blob: ed1f57511955856af1bbb76fc8b3e81ce51ae7b8 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Counter driver for the ACCES 104-QUAD-8
* Copyright (C) 2016 William Breathitt Gray
*
* This driver supports the ACCES 104-QUAD-8 and ACCES 104-QUAD-4.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/counter.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/isa.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/regmap.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <asm/unaligned.h>
#define QUAD8_EXTENT 32
static unsigned int base[max_num_isa_dev(QUAD8_EXTENT)];
static unsigned int num_quad8;
module_param_hw_array(base, uint, ioport, &num_quad8, 0);
MODULE_PARM_DESC(base, "ACCES 104-QUAD-8 base addresses");
static unsigned int irq[max_num_isa_dev(QUAD8_EXTENT)];
static unsigned int num_irq;
module_param_hw_array(irq, uint, irq, &num_irq, 0);
MODULE_PARM_DESC(irq, "ACCES 104-QUAD-8 interrupt line numbers");
#define QUAD8_NUM_COUNTERS 8
#define QUAD8_DATA(_channel) ((_channel) * 2)
#define QUAD8_CONTROL(_channel) (QUAD8_DATA(_channel) + 1)
#define QUAD8_INTERRUPT_STATUS 0x10
#define QUAD8_CHANNEL_OPERATION 0x11
#define QUAD8_INDEX_INTERRUPT 0x12
#define QUAD8_INDEX_INPUT_LEVELS 0x16
#define QUAD8_CABLE_STATUS 0x17
/**
* struct quad8 - device private data structure
* @lock: lock to prevent clobbering device states during R/W ops
* @cmr: array of Counter Mode Register states
* @ior: array of Input / Output Control Register states
* @idr: array of Index Control Register states
* @fck_prescaler: array of filter clock prescaler configurations
* @preset: array of preset values
* @cable_fault_enable: differential encoder cable status enable configurations
* @map: regmap for the device
*/
struct quad8 {
spinlock_t lock;
u8 cmr[QUAD8_NUM_COUNTERS];
u8 ior[QUAD8_NUM_COUNTERS];
u8 idr[QUAD8_NUM_COUNTERS];
unsigned int fck_prescaler[QUAD8_NUM_COUNTERS];
unsigned int preset[QUAD8_NUM_COUNTERS];
unsigned int cable_fault_enable;
struct regmap *map;
};
static const struct regmap_range quad8_wr_ranges[] = {
regmap_reg_range(0x0, 0xF), regmap_reg_range(0x11, 0x12), regmap_reg_range(0x17, 0x17),
};
static const struct regmap_range quad8_rd_ranges[] = {
regmap_reg_range(0x0, 0x12), regmap_reg_range(0x16, 0x18),
};
static const struct regmap_access_table quad8_wr_table = {
.yes_ranges = quad8_wr_ranges,
.n_yes_ranges = ARRAY_SIZE(quad8_wr_ranges),
};
static const struct regmap_access_table quad8_rd_table = {
.yes_ranges = quad8_rd_ranges,
.n_yes_ranges = ARRAY_SIZE(quad8_rd_ranges),
};
static const struct regmap_config quad8_regmap_config = {
.reg_bits = 8,
.reg_stride = 1,
.val_bits = 8,
.io_port = true,
.wr_table = &quad8_wr_table,
.rd_table = &quad8_rd_table,
};
/* Error flag */
#define FLAG_E BIT(4)
/* Up/Down flag */
#define FLAG_UD BIT(5)
/* Counting up */
#define UP 0x1
#define REGISTER_SELECTION GENMASK(6, 5)
/* Reset and Load Signal Decoders */
#define SELECT_RLD u8_encode_bits(0x0, REGISTER_SELECTION)
/* Counter Mode Register */
#define SELECT_CMR u8_encode_bits(0x1, REGISTER_SELECTION)
/* Input / Output Control Register */
#define SELECT_IOR u8_encode_bits(0x2, REGISTER_SELECTION)
/* Index Control Register */
#define SELECT_IDR u8_encode_bits(0x3, REGISTER_SELECTION)
/*
* Reset and Load Signal Decoders
*/
#define RESETS GENMASK(2, 1)
#define LOADS GENMASK(4, 3)
/* Reset Byte Pointer (three byte data pointer) */
#define RESET_BP BIT(0)
/* Reset Borrow Toggle, Carry toggle, Compare toggle, Sign, and Index flags */
#define RESET_BT_CT_CPT_S_IDX u8_encode_bits(0x2, RESETS)
/* Reset Error flag */
#define RESET_E u8_encode_bits(0x3, RESETS)
/* Preset Register to Counter */
#define TRANSFER_PR_TO_CNTR u8_encode_bits(0x1, LOADS)
/* Transfer Counter to Output Latch */
#define TRANSFER_CNTR_TO_OL u8_encode_bits(0x2, LOADS)
/* Transfer Preset Register LSB to FCK Prescaler */
#define TRANSFER_PR0_TO_PSC u8_encode_bits(0x3, LOADS)
/*
* Counter Mode Registers
*/
#define COUNT_ENCODING BIT(0)
#define COUNT_MODE GENMASK(2, 1)
#define QUADRATURE_MODE GENMASK(4, 3)
/* Binary count */
#define BINARY u8_encode_bits(0x0, COUNT_ENCODING)
/* Normal count */
#define NORMAL_COUNT 0x0
/* Range Limit */
#define RANGE_LIMIT 0x1
/* Non-recycle count */
#define NON_RECYCLE_COUNT 0x2
/* Modulo-N */
#define MODULO_N 0x3
/* Non-quadrature */
#define NON_QUADRATURE 0x0
/* Quadrature X1 */
#define QUADRATURE_X1 0x1
/* Quadrature X2 */
#define QUADRATURE_X2 0x2
/* Quadrature X4 */
#define QUADRATURE_X4 0x3
/*
* Input/Output Control Register
*/
#define AB_GATE BIT(0)
#define LOAD_PIN BIT(1)
#define FLG_PINS GENMASK(4, 3)
/* Disable inputs A and B */
#define DISABLE_AB u8_encode_bits(0x0, AB_GATE)
/* Load Counter input */
#define LOAD_CNTR 0x0
/* FLG1 = CARRY(active low); FLG2 = BORROW(active low) */
#define FLG1_CARRY_FLG2_BORROW 0x0
/* FLG1 = COMPARE(active low); FLG2 = BORROW(active low) */
#define FLG1_COMPARE_FLG2_BORROW 0x1
/* FLG1 = Carry(active low)/Borrow(active low); FLG2 = U/D(active low) flag */
#define FLG1_CARRYBORROW_FLG2_UD 0x2
/* FLG1 = INDX (low pulse at INDEX pin active level); FLG2 = E flag */
#define FLG1_INDX_FLG2_E 0x3
/*
* INDEX CONTROL REGISTERS
*/
#define INDEX_MODE BIT(0)
#define INDEX_POLARITY BIT(1)
/* Disable Index mode */
#define DISABLE_INDEX_MODE 0x0
/* Enable Index mode */
#define ENABLE_INDEX_MODE 0x1
/* Negative Index Polarity */
#define NEGATIVE_INDEX_POLARITY 0x0
/* Positive Index Polarity */
#define POSITIVE_INDEX_POLARITY 0x1
/*
* Channel Operation Register
*/
#define COUNTERS_OPERATION BIT(0)
#define INTERRUPT_FUNCTION BIT(2)
/* Enable all Counters */
#define ENABLE_COUNTERS u8_encode_bits(0x0, COUNTERS_OPERATION)
/* Reset all Counters */
#define RESET_COUNTERS u8_encode_bits(0x1, COUNTERS_OPERATION)
/* Disable the interrupt function */
#define DISABLE_INTERRUPT_FUNCTION u8_encode_bits(0x0, INTERRUPT_FUNCTION)
/* Enable the interrupt function */
#define ENABLE_INTERRUPT_FUNCTION u8_encode_bits(0x1, INTERRUPT_FUNCTION)
/* Any write to the Channel Operation register clears any pending interrupts */
#define CLEAR_PENDING_INTERRUPTS (ENABLE_COUNTERS | ENABLE_INTERRUPT_FUNCTION)
/* Each Counter is 24 bits wide */
#define LS7267_CNTR_MAX GENMASK(23, 0)
static __always_inline int quad8_control_register_update(struct regmap *const map, u8 *const buf,
const size_t channel, const u8 val,
const u8 field)
{
u8p_replace_bits(&buf[channel], val, field);
return regmap_write(map, QUAD8_CONTROL(channel), buf[channel]);
}
static int quad8_signal_read(struct counter_device *counter,
struct counter_signal *signal,
enum counter_signal_level *level)
{
const struct quad8 *const priv = counter_priv(counter);
int ret;
/* Only Index signal levels can be read */
if (signal->id < 16)
return -EINVAL;
ret = regmap_test_bits(priv->map, QUAD8_INDEX_INPUT_LEVELS, BIT(signal->id - 16));
if (ret < 0)
return ret;
*level = (ret) ? COUNTER_SIGNAL_LEVEL_HIGH : COUNTER_SIGNAL_LEVEL_LOW;
return 0;
}
static int quad8_count_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
u8 value[3];
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
ret = regmap_write(priv->map, QUAD8_CONTROL(count->id),
SELECT_RLD | RESET_BP | TRANSFER_CNTR_TO_OL);
if (ret)
goto exit_unlock;
ret = regmap_noinc_read(priv->map, QUAD8_DATA(count->id), value, sizeof(value));
exit_unlock:
spin_unlock_irqrestore(&priv->lock, irqflags);
*val = get_unaligned_le24(value);
return ret;
}
static int quad8_preset_register_set(struct quad8 *const priv, const size_t id,
const unsigned long preset)
{
u8 value[3];
int ret;
put_unaligned_le24(preset, value);
ret = regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_BP);
if (ret)
return ret;
return regmap_noinc_write(priv->map, QUAD8_DATA(id), value, sizeof(value));
}
static int quad8_flag_register_reset(struct quad8 *const priv, const size_t id)
{
int ret;
ret = regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_BT_CT_CPT_S_IDX);
if (ret)
return ret;
return regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_E);
}
static int quad8_count_write(struct counter_device *counter,
struct counter_count *count, u64 val)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int ret;
if (val > LS7267_CNTR_MAX)
return -ERANGE;
spin_lock_irqsave(&priv->lock, irqflags);
/* Counter can only be set via Preset Register */
ret = quad8_preset_register_set(priv, count->id, val);
if (ret)
goto exit_unlock;
ret = regmap_write(priv->map, QUAD8_CONTROL(count->id), SELECT_RLD | TRANSFER_PR_TO_CNTR);
if (ret)
goto exit_unlock;
ret = quad8_flag_register_reset(priv, count->id);
if (ret)
goto exit_unlock;
/* Set Preset Register back to original value */
ret = quad8_preset_register_set(priv, count->id, priv->preset[count->id]);
exit_unlock:
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static const enum counter_function quad8_count_functions_list[] = {
COUNTER_FUNCTION_PULSE_DIRECTION,
COUNTER_FUNCTION_QUADRATURE_X1_A,
COUNTER_FUNCTION_QUADRATURE_X2_A,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static int quad8_function_get(const struct quad8 *const priv, const size_t id,
enum counter_function *const function)
{
switch (u8_get_bits(priv->cmr[id], QUADRATURE_MODE)) {
case NON_QUADRATURE:
*function = COUNTER_FUNCTION_PULSE_DIRECTION;
return 0;
case QUADRATURE_X1:
*function = COUNTER_FUNCTION_QUADRATURE_X1_A;
return 0;
case QUADRATURE_X2:
*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
return 0;
case QUADRATURE_X4:
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
}
static int quad8_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int retval;
spin_lock_irqsave(&priv->lock, irqflags);
retval = quad8_function_get(priv, count->id, function);
spin_unlock_irqrestore(&priv->lock, irqflags);
return retval;
}
static int quad8_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct quad8 *const priv = counter_priv(counter);
const int id = count->id;
unsigned long irqflags;
unsigned int mode_cfg;
bool synchronous_mode;
int ret;
switch (function) {
case COUNTER_FUNCTION_PULSE_DIRECTION:
mode_cfg = NON_QUADRATURE;
break;
case COUNTER_FUNCTION_QUADRATURE_X1_A:
mode_cfg = QUADRATURE_X1;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_A:
mode_cfg = QUADRATURE_X2;
break;
case COUNTER_FUNCTION_QUADRATURE_X4:
mode_cfg = QUADRATURE_X4;
break;
default:
/* should never reach this path */
return -EINVAL;
}
spin_lock_irqsave(&priv->lock, irqflags);
/* Synchronous function not supported in non-quadrature mode */
synchronous_mode = u8_get_bits(priv->idr[id], INDEX_MODE) == ENABLE_INDEX_MODE;
if (synchronous_mode && mode_cfg == NON_QUADRATURE) {
ret = quad8_control_register_update(priv->map, priv->idr, id, DISABLE_INDEX_MODE,
INDEX_MODE);
if (ret)
goto exit_unlock;
}
ret = quad8_control_register_update(priv->map, priv->cmr, id, mode_cfg, QUADRATURE_MODE);
exit_unlock:
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_direction_read(struct counter_device *counter,
struct counter_count *count,
enum counter_count_direction *direction)
{
const struct quad8 *const priv = counter_priv(counter);
unsigned int flag;
int ret;
ret = regmap_read(priv->map, QUAD8_CONTROL(count->id), &flag);
if (ret)
return ret;
*direction = (u8_get_bits(flag, FLAG_UD) == UP) ? COUNTER_COUNT_DIRECTION_FORWARD :
COUNTER_COUNT_DIRECTION_BACKWARD;
return 0;
}
static const enum counter_synapse_action quad8_index_actions_list[] = {
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
};
static const enum counter_synapse_action quad8_synapse_actions_list[] = {
COUNTER_SYNAPSE_ACTION_NONE,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
};
static int quad8_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int err;
enum counter_function function;
const size_t signal_a_id = count->synapses[0].signal->id;
enum counter_count_direction direction;
/* Default action mode */
*action = COUNTER_SYNAPSE_ACTION_NONE;
/* Handle Index signals */
if (synapse->signal->id >= 16) {
if (u8_get_bits(priv->ior[count->id], LOAD_PIN) == LOAD_CNTR)
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
}
spin_lock_irqsave(&priv->lock, irqflags);
/* Get Count function and direction atomically */
err = quad8_function_get(priv, count->id, &function);
if (err) {
spin_unlock_irqrestore(&priv->lock, irqflags);
return err;
}
err = quad8_direction_read(counter, count, &direction);
if (err) {
spin_unlock_irqrestore(&priv->lock, irqflags);
return err;
}
spin_unlock_irqrestore(&priv->lock, irqflags);
/* Determine action mode based on current count function mode */
switch (function) {
case COUNTER_FUNCTION_PULSE_DIRECTION:
if (synapse->signal->id == signal_a_id)
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X1_A:
if (synapse->signal->id == signal_a_id) {
if (direction == COUNTER_COUNT_DIRECTION_FORWARD)
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
else
*action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE;
}
return 0;
case COUNTER_FUNCTION_QUADRATURE_X2_A:
if (synapse->signal->id == signal_a_id)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X4:
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
}
static int quad8_events_configure(struct counter_device *counter)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irq_enabled = 0;
unsigned long irqflags;
struct counter_event_node *event_node;
u8 flg_pins;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
list_for_each_entry(event_node, &counter->events_list, l) {
switch (event_node->event) {
case COUNTER_EVENT_OVERFLOW:
flg_pins = FLG1_CARRY_FLG2_BORROW;
break;
case COUNTER_EVENT_THRESHOLD:
flg_pins = FLG1_COMPARE_FLG2_BORROW;
break;
case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
flg_pins = FLG1_CARRYBORROW_FLG2_UD;
break;
case COUNTER_EVENT_INDEX:
flg_pins = FLG1_INDX_FLG2_E;
break;
default:
/* should never reach this path */
ret = -EINVAL;
goto exit_unlock;
}
/* Enable IRQ line */
irq_enabled |= BIT(event_node->channel);
/* Skip configuration if it is the same as previously set */
if (flg_pins == u8_get_bits(priv->ior[event_node->channel], FLG_PINS))
continue;
/* Save new IRQ function configuration */
ret = quad8_control_register_update(priv->map, priv->ior, event_node->channel,
flg_pins, FLG_PINS);
if (ret)
goto exit_unlock;
}
ret = regmap_write(priv->map, QUAD8_INDEX_INTERRUPT, irq_enabled);
exit_unlock:
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_watch_validate(struct counter_device *counter,
const struct counter_watch *watch)
{
struct counter_event_node *event_node;
if (watch->channel > QUAD8_NUM_COUNTERS - 1)
return -EINVAL;
switch (watch->event) {
case COUNTER_EVENT_OVERFLOW:
case COUNTER_EVENT_THRESHOLD:
case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
case COUNTER_EVENT_INDEX:
list_for_each_entry(event_node, &counter->next_events_list, l)
if (watch->channel == event_node->channel &&
watch->event != event_node->event)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
static const struct counter_ops quad8_ops = {
.signal_read = quad8_signal_read,
.count_read = quad8_count_read,
.count_write = quad8_count_write,
.function_read = quad8_function_read,
.function_write = quad8_function_write,
.action_read = quad8_action_read,
.events_configure = quad8_events_configure,
.watch_validate = quad8_watch_validate,
};
static const char *const quad8_index_polarity_modes[] = {
"negative",
"positive"
};
static int quad8_index_polarity_get(struct counter_device *counter,
struct counter_signal *signal,
u32 *index_polarity)
{
const struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id - 16;
*index_polarity = u8_get_bits(priv->idr[channel_id], INDEX_POLARITY);
return 0;
}
static int quad8_index_polarity_set(struct counter_device *counter,
struct counter_signal *signal,
u32 index_polarity)
{
struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id - 16;
unsigned long irqflags;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
ret = quad8_control_register_update(priv->map, priv->idr, channel_id, index_polarity,
INDEX_POLARITY);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_polarity_read(struct counter_device *counter,
struct counter_signal *signal,
enum counter_signal_polarity *polarity)
{
int err;
u32 index_polarity;
err = quad8_index_polarity_get(counter, signal, &index_polarity);
if (err)
return err;
*polarity = (index_polarity == POSITIVE_INDEX_POLARITY) ? COUNTER_SIGNAL_POLARITY_POSITIVE :
COUNTER_SIGNAL_POLARITY_NEGATIVE;
return 0;
}
static int quad8_polarity_write(struct counter_device *counter,
struct counter_signal *signal,
enum counter_signal_polarity polarity)
{
const u32 pol = (polarity == COUNTER_SIGNAL_POLARITY_POSITIVE) ? POSITIVE_INDEX_POLARITY :
NEGATIVE_INDEX_POLARITY;
return quad8_index_polarity_set(counter, signal, pol);
}
static const char *const quad8_synchronous_modes[] = {
"non-synchronous",
"synchronous"
};
static int quad8_synchronous_mode_get(struct counter_device *counter,
struct counter_signal *signal,
u32 *synchronous_mode)
{
const struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id - 16;
*synchronous_mode = u8_get_bits(priv->idr[channel_id], INDEX_MODE);
return 0;
}
static int quad8_synchronous_mode_set(struct counter_device *counter,
struct counter_signal *signal,
u32 synchronous_mode)
{
struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id - 16;
u8 quadrature_mode;
unsigned long irqflags;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
/* Index function must be non-synchronous in non-quadrature mode */
quadrature_mode = u8_get_bits(priv->idr[channel_id], QUADRATURE_MODE);
if (synchronous_mode && quadrature_mode == NON_QUADRATURE) {
ret = -EINVAL;
goto exit_unlock;
}
ret = quad8_control_register_update(priv->map, priv->idr, channel_id, synchronous_mode,
INDEX_MODE);
exit_unlock:
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_count_floor_read(struct counter_device *counter,
struct counter_count *count, u64 *floor)
{
/* Only a floor of 0 is supported */
*floor = 0;
return 0;
}
static int quad8_count_mode_read(struct counter_device *counter,
struct counter_count *count,
enum counter_count_mode *cnt_mode)
{
const struct quad8 *const priv = counter_priv(counter);
switch (u8_get_bits(priv->cmr[count->id], COUNT_MODE)) {
case NORMAL_COUNT:
*cnt_mode = COUNTER_COUNT_MODE_NORMAL;
break;
case RANGE_LIMIT:
*cnt_mode = COUNTER_COUNT_MODE_RANGE_LIMIT;
break;
case NON_RECYCLE_COUNT:
*cnt_mode = COUNTER_COUNT_MODE_NON_RECYCLE;
break;
case MODULO_N:
*cnt_mode = COUNTER_COUNT_MODE_MODULO_N;
break;
}
return 0;
}
static int quad8_count_mode_write(struct counter_device *counter,
struct counter_count *count,
enum counter_count_mode cnt_mode)
{
struct quad8 *const priv = counter_priv(counter);
unsigned int count_mode;
unsigned long irqflags;
int ret;
switch (cnt_mode) {
case COUNTER_COUNT_MODE_NORMAL:
count_mode = NORMAL_COUNT;
break;
case COUNTER_COUNT_MODE_RANGE_LIMIT:
count_mode = RANGE_LIMIT;
break;
case COUNTER_COUNT_MODE_NON_RECYCLE:
count_mode = NON_RECYCLE_COUNT;
break;
case COUNTER_COUNT_MODE_MODULO_N:
count_mode = MODULO_N;
break;
default:
/* should never reach this path */
return -EINVAL;
}
spin_lock_irqsave(&priv->lock, irqflags);
ret = quad8_control_register_update(priv->map, priv->cmr, count->id, count_mode,
COUNT_MODE);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_count_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
const struct quad8 *const priv = counter_priv(counter);
*enable = u8_get_bits(priv->ior[count->id], AB_GATE);
return 0;
}
static int quad8_count_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
ret = quad8_control_register_update(priv->map, priv->ior, count->id, enable, AB_GATE);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static const char *const quad8_noise_error_states[] = {
"No excessive noise is present at the count inputs",
"Excessive noise is present at the count inputs"
};
static int quad8_error_noise_get(struct counter_device *counter,
struct counter_count *count, u32 *noise_error)
{
const struct quad8 *const priv = counter_priv(counter);
unsigned int flag;
int ret;
ret = regmap_read(priv->map, QUAD8_CONTROL(count->id), &flag);
if (ret)
return ret;
*noise_error = u8_get_bits(flag, FLAG_E);
return 0;
}
static int quad8_count_preset_read(struct counter_device *counter,
struct counter_count *count, u64 *preset)
{
const struct quad8 *const priv = counter_priv(counter);
*preset = priv->preset[count->id];
return 0;
}
static int quad8_count_preset_write(struct counter_device *counter,
struct counter_count *count, u64 preset)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int ret;
if (preset > LS7267_CNTR_MAX)
return -ERANGE;
spin_lock_irqsave(&priv->lock, irqflags);
priv->preset[count->id] = preset;
ret = quad8_preset_register_set(priv, count->id, preset);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_count_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *ceiling)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
spin_lock_irqsave(&priv->lock, irqflags);
/* Range Limit and Modulo-N count modes use preset value as ceiling */
switch (u8_get_bits(priv->cmr[count->id], COUNT_MODE)) {
case RANGE_LIMIT:
case MODULO_N:
*ceiling = priv->preset[count->id];
break;
default:
*ceiling = LS7267_CNTR_MAX;
break;
}
spin_unlock_irqrestore(&priv->lock, irqflags);
return 0;
}
static int quad8_count_ceiling_write(struct counter_device *counter,
struct counter_count *count, u64 ceiling)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int ret;
if (ceiling > LS7267_CNTR_MAX)
return -ERANGE;
spin_lock_irqsave(&priv->lock, irqflags);
/* Range Limit and Modulo-N count modes use preset value as ceiling */
switch (u8_get_bits(priv->cmr[count->id], COUNT_MODE)) {
case RANGE_LIMIT:
case MODULO_N:
priv->preset[count->id] = ceiling;
ret = quad8_preset_register_set(priv, count->id, ceiling);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_count_preset_enable_read(struct counter_device *counter,
struct counter_count *count,
u8 *preset_enable)
{
const struct quad8 *const priv = counter_priv(counter);
/* Preset enable is active low in Input/Output Control register */
*preset_enable = !u8_get_bits(priv->ior[count->id], LOAD_PIN);
return 0;
}
static int quad8_count_preset_enable_write(struct counter_device *counter,
struct counter_count *count,
u8 preset_enable)
{
struct quad8 *const priv = counter_priv(counter);
unsigned long irqflags;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
/* Preset enable is active low in Input/Output Control register */
ret = quad8_control_register_update(priv->map, priv->ior, count->id, !preset_enable,
LOAD_PIN);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_signal_cable_fault_read(struct counter_device *counter,
struct counter_signal *signal,
u8 *cable_fault)
{
struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id / 2;
unsigned long irqflags;
bool disabled;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
disabled = !(priv->cable_fault_enable & BIT(channel_id));
if (disabled) {
spin_unlock_irqrestore(&priv->lock, irqflags);
return -EINVAL;
}
ret = regmap_test_bits(priv->map, QUAD8_CABLE_STATUS, BIT(channel_id));
if (ret < 0) {
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
spin_unlock_irqrestore(&priv->lock, irqflags);
/* Logic 0 = cable fault */
*cable_fault = !ret;
return 0;
}
static int quad8_signal_cable_fault_enable_read(struct counter_device *counter,
struct counter_signal *signal,
u8 *enable)
{
const struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id / 2;
*enable = !!(priv->cable_fault_enable & BIT(channel_id));
return 0;
}
static int quad8_signal_cable_fault_enable_write(struct counter_device *counter,
struct counter_signal *signal,
u8 enable)
{
struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id / 2;
unsigned long irqflags;
unsigned int cable_fault_enable;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
if (enable)
priv->cable_fault_enable |= BIT(channel_id);
else
priv->cable_fault_enable &= ~BIT(channel_id);
/* Enable is active low in Differential Encoder Cable Status register */
cable_fault_enable = ~priv->cable_fault_enable;
ret = regmap_write(priv->map, QUAD8_CABLE_STATUS, cable_fault_enable);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static int quad8_signal_fck_prescaler_read(struct counter_device *counter,
struct counter_signal *signal,
u8 *prescaler)
{
const struct quad8 *const priv = counter_priv(counter);
*prescaler = priv->fck_prescaler[signal->id / 2];
return 0;
}
static int quad8_filter_clock_prescaler_set(struct quad8 *const priv, const size_t id,
const u8 prescaler)
{
int ret;
ret = regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | RESET_BP);
if (ret)
return ret;
ret = regmap_write(priv->map, QUAD8_DATA(id), prescaler);
if (ret)
return ret;
return regmap_write(priv->map, QUAD8_CONTROL(id), SELECT_RLD | TRANSFER_PR0_TO_PSC);
}
static int quad8_signal_fck_prescaler_write(struct counter_device *counter,
struct counter_signal *signal,
u8 prescaler)
{
struct quad8 *const priv = counter_priv(counter);
const size_t channel_id = signal->id / 2;
unsigned long irqflags;
int ret;
spin_lock_irqsave(&priv->lock, irqflags);
priv->fck_prescaler[channel_id] = prescaler;
ret = quad8_filter_clock_prescaler_set(priv, channel_id, prescaler);
spin_unlock_irqrestore(&priv->lock, irqflags);
return ret;
}
static struct counter_comp quad8_signal_ext[] = {
COUNTER_COMP_SIGNAL_BOOL("cable_fault", quad8_signal_cable_fault_read,
NULL),
COUNTER_COMP_SIGNAL_BOOL("cable_fault_enable",
quad8_signal_cable_fault_enable_read,
quad8_signal_cable_fault_enable_write),
COUNTER_COMP_SIGNAL_U8("filter_clock_prescaler",
quad8_signal_fck_prescaler_read,
quad8_signal_fck_prescaler_write)
};
static const enum counter_signal_polarity quad8_polarities[] = {
COUNTER_SIGNAL_POLARITY_POSITIVE,
COUNTER_SIGNAL_POLARITY_NEGATIVE,
};
static DEFINE_COUNTER_AVAILABLE(quad8_polarity_available, quad8_polarities);
static DEFINE_COUNTER_ENUM(quad8_index_pol_enum, quad8_index_polarity_modes);
static DEFINE_COUNTER_ENUM(quad8_synch_mode_enum, quad8_synchronous_modes);
static struct counter_comp quad8_index_ext[] = {
COUNTER_COMP_SIGNAL_ENUM("index_polarity", quad8_index_polarity_get,
quad8_index_polarity_set,
quad8_index_pol_enum),
COUNTER_COMP_POLARITY(quad8_polarity_read, quad8_polarity_write,
quad8_polarity_available),
COUNTER_COMP_SIGNAL_ENUM("synchronous_mode", quad8_synchronous_mode_get,
quad8_synchronous_mode_set,
quad8_synch_mode_enum),
};
#define QUAD8_QUAD_SIGNAL(_id, _name) { \
.id = (_id), \
.name = (_name), \
.ext = quad8_signal_ext, \
.num_ext = ARRAY_SIZE(quad8_signal_ext) \
}
#define QUAD8_INDEX_SIGNAL(_id, _name) { \
.id = (_id), \
.name = (_name), \
.ext = quad8_index_ext, \
.num_ext = ARRAY_SIZE(quad8_index_ext) \
}
static struct counter_signal quad8_signals[] = {
QUAD8_QUAD_SIGNAL(0, "Channel 1 Quadrature A"),
QUAD8_QUAD_SIGNAL(1, "Channel 1 Quadrature B"),
QUAD8_QUAD_SIGNAL(2, "Channel 2 Quadrature A"),
QUAD8_QUAD_SIGNAL(3, "Channel 2 Quadrature B"),
QUAD8_QUAD_SIGNAL(4, "Channel 3 Quadrature A"),
QUAD8_QUAD_SIGNAL(5, "Channel 3 Quadrature B"),
QUAD8_QUAD_SIGNAL(6, "Channel 4 Quadrature A"),
QUAD8_QUAD_SIGNAL(7, "Channel 4 Quadrature B"),
QUAD8_QUAD_SIGNAL(8, "Channel 5 Quadrature A"),
QUAD8_QUAD_SIGNAL(9, "Channel 5 Quadrature B"),
QUAD8_QUAD_SIGNAL(10, "Channel 6 Quadrature A"),
QUAD8_QUAD_SIGNAL(11, "Channel 6 Quadrature B"),
QUAD8_QUAD_SIGNAL(12, "Channel 7 Quadrature A"),
QUAD8_QUAD_SIGNAL(13, "Channel 7 Quadrature B"),
QUAD8_QUAD_SIGNAL(14, "Channel 8 Quadrature A"),
QUAD8_QUAD_SIGNAL(15, "Channel 8 Quadrature B"),
QUAD8_INDEX_SIGNAL(16, "Channel 1 Index"),
QUAD8_INDEX_SIGNAL(17, "Channel 2 Index"),
QUAD8_INDEX_SIGNAL(18, "Channel 3 Index"),
QUAD8_INDEX_SIGNAL(19, "Channel 4 Index"),
QUAD8_INDEX_SIGNAL(20, "Channel 5 Index"),
QUAD8_INDEX_SIGNAL(21, "Channel 6 Index"),
QUAD8_INDEX_SIGNAL(22, "Channel 7 Index"),
QUAD8_INDEX_SIGNAL(23, "Channel 8 Index")
};
#define QUAD8_COUNT_SYNAPSES(_id) { \
{ \
.actions_list = quad8_synapse_actions_list, \
.num_actions = ARRAY_SIZE(quad8_synapse_actions_list), \
.signal = quad8_signals + 2 * (_id) \
}, \
{ \
.actions_list = quad8_synapse_actions_list, \
.num_actions = ARRAY_SIZE(quad8_synapse_actions_list), \
.signal = quad8_signals + 2 * (_id) + 1 \
}, \
{ \
.actions_list = quad8_index_actions_list, \
.num_actions = ARRAY_SIZE(quad8_index_actions_list), \
.signal = quad8_signals + 2 * (_id) + 16 \
} \
}
static struct counter_synapse quad8_count_synapses[][3] = {
QUAD8_COUNT_SYNAPSES(0), QUAD8_COUNT_SYNAPSES(1),
QUAD8_COUNT_SYNAPSES(2), QUAD8_COUNT_SYNAPSES(3),
QUAD8_COUNT_SYNAPSES(4), QUAD8_COUNT_SYNAPSES(5),
QUAD8_COUNT_SYNAPSES(6), QUAD8_COUNT_SYNAPSES(7)
};
static const enum counter_count_mode quad8_cnt_modes[] = {
COUNTER_COUNT_MODE_NORMAL,
COUNTER_COUNT_MODE_RANGE_LIMIT,
COUNTER_COUNT_MODE_NON_RECYCLE,
COUNTER_COUNT_MODE_MODULO_N,
};
static DEFINE_COUNTER_AVAILABLE(quad8_count_mode_available, quad8_cnt_modes);
static DEFINE_COUNTER_ENUM(quad8_error_noise_enum, quad8_noise_error_states);
static struct counter_comp quad8_count_ext[] = {
COUNTER_COMP_CEILING(quad8_count_ceiling_read,
quad8_count_ceiling_write),
COUNTER_COMP_FLOOR(quad8_count_floor_read, NULL),
COUNTER_COMP_COUNT_MODE(quad8_count_mode_read, quad8_count_mode_write,
quad8_count_mode_available),
COUNTER_COMP_DIRECTION(quad8_direction_read),
COUNTER_COMP_ENABLE(quad8_count_enable_read, quad8_count_enable_write),
COUNTER_COMP_COUNT_ENUM("error_noise", quad8_error_noise_get, NULL,
quad8_error_noise_enum),
COUNTER_COMP_PRESET(quad8_count_preset_read, quad8_count_preset_write),
COUNTER_COMP_PRESET_ENABLE(quad8_count_preset_enable_read,
quad8_count_preset_enable_write),
};
#define QUAD8_COUNT(_id, _cntname) { \
.id = (_id), \
.name = (_cntname), \
.functions_list = quad8_count_functions_list, \
.num_functions = ARRAY_SIZE(quad8_count_functions_list), \
.synapses = quad8_count_synapses[(_id)], \
.num_synapses = 2, \
.ext = quad8_count_ext, \
.num_ext = ARRAY_SIZE(quad8_count_ext) \
}
static struct counter_count quad8_counts[] = {
QUAD8_COUNT(0, "Channel 1 Count"),
QUAD8_COUNT(1, "Channel 2 Count"),
QUAD8_COUNT(2, "Channel 3 Count"),
QUAD8_COUNT(3, "Channel 4 Count"),
QUAD8_COUNT(4, "Channel 5 Count"),
QUAD8_COUNT(5, "Channel 6 Count"),
QUAD8_COUNT(6, "Channel 7 Count"),
QUAD8_COUNT(7, "Channel 8 Count")
};
static irqreturn_t quad8_irq_handler(int irq, void *private)
{
struct counter_device *counter = private;
struct quad8 *const priv = counter_priv(counter);
unsigned int status;
unsigned long irq_status;
unsigned long channel;
unsigned int flg_pins;
u8 event;
int ret;
ret = regmap_read(priv->map, QUAD8_INTERRUPT_STATUS, &status);
if (ret)
return ret;
if (!status)
return IRQ_NONE;
irq_status = status;
for_each_set_bit(channel, &irq_status, QUAD8_NUM_COUNTERS) {
flg_pins = u8_get_bits(priv->ior[channel], FLG_PINS);
switch (flg_pins) {
case FLG1_CARRY_FLG2_BORROW:
event = COUNTER_EVENT_OVERFLOW;
break;
case FLG1_COMPARE_FLG2_BORROW:
event = COUNTER_EVENT_THRESHOLD;
break;
case FLG1_CARRYBORROW_FLG2_UD:
event = COUNTER_EVENT_OVERFLOW_UNDERFLOW;
break;
case FLG1_INDX_FLG2_E:
event = COUNTER_EVENT_INDEX;
break;
default:
/* should never reach this path */
WARN_ONCE(true, "invalid interrupt trigger function %u configured for channel %lu\n",
flg_pins, channel);
continue;
}
counter_push_event(counter, event, channel);
}
ret = regmap_write(priv->map, QUAD8_CHANNEL_OPERATION, CLEAR_PENDING_INTERRUPTS);
if (ret)
return ret;
return IRQ_HANDLED;
}
static int quad8_init_counter(struct quad8 *const priv, const size_t channel)
{
int ret;
ret = quad8_filter_clock_prescaler_set(priv, channel, 0);
if (ret)
return ret;
ret = quad8_preset_register_set(priv, channel, 0);
if (ret)
return ret;
ret = quad8_flag_register_reset(priv, channel);
if (ret)
return ret;
/* Binary encoding; Normal count; non-quadrature mode */
priv->cmr[channel] = SELECT_CMR | BINARY | u8_encode_bits(NORMAL_COUNT, COUNT_MODE) |
u8_encode_bits(NON_QUADRATURE, QUADRATURE_MODE);
ret = regmap_write(priv->map, QUAD8_CONTROL(channel), priv->cmr[channel]);
if (ret)
return ret;
/* Disable A and B inputs; preset on index; FLG1 as Carry */
priv->ior[channel] = SELECT_IOR | DISABLE_AB | u8_encode_bits(LOAD_CNTR, LOAD_PIN) |
u8_encode_bits(FLG1_CARRY_FLG2_BORROW, FLG_PINS);
ret = regmap_write(priv->map, QUAD8_CONTROL(channel), priv->ior[channel]);
if (ret)
return ret;
/* Disable index function; negative index polarity */
priv->idr[channel] = SELECT_IDR | u8_encode_bits(DISABLE_INDEX_MODE, INDEX_MODE) |
u8_encode_bits(NEGATIVE_INDEX_POLARITY, INDEX_POLARITY);
return regmap_write(priv->map, QUAD8_CONTROL(channel), priv->idr[channel]);
}
static int quad8_probe(struct device *dev, unsigned int id)
{
struct counter_device *counter;
struct quad8 *priv;
void __iomem *regs;
unsigned long i;
int ret;
if (!devm_request_region(dev, base[id], QUAD8_EXTENT, dev_name(dev))) {
dev_err(dev, "Unable to lock port addresses (0x%X-0x%X)\n",
base[id], base[id] + QUAD8_EXTENT);
return -EBUSY;
}
counter = devm_counter_alloc(dev, sizeof(*priv));
if (!counter)
return -ENOMEM;
priv = counter_priv(counter);
regs = devm_ioport_map(dev, base[id], QUAD8_EXTENT);
if (!regs)
return -ENOMEM;
priv->map = devm_regmap_init_mmio(dev, regs, &quad8_regmap_config);
if (IS_ERR(priv->map))
return dev_err_probe(dev, PTR_ERR(priv->map),
"Unable to initialize register map\n");
/* Initialize Counter device and driver data */
counter->name = dev_name(dev);
counter->parent = dev;
counter->ops = &quad8_ops;
counter->counts = quad8_counts;
counter->num_counts = ARRAY_SIZE(quad8_counts);
counter->signals = quad8_signals;
counter->num_signals = ARRAY_SIZE(quad8_signals);
spin_lock_init(&priv->lock);
/* Reset Index/Interrupt Register */
ret = regmap_write(priv->map, QUAD8_INDEX_INTERRUPT, 0x00);
if (ret)
return ret;
/* Reset all counters and disable interrupt function */
ret = regmap_write(priv->map, QUAD8_CHANNEL_OPERATION,
RESET_COUNTERS | DISABLE_INTERRUPT_FUNCTION);
if (ret)
return ret;
/* Set initial configuration for all counters */
for (i = 0; i < QUAD8_NUM_COUNTERS; i++) {
ret = quad8_init_counter(priv, i);
if (ret)
return ret;
}
/* Disable Differential Encoder Cable Status for all channels */
ret = regmap_write(priv->map, QUAD8_CABLE_STATUS, GENMASK(7, 0));
if (ret)
return ret;
/* Enable all counters and enable interrupt function */
ret = regmap_write(priv->map, QUAD8_CHANNEL_OPERATION,
ENABLE_COUNTERS | ENABLE_INTERRUPT_FUNCTION);
if (ret)
return ret;
ret = devm_request_irq(&counter->dev, irq[id], quad8_irq_handler,
IRQF_SHARED, counter->name, counter);
if (ret)
return ret;
ret = devm_counter_add(dev, counter);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to add counter\n");
return 0;
}
static struct isa_driver quad8_driver = {
.probe = quad8_probe,
.driver = {
.name = "104-quad-8"
}
};
module_isa_driver_with_irq(quad8_driver, num_quad8, num_irq);
MODULE_AUTHOR("William Breathitt Gray <vilhelm.gray@gmail.com>");
MODULE_DESCRIPTION("ACCES 104-QUAD-8 driver");
MODULE_LICENSE("GPL v2");
MODULE_IMPORT_NS(COUNTER);