blob: 79a31593618a69b17bbc93052dce41e5676d0385 [file] [log] [blame] [edit]
# SPDX-License-Identifier: GPL-2.0-only
#
# FSI subsystem
#
menuconfig FSI
tristate "FSI support"
depends on OF
select CRC4
help
FSI - the FRU Support Interface - is a simple bus for low-level
access to POWER-based hardware.
if FSI
config FSI_NEW_DEV_NODE
bool "Create '/dev/fsi' directory for char devices"
default n
help
This option causes char devices created for FSI devices to be
located under a common /dev/fsi/ directory. Set to N unless your
userspace has been updated to handle the new location.
Additionally, it also causes the char device names to be offset
by one so that chip 0 will have /dev/scom1 and chip1 /dev/scom2
to match old userspace expectations.
New userspace will use udev rules to generate predictable access
symlinks in /dev/fsi/by-path when this option is enabled.
config FSI_MASTER_GPIO
tristate "GPIO-based FSI master"
depends on GPIOLIB
select CRC4
help
This option enables a FSI master driver using GPIO lines.
config FSI_MASTER_HUB
tristate "FSI hub master"
help
This option enables a FSI hub master driver. Hub is a type of FSI
master that is connected to the upstream master via a slave. Hubs
allow chaining of FSI links to an arbitrary depth. This allows for
a high target device fanout.
config FSI_MASTER_AST_CF
tristate "FSI master based on Aspeed ColdFire coprocessor"
depends on GPIOLIB
depends on GPIO_ASPEED
select GENERIC_ALLOCATOR
help
This option enables a FSI master using the AST2400 and AST2500 GPIO
lines driven by the internal ColdFire coprocessor. This requires
the corresponding machine specific ColdFire firmware to be available.
config FSI_MASTER_ASPEED
tristate "FSI ASPEED master"
depends on HAS_IOMEM
help
This option enables a FSI master that is present behind an OPB bridge
in the AST2600.
Enable it for your BMC kernel in an OpenPower or IBM Power system.
config FSI_MASTER_I2CR
tristate "IBM I2C Responder virtual FSI master"
depends on I2C
help
This option enables a virtual FSI master in order to access a CFAM
behind an IBM I2C Responder (I2CR) chip. The I2CR is an I2C device
that translates I2C commands to CFAM or SCOM operations, effectively
implementing an FSI master and bus.
config FSI_SCOM
tristate "SCOM FSI client device driver"
help
This option enables an FSI based SCOM device driver.
config FSI_SBEFIFO
tristate "SBEFIFO FSI client device driver"
depends on OF_ADDRESS
help
This option enables an FSI based SBEFIFO device driver. The SBEFIFO is
a pipe-like FSI device for communicating with the self boot engine
(SBE) on POWER processors.
config FSI_OCC
tristate "OCC SBEFIFO client device driver"
depends on FSI_SBEFIFO
help
This option enables an SBEFIFO based On-Chip Controller (OCC) device
driver. The OCC is a device embedded on a POWER processor that collects
and aggregates sensor data from the processor and system. The OCC can
provide the raw sensor data as well as perform thermal and power
management on the system.
config I2CR_SCOM
tristate "IBM I2C Responder SCOM driver"
depends on FSI_MASTER_I2CR
help
This option enables an I2C Responder based SCOM device driver. The
I2CR has the capability to directly perform SCOM operations instead
of using the FSI2PIB engine.
endif