.com
//
// The TAS2563/TAS2781 driver implements a flexible and configurable
// algo coefficient setting for one, two, or even multiple
// TAS2563/TAS2781 chips.
//
// Author: Shenghao Ding <shenghao-ding@ti.com>
// Author: Kevin Lu <kevin-lu@ti.com>
//
#include <linux/crc8.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tas2781.h>
#include <sound/tlv.h>
#include <sound/tas2563-tlv.h>
#include <sound/tas2781-tlv.h>
#include <linux/unaligned.h>
#define X2563_CL_STT_VAL(xreg, xval) \
{ .reg = xreg, \
.val = { xval }, \
.val_len = 1, }
#define X2563_CL_STT_4BYTS(xreg, byte0, byte1, byte2, byte3) \
{ .reg = xreg, \
.val = { byte0, byte1, byte2, byte3 }, \
.val_len = 4, }
static const struct bulk_reg_val tas2563_cali_start_reg[] = {
X2563_CL_STT_VAL(TAS2563_IDLE, 0x00),
X2563_CL_STT_4BYTS(TAS2563_PRM_ENFF_REG, 0x40, 0x00, 0x00, 0x00),
X2563_CL_STT_4BYTS(TAS2563_PRM_DISTCK_REG, 0x40, 0x00, 0x00, 0x00),
X2563_CL_STT_4BYTS(TAS2563_PRM_TE_SCTHR_REG, 0x7f, 0xff, 0xff, 0xff),
X2563_CL_STT_4BYTS(TAS2563_PRM_PLT_FLAG_REG, 0x40, 0x00, 0x00, 0x00),
X2563_CL_STT_4BYTS(TAS2563_PRM_SINEGAIN_REG, 0x0a, 0x3d, 0x70, 0xa4),
X2563_CL_STT_4BYTS(TAS2563_TE_TA1_REG, 0x00, 0x36, 0x91, 0x5e),
X2563_CL_STT_4BYTS(TAS2563_TE_TA1_AT_REG, 0x00, 0x36, 0x91, 0x5e),
X2563_CL_STT_4BYTS(TAS2563_TE_TA2_REG, 0x00, 0x06, 0xd3, 0x72),
X2563_CL_STT_4BYTS(TAS2563_TE_AT_REG, 0x00, 0x36, 0x91, 0x5e),
X2563_CL_STT_4BYTS(TAS2563_TE_DT_REG, 0x00, 0x36, 0x91, 0x5e),
};
#define X2781_CL_STT_VAL(xreg, xval, xlocked) \
{ .reg = xreg, \
.val = { xval }, \
.val_len = 1, \
.is_locked = xlocked, }
#define X2781_CL_STT_4BYTS_UNLOCKED(xreg, byte0, byte1, byte2, byte3) \
{ .reg = xreg, \
.val = { byte0, byte1, byte2, byte3 }, \
.val_len = 4, \
.is_locked = false, }
#define X2781_CL_STT_LEN_UNLOCKED(xreg) \
{ .reg = xreg, \
.val_len = 4, \
.is_locked = false, }
static const struct bulk_reg_val tas2781_cali_start_reg[] = {
X2781_CL_STT_VAL(TAS2781_PRM_INT_MASK_REG, 0xfe, false),
X2781_CL_STT_VAL(TAS2781_PRM_CLK_CFG_REG, 0xdd, false),
X2781_CL_STT_VAL(TAS2781_PRM_RSVD_REG, 0x20, false),
X2781_CL_STT_VAL(TAS2781_PRM_TEST_57_REG, 0x14, false),
X2781_CL_STT_VAL(TAS2781_PRM_TEST_62_REG, 0x45, true),
X2781_CL_STT_VAL(TAS2781_PRM_PVDD_UVLO_REG, 0x03, false),
X2781_CL_STT_VAL(TAS2781_PRM_CHNL_0_REG, 0xa8, false),
X2781_CL_STT_VAL(TAS2781_PRM_NG_CFG0_REG, 0xb9, false),
X2781_CL_STT_VAL(TAS2781_PRM_IDLE_CH_DET_REG, 0x92, false),
/*
* This register is pilot tone threshold, different with the
* calibration tool version, it will be updated in
* tas2781_calib_start_put(), set to 1mA.
*/
X2781_CL_STT_4BYTS_UNLOCKED(0, 0x00, 0x00, 0x00, 0x56),
X2781_CL_STT_4BYTS_UNLOCKED(TAS2781_PRM_PLT_FLAG_REG,
0x40, 0x00, 0x00, 0x00),
X2781_CL_STT_LEN_UNLOCKED(TAS2781_PRM_SINEGAIN_REG),
X2781_CL_STT_LEN_UNLOCKED(TAS2781_PRM_SINEGAIN2_REG),
};
static const struct i2c_device_id tasdevice_id[] = {
{ "tas2563", TAS2563 },
{ "tas2781", TAS2781 },
{}
};
MODULE_DEVICE_TABLE(i2c, tasdevice_id);
#ifdef CONFIG_OF
static const struct of_device_id tasdevice_of_match[] = {
{ .compatible = "ti,tas2563" },
{ .compatible = "ti,tas2781" },
{},
};
MODULE_DEVICE_TABLE(of, tasdevice_of_match);
#endif
/**
* tas2781_digital_getvol - get the volum control
* @kcontrol: control pointer
* @ucontrol: User data
* Customer Kcontrol for tas2781 is primarily for regmap booking, paging
* depends on internal regmap mechanism.
* tas2781 contains book and page two-level register map, especially
* book switching will set the register BXXP00R7F, after switching to the
* correct book, then leverage the mechanism for paging to access the
* register.
*/
static int tas2781_digital_getvol(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return tasdevice_digital_getvol(tas_priv, ucontrol, mc);
}
static int tas2781_digital_putvol(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return tasdevice_digital_putvol(tas_priv, ucontrol, mc);
}
static int tas2781_amp_getvol(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return tasdevice_amp_getvol(tas_priv, ucontrol, mc);
}
static int tas2781_amp_putvol(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv =
snd_soc_component_get_drvdata(codec);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return tasdevice_amp_putvol(tas_priv, ucontrol, mc);
}
static int tasdev_force_fwload_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv =
snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = (int)tas_priv->force_fwload_status;
dev_dbg(tas_priv->dev, "%s : Force FWload %s\n", __func__,
tas_priv->force_fwload_status ? "ON" : "OFF");
return 0;
}
static int tasdev_force_fwload_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv =
snd_soc_component_get_drvdata(component);
bool change, val = (bool)ucontrol->value.integer.value[0];
if (tas_priv->force_fwload_status == val)
change = false;
else {
change = true;
tas_priv->force_fwload_status = val;
}
dev_dbg(tas_priv->dev, "%s : Force FWload %s\n", __func__,
tas_priv->force_fwload_status ? "ON" : "OFF");
return change;
}
static int tasdev_cali_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
struct calidata *cali_data = &priv->cali_data;
struct cali_reg *p = &cali_data->cali_reg_array;
unsigned char *dst = ucontrol->value.bytes.data;
unsigned char *data = cali_data->data;
unsigned int i = 0;
unsigned int j, k;
int rc;
guard(mutex)(&priv->codec_lock);
if (!priv->is_user_space_calidata)
return -1;
if (!p->r0_reg)
return -1;
dst[i++] = bytes_ext->max;
dst[i++] = 'r';
dst[i++] = TASDEVICE_BOOK_ID(p->r0_reg);
dst[i++] = TASDEVICE_PAGE_ID(p->r0_reg);
dst[i++] = TASDEVICE_PAGE_REG(p->r0_reg);
dst[i++] = TASDEVICE_BOOK_ID(p->r0_low_reg);
dst[i++] = TASDEVICE_PAGE_ID(p->r0_low_reg);
dst[i++] = TASDEVICE_PAGE_REG(p->r0_low_reg);
dst[i++] = TASDEVICE_BOOK_ID(p->invr0_reg);
dst[i++] = TASDEVICE_PAGE_ID(p->invr0_reg);
dst[i++] = TASDEVICE_PAGE_REG(p->invr0_reg);
dst[i++] = TASDEVICE_BOOK_ID(p->pow_reg);
dst[i++] = TASDEVICE_PAGE_ID(p->pow_reg);
dst[i++] = TASDEVICE_PAGE_REG(p->pow_reg);
dst[i++] = TASDEVICE_BOOK_ID(p->tlimit_reg);
dst[i++] = TASDEVICE_PAGE_ID(p->tlimit_reg);
dst[i++] = TASDEVICE_PAGE_REG(p->tlimit_reg);
for (j = 0, k = 0; j < priv->ndev; j++) {
if (j == data[k]) {
dst[i++] = j;
k++;
} else {
dev_err(priv->dev, "chn %d device %u not match\n",
j, data[k]);
k += 21;
continue;
}
rc = tasdevice_dev_bulk_read(priv, j, p->r0_reg, &dst[i], 4);
if (rc < 0) {
dev_err(priv->dev, "chn %d r0_reg bulk_rd err = %d\n",
j, rc);
i += 20;
k += 20;
continue;
}
rc = memcmp(&dst[i], &data[k], 4);
if (rc != 0)
dev_dbg(priv->dev, "chn %d r0_data is not same\n", j);
k += 4;
i += 4;
rc = tasdevice_dev_bulk_read(priv, j, p->r0_low_reg,
&dst[i], 4);
if (rc < 0) {
dev_err(priv->dev, "chn %d r0_low bulk_rd err = %d\n",
j, rc);
i += 16;
k += 16;
continue;
}
rc = memcmp(&dst[i], &data[k], 4);
if (rc != 0)
dev_dbg(priv->dev, "chn %d r0_low is not same\n", j);
i += 4;
k += 4;
rc = tasdevice_dev_bulk_read(priv, j, p->invr0_reg,
&dst[i], 4);
if (rc < 0) {
dev_err(priv->dev, "chn %d invr0 bulk_rd err = %d\n",
j, rc);
i += 12;
k += 12;
continue;
}
rc = memcmp(&dst[i], &data[k], 4);
if (rc != 0)
dev_dbg(priv->dev, "chn %d invr0 is not same\n", j);
i += 4;
k += 4;
rc = tasdevice_dev_bulk_read(priv, j, p->pow_reg, &dst[i], 4);
if (rc < 0) {
dev_err(priv->dev, "chn %d pow_reg bulk_rd err = %d\n",
j, rc);
i += 8;
k += 8;
continue;
}
rc = memcmp(&dst[i], &data[k], 4);
if (rc != 0)
dev_dbg(priv->dev, "chn %d pow_reg is not same\n", j);
i += 4;
k += 4;
rc = tasdevice_dev_bulk_read(priv, j, p->tlimit_reg,
&dst[i], 4);
if (rc < 0) {
dev_err(priv->dev, "chn %d tlimit bulk_rd err = %d\n",
j, rc);
}
rc = memcmp(&dst[i], &data[k], 4);
if (rc != 0)
dev_dbg(priv->dev, "chn %d tlimit is not same\n", j);
i += 4;
k += 4;
}
return 0;
}
static int calib_data_get(struct tasdevice_priv *tas_priv, int reg,
unsigned char *dst)
{
struct i2c_client *clt = (struct i2c_client *)tas_priv->client;
struct tasdevice *tasdev = tas_priv->tasdevice;
int rc = -1;
int i;
for (i = 0; i < tas_priv->ndev; i++) {
if (clt->addr == tasdev[i].dev_addr) {
/* First byte is the device index. */
dst[0] = i;
rc = tasdevice_dev_bulk_read(tas_priv, i, reg, &dst[1],
4);
break;
}
}
return rc;
}
static void sngl_calib_start(struct tasdevice_priv *tas_priv, int i,
int *reg, unsigned char *dat)
{
struct tasdevice *tasdev = tas_priv->tasdevice;
struct bulk_reg_val *p = tasdev[i].cali_data_backup;
const int sum = ARRAY_SIZE(tas2781_cali_start_reg);
int j;
if (p == NULL)
return;
/* Store the current setting from the chip */
for (j = 0; j < sum; j++) {
if (p[j].val_len == 1) {
if (p[j].is_locked)
tasdevice_dev_write(tas_priv, i,
TAS2781_TEST_UNLOCK_REG,
TAS2781_TEST_PAGE_UNLOCK);
tasdevice_dev_read(tas_priv, i, p[j].reg,
(int *)&p[j].val[0]);
} else {
switch (p[j].reg) {
case 0: {
if (!reg[0])
continue;
p[j].reg = reg[0];
}
break;
case TAS2781_PRM_PLT_FLAG_REG:
p[j].reg = reg[1];
break;
case TAS2781_PRM_SINEGAIN_REG:
p[j].reg = reg[2];
break;
case TAS2781_PRM_SINEGAIN2_REG:
p[j].reg = reg[3];
break;
}
tasdevice_dev_bulk_read(tas_priv, i, p[j].reg,
p[j].val, 4);
}
}
/* Update the setting for calibration */
for (j = 0; j < sum - 2; j++) {
if (p[j].val_len == 1) {
if (p[j].is_locked)
tasdevice_dev_write(tas_priv, i,
TAS2781_TEST_UNLOCK_REG,
TAS2781_TEST_PAGE_UNLOCK);
tasdevice_dev_write(tas_priv, i, p[j].reg,
tas2781_cali_start_reg[j].val[0]);
} else {
if (!p[j].reg)
continue;
tasdevice_dev_bulk_write(tas_priv, i, p[j].reg,
(unsigned char *)
tas2781_cali_start_reg[j].val, 4);
}
}
tasdevice_dev_bulk_write(tas_priv, i, p[j].reg, &dat[1], 4);
tasdevice_dev_bulk_write(tas_priv, i, p[j + 1].reg, &dat[5], 4);
}
static int tas2781_calib_start_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
unsigned char *dat = ucontrol->value.bytes.data;
int i, reg[4];
int j = 0;
guard(mutex)(&priv->codec_lock);
if (priv->chip_id != TAS2781 || bytes_ext->max != dat[0] ||
dat[1] != 'r') {
dev_err(priv->dev, "%s: package fmt or chipid incorrect\n",
__func__);
return 0;
}
j += 2;
/* refresh pilot tone and SineGain register */
for (i = 0; i < ARRAY_SIZE(reg); i++) {
reg[i] = TASDEVICE_REG(dat[j], dat[j + 1], dat[j + 2]);
j += 3;
}
for (i = 0; i < priv->ndev; i++) {
int k = i * 9 + j;
if (dat[k] != i) {
dev_err(priv->dev, "%s:no cal-setting for dev %d\n",
__func__, i);
continue;
}
sngl_calib_start(priv, i, reg, dat + k);
}
return 1;
}
static void tas2781_calib_stop_put(struct tasdevice_priv *tas_priv)
{
const int sum = ARRAY_SIZE(tas2781_cali_start_reg);
int i, j;
for (i = 0; i < tas_priv->ndev; i++) {
struct tasdevice *tasdev = tas_priv->tasdevice;
struct bulk_reg_val *p = tasdev[i].cali_data_backup;
if (p == NULL)
continue;
for (j = 0; j < sum; j++) {
if (p[j].val_len == 1) {
if (p[j].is_locked)
tasdevice_dev_write(tas_priv, i,
TAS2781_TEST_UNLOCK_REG,
TAS2781_TEST_PAGE_UNLOCK);
tasdevice_dev_write(tas_priv, i, p[j].reg,
p[j].val[0]);
} else {
if (!p[j].reg)
continue;
tasdevice_dev_bulk_write(tas_priv, i, p[j].reg,
p[j].val, 4);
}
}
}
}
static int tas2563_calib_start_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct bulk_reg_val *q = (struct bulk_reg_val *)tas2563_cali_start_reg;
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
const int sum = ARRAY_SIZE(tas2563_cali_start_reg);
int rc = 1;
int i, j;
guard(mutex)(&tas_priv->codec_lock);
if (tas_priv->chip_id != TAS2563) {
rc = -1;
goto out;
}
for (i = 0; i < tas_priv->ndev; i++) {
struct tasdevice *tasdev = tas_priv->tasdevice;
struct bulk_reg_val *p = tasdev[i].cali_data_backup;
if (p == NULL)
continue;
for (j = 0; j < sum; j++) {
if (p[j].val_len == 1)
tasdevice_dev_read(tas_priv,
i, p[j].reg,
(unsigned int *)&p[j].val[0]);
else
tasdevice_dev_bulk_read(tas_priv,
i, p[j].reg, p[j].val, 4);
}
for (j = 0; j < sum; j++) {
if (p[j].val_len == 1)
tasdevice_dev_write(tas_priv, i, p[j].reg,
q[j].val[0]);
else
tasdevice_dev_bulk_write(tas_priv, i, p[j].reg,
q[j].val, 4);
}
}
out:
return rc;
}
static void tas2563_calib_stop_put(struct tasdevice_priv *tas_priv)
{
const int sum = ARRAY_SIZE(tas2563_cali_start_reg);
int i, j;
for (i = 0; i < tas_priv->ndev; i++) {
struct tasdevice *tasdev = tas_priv->tasdevice;
struct bulk_reg_val *p = tasdev[i].cali_data_backup;
if (p == NULL)
continue;
for (j = 0; j < sum; j++) {
if (p[j].val_len == 1)
tasdevice_dev_write(tas_priv, i, p[j].reg,
p[j].val[0]);
else
tasdevice_dev_bulk_write(tas_priv, i, p[j].reg,
p[j].val, 4);
}
}
}
static int tasdev_calib_stop_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *priv = snd_soc_component_get_drvdata(comp);
guard(mutex)(&priv->codec_lock);
if (priv->chip_id == TAS2563)
tas2563_calib_stop_put(priv);
else
tas2781_calib_stop_put(priv);
return 1;
}
static int tasdev_cali_data_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
struct calidata *cali_data = &priv->cali_data;
struct cali_reg *p = &cali_data->cali_reg_array;
unsigned char *src = ucontrol->value.bytes.data;
unsigned char *dst = cali_data->data;
int rc = 1, i = 0;
int j;
guard(mutex)(&priv->codec_lock);
if (src[0] != bytes_ext->max || src[1] != 'r') {
dev_err(priv->dev, "%s: pkg fmt invalid\n", __func__);
return 0;
}
for (j = 0; j < priv->ndev; j++) {
if (src[17 + j * 21] != j) {
dev_err(priv->dev, "%s: pkg fmt invalid\n", __func__);
return 0;
}
}
i += 2;
priv->is_user_space_calidata = true;
p->r0_reg = TASDEVICE_REG(src[i], src[i + 1], src[i + 2]);
i += 3;
p->r0_low_reg = TASDEVICE_REG(src[i], src[i + 1], src[i + 2]);
i += 3;
p->invr0_reg = TASDEVICE_REG(src[i], src[i + 1], src[i + 2]);
i += 3;
p->pow_reg = TASDEVICE_REG(src[i], src[i + 1], src[i + 2]);
i += 3;
p->tlimit_reg = TASDEVICE_REG(src[i], src[i + 1], src[i + 2]);
i += 3;
memcpy(dst, &src[i], cali_data->total_sz);
return rc;
}
static int tas2781_latch_reg_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
struct i2c_client *clt = (struct i2c_client *)tas_priv->client;
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
struct tasdevice *tasdev = tas_priv->tasdevice;
unsigned char *dst = ucontrol->value.bytes.data;
int i, val, rc = -1;
dst[0] = bytes_ext->max;
guard(mutex)(&tas_priv->codec_lock);
for (i = 0; i < tas_priv->ndev; i++) {
if (clt->addr == tasdev[i].dev_addr) {
/* First byte is the device index. */
dst[1] = i;
rc = tasdevice_dev_read(tas_priv, i,
TAS2781_RUNTIME_LATCH_RE_REG, &val);
if (rc < 0)
dev_err(tas_priv->dev, "%s, get value error\n",
__func__);
else
dst[2] = val;
break;
}
}
return rc;
}
static int tasdev_tf_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
unsigned char *dst = ucontrol->value.bytes.data;
unsigned int reg;
int rc = -1;
if (tas_priv->chip_id == TAS2781)
reg = TAS2781_RUNTIME_RE_REG_TF;
else
reg = TAS2563_RUNTIME_RE_REG_TF;
guard(mutex)(&tas_priv->codec_lock);
dst[0] = bytes_ext->max;
rc = calib_data_get(tas_priv, reg, &dst[1]);
return rc;
}
static int tasdev_re_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
unsigned char *dst = ucontrol->value.bytes.data;
unsigned int reg;
int rc = -1;
if (tas_priv->chip_id == TAS2781)
reg = TAS2781_RUNTIME_RE_REG;
else
reg = TAS2563_RUNTIME_RE_REG;
guard(mutex)(&tas_priv->codec_lock);
dst[0] = bytes_ext->max;
rc = calib_data_get(tas_priv, reg, &dst[1]);
return rc;
}
static int tasdev_r0_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
struct calidata *cali_data = &tas_priv->cali_data;
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
unsigned char *dst = ucontrol->value.bytes.data;
unsigned int reg;
int rc = -1;
guard(mutex)(&tas_priv->codec_lock);
if (tas_priv->chip_id == TAS2563)
reg = TAS2563_PRM_R0_REG;
else if (cali_data->cali_reg_array.r0_reg)
reg = cali_data->cali_reg_array.r0_reg;
else
return -1;
dst[0] = bytes_ext->max;
rc = calib_data_get(tas_priv, reg, &dst[1]);
return rc;
}
static int tasdev_XMA1_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
unsigned char *dst = ucontrol->value.bytes.data;
unsigned int reg = TASDEVICE_XM_A1_REG;
int rc = -1;
guard(mutex)(&tas_priv->codec_lock);
dst[0] = bytes_ext->max;
rc = calib_data_get(tas_priv, reg, &dst[1]);
return rc;
}
static int tasdev_XMA2_data_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(comp);
struct soc_bytes_ext *bytes_ext =
(struct soc_bytes_ext *) kcontrol->private_value;
unsigned char *dst = ucontrol->value.bytes.data;
unsigned int reg = TASDEVICE_XM_A2_REG;
int rc = -1;
guard(mutex)(&tas_priv->codec_lock);
dst[0] = bytes_ext->max;
rc = calib_data_get(tas_priv, reg, &dst[1]);
return rc;
}
static int tasdev_nop_get(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
return 0;
}
static int tas2563_digital_gain_get(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_dev = snd_soc_component_get_drvdata(codec);
unsigned int l = 0, r = mc->max;
unsigned int target, ar_mid, mid, ar_l, ar_r;
unsigned int reg = mc->reg;
unsigned char data[4];
int ret;
mutex_lock(&tas_dev->codec_lock);
/* Read the primary device */
ret = tasdevice_dev_bulk_read(tas_dev, 0, reg, data, 4);
if (ret) {
dev_err(tas_dev->dev, "%s, get AMP vol error\n", __func__);
goto out;
}
target = get_unaligned_be32(&data[0]);
while (r > 1 + l) {
mid = (l + r) / 2;
ar_mid = get_unaligned_be32(tas2563_dvc_table[mid]);
if (target < ar_mid)
r = mid;
else
l = mid;
}
ar_l = get_unaligned_be32(tas2563_dvc_table[l]);
ar_r = get_unaligned_be32(tas2563_dvc_table[r]);
/* find out the member same as or closer to the current volume */
ucontrol->value.integer.value[0] =
abs(target - ar_l) <= abs(target - ar_r) ? l : r;
out:
mutex_unlock(&tas_dev->codec_lock);
return 0;
}
static int tas2563_digital_gain_put(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_dev = snd_soc_component_get_drvdata(codec);
int vol = ucontrol->value.integer.value[0];
int status = 0, max = mc->max, rc = 1;
int i, ret;
unsigned int reg = mc->reg;
unsigned int volrd, volwr;
unsigned char data[4];
vol = clamp(vol, 0, max);
mutex_lock(&tas_dev->codec_lock);
/* Read the primary device */
ret = tasdevice_dev_bulk_read(tas_dev, 0, reg, data, 4);
if (ret) {
dev_err(tas_dev->dev, "%s, get AMP vol error\n", __func__);
rc = -1;
goto out;
}
volrd = get_unaligned_be32(&data[0]);
volwr = get_unaligned_be32(tas2563_dvc_table[vol]);
if (volrd == volwr) {
rc = 0;
goto out;
}
for (i = 0; i < tas_dev->ndev; i++) {
ret = tasdevice_dev_bulk_write(tas_dev, i, reg,
(unsigned char *)tas2563_dvc_table[vol], 4);
if (ret) {
dev_err(tas_dev->dev,
"%s, set digital vol error in dev %d\n",
__func__, i);
status |= BIT(i);
}
}
if (status)
rc = -1;
out:
mutex_unlock(&tas_dev->codec_lock);
return rc;
}
static const struct snd_kcontrol_new tasdevice_snd_controls[] = {
SOC_SINGLE_BOOL_EXT("Speaker Force Firmware Load", 0,
tasdev_force_fwload_get, tasdev_force_fwload_put),
};
static const struct snd_kcontrol_new tasdevice_cali_controls[] = {
SOC_SINGLE_EXT("Calibration Stop", SND_SOC_NOPM, 0, 1, 0,
tasdev_nop_get, tasdev_calib_stop_put),
SND_SOC_BYTES_EXT("Amp TF Data", 6, tasdev_tf_data_get, NULL),
SND_SOC_BYTES_EXT("Amp RE Data", 6, tasdev_re_data_get, NULL),
SND_SOC_BYTES_EXT("Amp R0 Data", 6, tasdev_r0_data_get, NULL),
SND_SOC_BYTES_EXT("Amp XMA1 Data", 6, tasdev_XMA1_data_get, NULL),
SND_SOC_BYTES_EXT("Amp XMA2 Data", 6, tasdev_XMA2_data_get, NULL),
};
static const struct snd_kcontrol_new tas2781_snd_controls[] = {
SOC_SINGLE_RANGE_EXT_TLV("Speaker Analog Gain", TAS2781_AMP_LEVEL,
1, 0, 20, 0, tas2781_amp_getvol,
tas2781_amp_putvol, amp_vol_tlv),
SOC_SINGLE_RANGE_EXT_TLV("Speaker Digital Gain", TAS2781_DVC_LVL,
0, 0, 200, 1, tas2781_digital_getvol,
tas2781_digital_putvol, dvc_tlv),
};
static const struct snd_kcontrol_new tas2781_cali_controls[] = {
SND_SOC_BYTES_EXT("Amp Latch Data", 3, tas2781_latch_reg_get, NULL),
};
static const struct snd_kcontrol_new tas2563_snd_controls[] = {
SOC_SINGLE_RANGE_EXT_TLV("Speaker Digital Volume", TAS2563_DVC_LVL, 0,
0, ARRAY_SIZE(tas2563_dvc_table) - 1, 0,
tas2563_digital_gain_get, tas2563_digital_gain_put,
tas2563_dvc_tlv),
};
static const struct snd_kcontrol_new tas2563_cali_controls[] = {
SOC_SINGLE_EXT("Calibration Start", SND_SOC_NOPM, 0, 1, 0,
tasdev_nop_get, tas2563_calib_start_put),
};
static int tasdevice_set_profile_id(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
int ret = 0;
if (tas_priv->rcabin.profile_cfg_id !=
ucontrol->value.integer.value[0]) {
tas_priv->rcabin.profile_cfg_id =
ucontrol->value.integer.value[0];
ret = 1;
}
return ret;
}
static int tasdevice_info_active_num(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = tas_priv->ndev - 1;
return 0;
}
static int tasdevice_info_chip_id(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = TAS2563;
uinfo->value.integer.max = TAS2781;
return 0;
}
static int tasdevice_info_programs(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct tasdevice_fw *tas_fw = tas_priv->fmw;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = (int)tas_fw->nr_programs;
return 0;
}
static int tasdevice_info_configurations(
struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *codec =
snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct tasdevice_fw *tas_fw = tas_priv->fmw;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = (int)tas_fw->nr_configurations - 1;
return 0;
}
static int tasdevice_info_profile(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = tas_priv->rcabin.ncfgs - 1;
return 0;
}
static int tasdevice_get_profile_id(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
ucontrol->value.integer.value[0] = tas_priv->rcabin.profile_cfg_id;
return 0;
}
static int tasdevice_get_chip_id(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
ucontrol->value.integer.value[0] = tas_priv->chip_id;
return 0;
}
static int tasdevice_create_control(struct tasdevice_priv *tas_priv)
{
struct snd_kcontrol_new *prof_ctrls;
int nr_controls = 1;
int mix_index = 0;
int ret;
char *name;
prof_ctrls = devm_kcalloc(tas_priv->dev, nr_controls,
sizeof(prof_ctrls[0]), GFP_KERNEL);
if (!prof_ctrls) {
ret = -ENOMEM;
goto out;
}
/* Create a mixer item for selecting the active profile */
name = devm_kstrdup(tas_priv->dev, "Speaker Profile Id", GFP_KERNEL);
if (!name) {
ret = -ENOMEM;
goto out;
}
prof_ctrls[mix_index].name = name;
prof_ctrls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
prof_ctrls[mix_index].info = tasdevice_info_profile;
prof_ctrls[mix_index].get = tasdevice_get_profile_id;
prof_ctrls[mix_index].put = tasdevice_set_profile_id;
mix_index++;
ret = snd_soc_add_component_controls(tas_priv->codec,
prof_ctrls, nr_controls < mix_index ? nr_controls : mix_index);
out:
return ret;
}
static int tasdevice_program_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
ucontrol->value.integer.value[0] = tas_priv->cur_prog;
return 0;
}
static int tasdevice_program_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
unsigned int nr_program = ucontrol->value.integer.value[0];
int ret = 0;
if (tas_priv->cur_prog != nr_program) {
tas_priv->cur_prog = nr_program;
ret = 1;
}
return ret;
}
static int tasdevice_configuration_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
ucontrol->value.integer.value[0] = tas_priv->cur_conf;
return 0;
}
static int tasdevice_configuration_put(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
unsigned int nr_configuration = ucontrol->value.integer.value[0];
int ret = 0;
if (tas_priv->cur_conf != nr_configuration) {
tas_priv->cur_conf = nr_configuration;
ret = 1;
}
return ret;
}
static int tasdevice_active_num_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct i2c_client *clt = (struct i2c_client *)tas_priv->client;
struct tasdevice *tasdev = tas_priv->tasdevice;
int i;
for (i = 0; i < tas_priv->ndev; i++) {
if (clt->addr == tasdev[i].dev_addr) {
ucontrol->value.integer.value[0] = i;
return 0;
}
}
return -1;
}
static int tasdevice_active_num_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *codec = snd_soc_kcontrol_component(kcontrol);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
int dev_id = ucontrol->value.integer.value[0];
int max = tas_priv->ndev - 1, rc;
dev_id = clamp(dev_id, 0, max);
guard(mutex)(&tas_priv->codec_lock);
rc = tasdev_chn_switch(tas_priv, dev_id);
return rc;
}
static int tasdevice_dsp_create_ctrls(struct tasdevice_priv *tas_priv)
{
struct snd_kcontrol_new *dsp_ctrls;
char *active_dev_num, *chip_id;
char *conf_name, *prog_name;
int nr_controls = 4;
int mix_index = 0;
int ret;
/* Alloc kcontrol via devm_kzalloc, which don't manually
* free the kcontrol
*/
dsp_ctrls = devm_kcalloc(tas_priv->dev, nr_controls,
sizeof(dsp_ctrls[0]), GFP_KERNEL);
if (!dsp_ctrls) {
ret = -ENOMEM;
goto out;
}
/* Create mixer items for selecting the active Program and Config */
prog_name = devm_kstrdup(tas_priv->dev, "Speaker Program Id",
GFP_KERNEL);
if (!prog_name) {
ret = -ENOMEM;
goto out;
}
dsp_ctrls[mix_index].name = prog_name;
dsp_ctrls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
dsp_ctrls[mix_index].info = tasdevice_info_programs;
dsp_ctrls[mix_index].get = tasdevice_program_get;
dsp_ctrls[mix_index].put = tasdevice_program_put;
mix_index++;
conf_name = devm_kstrdup(tas_priv->dev, "Speaker Config Id",
GFP_KERNEL);
if (!conf_name) {
ret = -ENOMEM;
goto out;
}
dsp_ctrls[mix_index].name = conf_name;
dsp_ctrls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
dsp_ctrls[mix_index].info = tasdevice_info_configurations;
dsp_ctrls[mix_index].get = tasdevice_configuration_get;
dsp_ctrls[mix_index].put = tasdevice_configuration_put;
mix_index++;
active_dev_num = devm_kstrdup(tas_priv->dev, "Activate Tasdevice Num",
GFP_KERNEL);
if (!active_dev_num) {
ret = -ENOMEM;
goto out;
}
dsp_ctrls[mix_index].name = active_dev_num;
dsp_ctrls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
dsp_ctrls[mix_index].info = tasdevice_info_active_num;
dsp_ctrls[mix_index].get = tasdevice_active_num_get;
dsp_ctrls[mix_index].put = tasdevice_active_num_put;
mix_index++;
chip_id = devm_kstrdup(tas_priv->dev, "Tasdevice Chip Id", GFP_KERNEL);
if (!chip_id) {
ret = -ENOMEM;
goto out;
}
dsp_ctrls[mix_index].name = chip_id;
dsp_ctrls[mix_index].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
dsp_ctrls[mix_index].info = tasdevice_info_chip_id;
dsp_ctrls[mix_index].get = tasdevice_get_chip_id;
mix_index++;
ret = snd_soc_add_component_controls(tas_priv->codec, dsp_ctrls,
nr_controls < mix_index ? nr_controls : mix_index);
out:
return ret;
}
static int tasdevice_create_cali_ctrls(struct tasdevice_priv *priv)
{
struct calidata *cali_data = &priv->cali_data;
struct tasdevice *tasdev = priv->tasdevice;
struct soc_bytes_ext *ext_cali_data;
struct snd_kcontrol_new *cali_ctrls;
unsigned int nctrls;
char *cali_name;
int rc, i;
rc = snd_soc_add_component_controls(priv->codec,
tasdevice_cali_controls, ARRAY_SIZE(tasdevice_cali_controls));
if (rc < 0) {
dev_err(priv->dev, "%s: Add cali controls err rc = %d",
__func__, rc);
return rc;
}
if (priv->chip_id == TAS2781) {
cali_ctrls = (struct snd_kcontrol_new *)tas2781_cali_controls;
nctrls = ARRAY_SIZE(tas2781_cali_controls);
for (i = 0; i < priv->ndev; i++) {
tasdev[i].cali_data_backup =
kmemdup(tas2781_cali_start_reg,
sizeof(tas2781_cali_start_reg), GFP_KERNEL);
if (!tasdev[i].cali_data_backup)
return -ENOMEM;
}
} else {
cali_ctrls = (struct snd_kcontrol_new *)tas2563_cali_controls;
nctrls = ARRAY_SIZE(tas2563_cali_controls);
for (i = 0; i < priv->ndev; i++) {
tasdev[i].cali_data_backup =
kmemdup(tas2563_cali_start_reg,
sizeof(tas2563_cali_start_reg), GFP_KERNEL);
if (!tasdev[i].cali_data_backup)
return -ENOMEM;
}
}
rc = snd_soc_add_component_controls(priv->codec, cali_ctrls, nctrls);
if (rc < 0) {
dev_err(priv->dev, "%s: Add chip cali ctrls err rc = %d",
__func__, rc);
return rc;
}
/* index for cali_ctrls */
i = 0;
if (priv->chip_id == TAS2781)
nctrls = 2;
else
nctrls = 1;
/*
* Alloc kcontrol via devm_kzalloc(), which don't manually
* free the kcontrol。
*/
cali_ctrls = devm_kcalloc(priv->dev, nctrls,
sizeof(cali_ctrls[0]), GFP_KERNEL);
if (!cali_ctrls)
return -ENOMEM;
ext_cali_data = devm_kzalloc(priv->dev, sizeof(*ext_cali_data),
GFP_KERNEL);
if (!ext_cali_data)
return -ENOMEM;
cali_name = devm_kstrdup(priv->dev, "Speaker Calibrated Data",
GFP_KERNEL);
if (!cali_name)
return -ENOMEM;
/* the number of calibrated data per tas2563/tas2781 */
cali_data->cali_dat_sz_per_dev = 20;
/*
* Data structure for tas2563/tas2781 calibrated data:
* Pkg len (1 byte)
* Reg id (1 byte, constant 'r')
* book, page, register array for calibrated data (15 bytes)
* for (i = 0; i < Device-Sum; i++) {
* Device #i index_info (1 byte)
* Calibrated data for Device #i (20 bytes)
* }
*/
ext_cali_data->max = priv->ndev *
(cali_data->cali_dat_sz_per_dev + 1) + 1 + 15 + 1;
priv->cali_data.total_sz = priv->ndev *
(cali_data->cali_dat_sz_per_dev + 1);
priv->cali_data.data = devm_kzalloc(priv->dev,
ext_cali_data->max, GFP_KERNEL);
cali_ctrls[i].name = cali_name;
cali_ctrls[i].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
cali_ctrls[i].info = snd_soc_bytes_info_ext;
cali_ctrls[i].get = tasdev_cali_data_get;
cali_ctrls[i].put = tasdev_cali_data_put;
cali_ctrls[i].private_value = (unsigned long)ext_cali_data;
i++;
cali_data->data = devm_kzalloc(priv->dev, cali_data->total_sz,
GFP_KERNEL);
if (!cali_data->data)
return -ENOMEM;
if (priv->chip_id == TAS2781) {
struct soc_bytes_ext *ext_cali_start;
char *cali_start_name;
ext_cali_start = devm_kzalloc(priv->dev,
sizeof(*ext_cali_start), GFP_KERNEL);
if (!ext_cali_start)
return -ENOMEM;
cali_start_name = devm_kstrdup(priv->dev,
"Calibration Start", GFP_KERNEL);
if (!cali_start_name)
return -ENOMEM;
/*
* package structure for tas2781 ftc start:
* Pkg len (1 byte)
* Reg id (1 byte, constant 'r')
* book, page, register for pilot threshold, pilot tone
* and sine gain (12 bytes)
* for (i = 0; i < Device-Sum; i++) {
* Device #i index_info (1 byte)
* Sine gain for Device #i (8 bytes)
* }
*/
ext_cali_start->max = 14 + priv->ndev * 9;
cali_ctrls[i].name = cali_start_name;
cali_ctrls[i].iface = SNDRV_CTL_ELEM_IFACE_MIXER;
cali_ctrls[i].info = snd_soc_bytes_info_ext;
cali_ctrls[i].put = tas2781_calib_start_put;
cali_ctrls[i].get = tasdev_nop_get;
cali_ctrls[i].private_value = (unsigned long)ext_cali_start;
i++;
}
rc = snd_soc_add_component_controls(priv->codec, cali_ctrls,
nctrls < i ? nctrls : i);
return rc;
}
static void tasdevice_fw_ready(const struct firmware *fmw,
void *context)
{
struct tasdevice_priv *tas_priv = context;
int ret = 0;
int i;
mutex_lock(&tas_priv->codec_lock);
ret = tasdevice_rca_parser(tas_priv, fmw);
if (ret) {
tasdevice_config_info_remove(tas_priv);
goto out;
}
tasdevice_create_control(tas_priv);
tasdevice_dsp_remove(tas_priv);
tasdevice_calbin_remove(tas_priv);
/*
* The baseline is the RCA-only case, and then the code attempts to
* load DSP firmware but in case of failures just keep going, i.e.
* failing to load DSP firmware is NOT an error.
*/
tas_priv->fw_state = TASDEVICE_RCA_FW_OK;
if (tas_priv->name_prefix)
scnprintf(tas_priv->coef_binaryname, 64, "%s-%s_coef.bin",
tas_priv->name_prefix, tas_priv->dev_name);
else
scnprintf(tas_priv->coef_binaryname, 64, "%s_coef.bin",
tas_priv->dev_name);
ret = tasdevice_dsp_parser(tas_priv);
if (ret) {
dev_err(tas_priv->dev, "dspfw load %s error\n",
tas_priv->coef_binaryname);
goto out;
}
/*
* If no dsp-related kcontrol created, the dsp resource will be freed.
*/
ret = tasdevice_dsp_create_ctrls(tas_priv);
if (ret) {
dev_err(tas_priv->dev, "dsp controls error\n");
goto out;
}
ret = tasdevice_create_cali_ctrls(tas_priv);
if (ret) {
dev_err(tas_priv->dev, "cali controls error\n");
goto out;
}
tas_priv->fw_state = TASDEVICE_DSP_FW_ALL_OK;
/* If calibrated data occurs error, dsp will still works with default
* calibrated data inside algo.
*/
for (i = 0; i < tas_priv->ndev; i++) {
if (tas_priv->name_prefix)
scnprintf(tas_priv->cal_binaryname[i], 64,
"%s-%s_cal_0x%02x.bin", tas_priv->name_prefix,
tas_priv->dev_name,
tas_priv->tasdevice[i].dev_addr);
else
scnprintf(tas_priv->cal_binaryname[i], 64,
"%s_cal_0x%02x.bin", tas_priv->dev_name,
tas_priv->tasdevice[i].dev_addr);
ret = tas2781_load_calibration(tas_priv,
tas_priv->cal_binaryname[i], i);
if (ret != 0)
dev_err(tas_priv->dev,
"%s: load %s error, default will effect\n",
__func__, tas_priv->cal_binaryname[i]);
}
tasdevice_prmg_load(tas_priv, 0);
tas_priv->cur_prog = 0;
out:
if (tas_priv->fw_state == TASDEVICE_RCA_FW_OK) {
/* If DSP FW fail, DSP kcontrol won't be created. */
tasdevice_dsp_remove(tas_priv);
}
mutex_unlock(&tas_priv->codec_lock);
if (fmw)
release_firmware(fmw);
}
static int tasdevice_dapm_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *codec = snd_soc_dapm_to_component(w->dapm);
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
int state = 0;
/* Codec Lock Hold */
mutex_lock(&tas_priv->codec_lock);
if (event == SND_SOC_DAPM_PRE_PMD)
state = 1;
tasdevice_tuning_switch(tas_priv, state);
/* Codec Lock Release*/
mutex_unlock(&tas_priv->codec_lock);
return 0;
}
static const struct snd_soc_dapm_widget tasdevice_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN("ASI", "ASI Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT_E("ASI OUT", "ASI Capture", 0, SND_SOC_NOPM,
0, 0, tasdevice_dapm_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SPK("SPK", tasdevice_dapm_event),
SND_SOC_DAPM_OUTPUT("OUT"),
SND_SOC_DAPM_INPUT("DMIC"),
};
static const struct snd_soc_dapm_route tasdevice_audio_map[] = {
{"SPK", NULL, "ASI"},
{"OUT", NULL, "SPK"},
{"ASI OUT", NULL, "DMIC"},
};
static int tasdevice_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *codec = dai->component;
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
switch (tas_priv->fw_state) {
case TASDEVICE_RCA_FW_OK:
case TASDEVICE_DSP_FW_ALL_OK:
return 0;
default:
return -EINVAL;
}
}
static int tasdevice_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct tasdevice_priv *tas_priv = snd_soc_dai_get_drvdata(dai);
unsigned int slot_width;
unsigned int fsrate;
int bclk_rate;
int rc = 0;
fsrate = params_rate(params);
switch (fsrate) {
case 48000:
case 44100:
break;
default:
dev_err(tas_priv->dev, "%s: incorrect sample rate = %u\n",
__func__, fsrate);
rc = -EINVAL;
goto out;
}
slot_width = params_width(params);
switch (slot_width) {
case 16:
case 20:
case 24:
case 32:
break;
default:
dev_err(tas_priv->dev, "%s: incorrect slot width = %u\n",
__func__, slot_width);
rc = -EINVAL;
goto out;
}
bclk_rate = snd_soc_params_to_bclk(params);
if (bclk_rate < 0) {
dev_err(tas_priv->dev, "%s: incorrect bclk rate = %d\n",
__func__, bclk_rate);
rc = bclk_rate;
goto out;
}
out:
return rc;
}
static int tasdevice_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct tasdevice_priv *tas_priv = snd_soc_dai_get_drvdata(codec_dai);
tas_priv->sysclk = freq;
return 0;
}
static const struct snd_soc_dai_ops tasdevice_dai_ops = {
.startup = tasdevice_startup,
.hw_params = tasdevice_hw_params,
.set_sysclk = tasdevice_set_dai_sysclk,
};
static struct snd_soc_dai_driver tasdevice_dai_driver[] = {
{
.name = "tasdev_codec",
.id = 0,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 4,
.rates = TASDEVICE_RATES,
.formats = TASDEVICE_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 4,
.rates = TASDEVICE_RATES,
.formats = TASDEVICE_FORMATS,
},
.ops = &tasdevice_dai_ops,
.symmetric_rate = 1,
},
};
static int tasdevice_codec_probe(struct snd_soc_component *codec)
{
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
struct snd_kcontrol_new *p;
unsigned int size;
int rc;
switch (tas_priv->chip_id) {
case TAS2781:
p = (struct snd_kcontrol_new *)tas2781_snd_controls;
size = ARRAY_SIZE(tas2781_snd_controls);
break;
default:
p = (struct snd_kcontrol_new *)tas2563_snd_controls;
size = ARRAY_SIZE(tas2563_snd_controls);
}
rc = snd_soc_add_component_controls(codec, p, size);
if (rc < 0) {
dev_err(tas_priv->dev, "%s: Add control err rc = %d",
__func__, rc);
return rc;
}
tas_priv->name_prefix = codec->name_prefix;
return tascodec_init(tas_priv, codec, THIS_MODULE, tasdevice_fw_ready);
}
static void tasdevice_deinit(void *context)
{
struct tasdevice_priv *tas_priv = (struct tasdevice_priv *) context;
struct tasdevice *tasdev = tas_priv->tasdevice;
int i;
for (i = 0; i < tas_priv->ndev; i++)
kfree(tasdev[i].cali_data_backup);
tasdevice_config_info_remove(tas_priv);
tasdevice_dsp_remove(tas_priv);
tasdevice_calbin_remove(tas_priv);
tas_priv->fw_state = TASDEVICE_DSP_FW_PENDING;
}
static void tasdevice_codec_remove(struct snd_soc_component *codec)
{
struct tasdevice_priv *tas_priv = snd_soc_component_get_drvdata(codec);
tasdevice_deinit(tas_priv);
}
static const struct snd_soc_component_driver
soc_codec_driver_tasdevice = {
.probe = tasdevice_codec_probe,
.remove = tasdevice_codec_remove,
.controls = tasdevice_snd_controls,
.num_controls = ARRAY_SIZE(tasdevice_snd_controls),
.dapm_widgets = tasdevice_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tasdevice_dapm_widgets),
.dapm_routes = tasdevice_audio_map,
.num_dapm_routes = ARRAY_SIZE(tasdevice_audio_map),
.idle_bias_on = 1,
.endianness = 1,
};
static void tasdevice_parse_dt(struct tasdevice_priv *tas_priv)
{
struct i2c_client *client = (struct i2c_client *)tas_priv->client;
unsigned int dev_addrs[TASDEVICE_MAX_CHANNELS];
int i, ndev = 0;
if (tas_priv->isacpi) {
ndev = device_property_read_u32_array(&client->dev,
"ti,audio-slots", NULL, 0);
if (ndev <= 0) {
ndev = 1;
dev_addrs[0] = client->addr;
} else {
ndev = (ndev < ARRAY_SIZE(dev_addrs))
? ndev : ARRAY_SIZE(dev_addrs);
ndev = device_property_read_u32_array(&client->dev,
"ti,audio-slots", dev_addrs, ndev);
}
tas_priv->irq =
acpi_dev_gpio_irq_get(ACPI_COMPANION(&client->dev), 0);
} else if (IS_ENABLED(CONFIG_OF)) {
struct device_node *np = tas_priv->dev->of_node;
u64 addr;
for (i = 0; i < TASDEVICE_MAX_CHANNELS; i++) {
if (of_property_read_reg(np, i, &addr, NULL))
break;
dev_addrs[ndev++] = addr;
}
tas_priv->irq = of_irq_get(np, 0);
} else {
ndev = 1;
dev_addrs[0] = client->addr;
}
tas_priv->ndev = ndev;
for (i = 0; i < ndev; i++)
tas_priv->tasdevice[i].dev_addr = dev_addrs[i];
tas_priv->reset = devm_gpiod_get_optional(&client->dev,
"reset", GPIOD_OUT_HIGH);
if (IS_ERR(tas_priv->reset))
dev_err(tas_priv->dev, "%s Can't get reset GPIO\n",
__func__);
strcpy(tas_priv->dev_name, tasdevice_id[tas_priv->chip_id].name);
}
static int tasdevice_i2c_probe(struct i2c_client *i2c)
{
const struct i2c_device_id *id = i2c_match_id(tasdevice_id, i2c);
const struct acpi_device_id *acpi_id;
struct tasdevice_priv *tas_priv;
int ret;
tas_priv = tasdevice_kzalloc(i2c);
if (!tas_priv)
return -ENOMEM;
dev_set_drvdata(&i2c->dev, tas_priv);
if (ACPI_HANDLE(&i2c->dev)) {
acpi_id = acpi_match_device(i2c->dev.driver->acpi_match_table,
&i2c->dev);
if (!acpi_id) {
dev_err(&i2c->dev, "No driver data\n");
ret = -EINVAL;
goto err;
}
tas_priv->chip_id = acpi_id->driver_data;
tas_priv->isacpi = true;
} else {
tas_priv->chip_id = id ? id->driver_data : 0;
tas_priv->isacpi = false;
}
tasdevice_parse_dt(tas_priv);
ret = tasdevice_init(tas_priv);
if (ret)
goto err;
tasdevice_reset(tas_priv);
ret = devm_snd_soc_register_component(tas_priv->dev,
&soc_codec_driver_tasdevice,
tasdevice_dai_driver, ARRAY_SIZE(tasdevice_dai_driver));
if (ret) {
dev_err(tas_priv->dev, "%s: codec register error:0x%08x\n",
__func__, ret);
goto err;
}
err:
if (ret < 0)
tasdevice_remove(tas_priv);
return ret;
}
static void tasdevice_i2c_remove(struct i2c_client *client)
{
struct tasdevice_priv *tas_priv = i2c_get_clientdata(client);
tasdevice_remove(tas_priv);
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id tasdevice_acpi_match[] = {
{ "TAS2781", TAS2781 },
{},
};
MODULE_DEVICE_TABLE(acpi, tasdevice_acpi_match);
#endif
static struct i2c_driver tasdevice_i2c_driver = {
.driver = {
.name = "tasdev-codec",
.of_match_table = of_match_ptr(tasdevice_of_match),
#ifdef CONFIG_ACPI
.acpi_match_table = ACPI_PTR(tasdevice_acpi_match),
#endif
},
.probe = tasdevice_i2c_probe,
.remove = tasdevice_i2c_remove,
.id_table = tasdevice_id,
};
module_i2c_driver(tasdevice_i2c_driver);
MODULE_AUTHOR("Shenghao Ding <shenghao-ding@ti.com>");
MODULE_AUTHOR("Kevin Lu <kevin-lu@ti.com>");
MODULE_DESCRIPTION("ASoC TAS2781 Driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(SND_SOC_TAS2781_FMWLIB);