| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Definitions for the TCP module. |
| * |
| * Version: @(#)tcp.h 1.0.5 05/23/93 |
| * |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| */ |
| #ifndef _TCP_H |
| #define _TCP_H |
| |
| #define FASTRETRANS_DEBUG 1 |
| |
| #include <linux/list.h> |
| #include <linux/tcp.h> |
| #include <linux/bug.h> |
| #include <linux/slab.h> |
| #include <linux/cache.h> |
| #include <linux/percpu.h> |
| #include <linux/skbuff.h> |
| #include <linux/kref.h> |
| #include <linux/ktime.h> |
| #include <linux/indirect_call_wrapper.h> |
| |
| #include <net/inet_connection_sock.h> |
| #include <net/inet_timewait_sock.h> |
| #include <net/inet_hashtables.h> |
| #include <net/checksum.h> |
| #include <net/request_sock.h> |
| #include <net/sock_reuseport.h> |
| #include <net/sock.h> |
| #include <net/snmp.h> |
| #include <net/ip.h> |
| #include <net/tcp_states.h> |
| #include <net/tcp_ao.h> |
| #include <net/inet_ecn.h> |
| #include <net/dst.h> |
| #include <net/mptcp.h> |
| |
| #include <linux/seq_file.h> |
| #include <linux/memcontrol.h> |
| #include <linux/bpf-cgroup.h> |
| #include <linux/siphash.h> |
| |
| extern struct inet_hashinfo tcp_hashinfo; |
| |
| DECLARE_PER_CPU(unsigned int, tcp_orphan_count); |
| int tcp_orphan_count_sum(void); |
| |
| DECLARE_PER_CPU(u32, tcp_tw_isn); |
| |
| void tcp_time_wait(struct sock *sk, int state, int timeo); |
| |
| #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) |
| #define MAX_TCP_OPTION_SPACE 40 |
| #define TCP_MIN_SND_MSS 48 |
| #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) |
| |
| /* |
| * Never offer a window over 32767 without using window scaling. Some |
| * poor stacks do signed 16bit maths! |
| */ |
| #define MAX_TCP_WINDOW 32767U |
| |
| /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ |
| #define TCP_MIN_MSS 88U |
| |
| /* The initial MTU to use for probing */ |
| #define TCP_BASE_MSS 1024 |
| |
| /* probing interval, default to 10 minutes as per RFC4821 */ |
| #define TCP_PROBE_INTERVAL 600 |
| |
| /* Specify interval when tcp mtu probing will stop */ |
| #define TCP_PROBE_THRESHOLD 8 |
| |
| /* After receiving this amount of duplicate ACKs fast retransmit starts. */ |
| #define TCP_FASTRETRANS_THRESH 3 |
| |
| /* Maximal number of ACKs sent quickly to accelerate slow-start. */ |
| #define TCP_MAX_QUICKACKS 16U |
| |
| /* Maximal number of window scale according to RFC1323 */ |
| #define TCP_MAX_WSCALE 14U |
| |
| /* urg_data states */ |
| #define TCP_URG_VALID 0x0100 |
| #define TCP_URG_NOTYET 0x0200 |
| #define TCP_URG_READ 0x0400 |
| |
| #define TCP_RETR1 3 /* |
| * This is how many retries it does before it |
| * tries to figure out if the gateway is |
| * down. Minimal RFC value is 3; it corresponds |
| * to ~3sec-8min depending on RTO. |
| */ |
| |
| #define TCP_RETR2 15 /* |
| * This should take at least |
| * 90 minutes to time out. |
| * RFC1122 says that the limit is 100 sec. |
| * 15 is ~13-30min depending on RTO. |
| */ |
| |
| #define TCP_SYN_RETRIES 6 /* This is how many retries are done |
| * when active opening a connection. |
| * RFC1122 says the minimum retry MUST |
| * be at least 180secs. Nevertheless |
| * this value is corresponding to |
| * 63secs of retransmission with the |
| * current initial RTO. |
| */ |
| |
| #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done |
| * when passive opening a connection. |
| * This is corresponding to 31secs of |
| * retransmission with the current |
| * initial RTO. |
| */ |
| |
| #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT |
| * state, about 60 seconds */ |
| #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN |
| /* BSD style FIN_WAIT2 deadlock breaker. |
| * It used to be 3min, new value is 60sec, |
| * to combine FIN-WAIT-2 timeout with |
| * TIME-WAIT timer. |
| */ |
| #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ |
| |
| #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ |
| static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); |
| |
| #if HZ >= 100 |
| #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ |
| #define TCP_ATO_MIN ((unsigned)(HZ/25)) |
| #else |
| #define TCP_DELACK_MIN 4U |
| #define TCP_ATO_MIN 4U |
| #endif |
| #define TCP_RTO_MAX ((unsigned)(120*HZ)) |
| #define TCP_RTO_MIN ((unsigned)(HZ/5)) |
| #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ |
| |
| #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ |
| |
| #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ |
| #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now |
| * used as a fallback RTO for the |
| * initial data transmission if no |
| * valid RTT sample has been acquired, |
| * most likely due to retrans in 3WHS. |
| */ |
| |
| #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes |
| * for local resources. |
| */ |
| #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ |
| #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ |
| #define TCP_KEEPALIVE_INTVL (75*HZ) |
| |
| #define MAX_TCP_KEEPIDLE 32767 |
| #define MAX_TCP_KEEPINTVL 32767 |
| #define MAX_TCP_KEEPCNT 127 |
| #define MAX_TCP_SYNCNT 127 |
| |
| /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds |
| * to avoid overflows. This assumes a clock smaller than 1 Mhz. |
| * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. |
| */ |
| #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) |
| |
| #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated |
| * after this time. It should be equal |
| * (or greater than) TCP_TIMEWAIT_LEN |
| * to provide reliability equal to one |
| * provided by timewait state. |
| */ |
| #define TCP_PAWS_WINDOW 1 /* Replay window for per-host |
| * timestamps. It must be less than |
| * minimal timewait lifetime. |
| */ |
| /* |
| * TCP option |
| */ |
| |
| #define TCPOPT_NOP 1 /* Padding */ |
| #define TCPOPT_EOL 0 /* End of options */ |
| #define TCPOPT_MSS 2 /* Segment size negotiating */ |
| #define TCPOPT_WINDOW 3 /* Window scaling */ |
| #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ |
| #define TCPOPT_SACK 5 /* SACK Block */ |
| #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ |
| #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ |
| #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ |
| #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ |
| #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ |
| #define TCPOPT_EXP 254 /* Experimental */ |
| /* Magic number to be after the option value for sharing TCP |
| * experimental options. See draft-ietf-tcpm-experimental-options-00.txt |
| */ |
| #define TCPOPT_FASTOPEN_MAGIC 0xF989 |
| #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 |
| |
| /* |
| * TCP option lengths |
| */ |
| |
| #define TCPOLEN_MSS 4 |
| #define TCPOLEN_WINDOW 3 |
| #define TCPOLEN_SACK_PERM 2 |
| #define TCPOLEN_TIMESTAMP 10 |
| #define TCPOLEN_MD5SIG 18 |
| #define TCPOLEN_FASTOPEN_BASE 2 |
| #define TCPOLEN_EXP_FASTOPEN_BASE 4 |
| #define TCPOLEN_EXP_SMC_BASE 6 |
| |
| /* But this is what stacks really send out. */ |
| #define TCPOLEN_TSTAMP_ALIGNED 12 |
| #define TCPOLEN_WSCALE_ALIGNED 4 |
| #define TCPOLEN_SACKPERM_ALIGNED 4 |
| #define TCPOLEN_SACK_BASE 2 |
| #define TCPOLEN_SACK_BASE_ALIGNED 4 |
| #define TCPOLEN_SACK_PERBLOCK 8 |
| #define TCPOLEN_MD5SIG_ALIGNED 20 |
| #define TCPOLEN_MSS_ALIGNED 4 |
| #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 |
| |
| /* Flags in tp->nonagle */ |
| #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ |
| #define TCP_NAGLE_CORK 2 /* Socket is corked */ |
| #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ |
| |
| /* TCP thin-stream limits */ |
| #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ |
| |
| /* TCP initial congestion window as per rfc6928 */ |
| #define TCP_INIT_CWND 10 |
| |
| /* Bit Flags for sysctl_tcp_fastopen */ |
| #define TFO_CLIENT_ENABLE 1 |
| #define TFO_SERVER_ENABLE 2 |
| #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ |
| |
| /* Accept SYN data w/o any cookie option */ |
| #define TFO_SERVER_COOKIE_NOT_REQD 0x200 |
| |
| /* Force enable TFO on all listeners, i.e., not requiring the |
| * TCP_FASTOPEN socket option. |
| */ |
| #define TFO_SERVER_WO_SOCKOPT1 0x400 |
| |
| |
| /* sysctl variables for tcp */ |
| extern int sysctl_tcp_max_orphans; |
| extern long sysctl_tcp_mem[3]; |
| |
| #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ |
| #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ |
| #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ |
| |
| extern atomic_long_t tcp_memory_allocated; |
| DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); |
| |
| extern struct percpu_counter tcp_sockets_allocated; |
| extern unsigned long tcp_memory_pressure; |
| |
| /* optimized version of sk_under_memory_pressure() for TCP sockets */ |
| static inline bool tcp_under_memory_pressure(const struct sock *sk) |
| { |
| if (mem_cgroup_sockets_enabled && sk->sk_memcg && |
| mem_cgroup_under_socket_pressure(sk->sk_memcg)) |
| return true; |
| |
| return READ_ONCE(tcp_memory_pressure); |
| } |
| /* |
| * The next routines deal with comparing 32 bit unsigned ints |
| * and worry about wraparound (automatic with unsigned arithmetic). |
| */ |
| |
| static inline bool before(__u32 seq1, __u32 seq2) |
| { |
| return (__s32)(seq1-seq2) < 0; |
| } |
| #define after(seq2, seq1) before(seq1, seq2) |
| |
| /* is s2<=s1<=s3 ? */ |
| static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) |
| { |
| return seq3 - seq2 >= seq1 - seq2; |
| } |
| |
| static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| sk_wmem_queued_add(sk, -skb->truesize); |
| if (!skb_zcopy_pure(skb)) |
| sk_mem_uncharge(sk, skb->truesize); |
| else |
| sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); |
| __kfree_skb(skb); |
| } |
| |
| void sk_forced_mem_schedule(struct sock *sk, int size); |
| |
| bool tcp_check_oom(const struct sock *sk, int shift); |
| |
| |
| extern struct proto tcp_prot; |
| |
| #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) |
| #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) |
| #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) |
| #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) |
| |
| void tcp_tasklet_init(void); |
| |
| int tcp_v4_err(struct sk_buff *skb, u32); |
| |
| void tcp_shutdown(struct sock *sk, int how); |
| |
| int tcp_v4_early_demux(struct sk_buff *skb); |
| int tcp_v4_rcv(struct sk_buff *skb); |
| |
| void tcp_remove_empty_skb(struct sock *sk); |
| int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); |
| int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); |
| int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, |
| size_t size, struct ubuf_info *uarg); |
| void tcp_splice_eof(struct socket *sock); |
| int tcp_send_mss(struct sock *sk, int *size_goal, int flags); |
| int tcp_wmem_schedule(struct sock *sk, int copy); |
| void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, |
| int size_goal); |
| void tcp_release_cb(struct sock *sk); |
| void tcp_wfree(struct sk_buff *skb); |
| void tcp_write_timer_handler(struct sock *sk); |
| void tcp_delack_timer_handler(struct sock *sk); |
| int tcp_ioctl(struct sock *sk, int cmd, int *karg); |
| enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); |
| void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); |
| void tcp_rcv_space_adjust(struct sock *sk); |
| int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); |
| void tcp_twsk_destructor(struct sock *sk); |
| void tcp_twsk_purge(struct list_head *net_exit_list); |
| ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, |
| struct pipe_inode_info *pipe, size_t len, |
| unsigned int flags); |
| struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, |
| bool force_schedule); |
| |
| static inline void tcp_dec_quickack_mode(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| if (icsk->icsk_ack.quick) { |
| /* How many ACKs S/ACKing new data have we sent? */ |
| const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; |
| |
| if (pkts >= icsk->icsk_ack.quick) { |
| icsk->icsk_ack.quick = 0; |
| /* Leaving quickack mode we deflate ATO. */ |
| icsk->icsk_ack.ato = TCP_ATO_MIN; |
| } else |
| icsk->icsk_ack.quick -= pkts; |
| } |
| } |
| |
| #define TCP_ECN_OK 1 |
| #define TCP_ECN_QUEUE_CWR 2 |
| #define TCP_ECN_DEMAND_CWR 4 |
| #define TCP_ECN_SEEN 8 |
| |
| enum tcp_tw_status { |
| TCP_TW_SUCCESS = 0, |
| TCP_TW_RST = 1, |
| TCP_TW_ACK = 2, |
| TCP_TW_SYN = 3 |
| }; |
| |
| |
| enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, |
| struct sk_buff *skb, |
| const struct tcphdr *th, |
| u32 *tw_isn); |
| struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, bool fastopen, |
| bool *lost_race); |
| enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, |
| struct sk_buff *skb); |
| void tcp_enter_loss(struct sock *sk); |
| void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); |
| void tcp_clear_retrans(struct tcp_sock *tp); |
| void tcp_update_metrics(struct sock *sk); |
| void tcp_init_metrics(struct sock *sk); |
| void tcp_metrics_init(void); |
| bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); |
| void __tcp_close(struct sock *sk, long timeout); |
| void tcp_close(struct sock *sk, long timeout); |
| void tcp_init_sock(struct sock *sk); |
| void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); |
| __poll_t tcp_poll(struct file *file, struct socket *sock, |
| struct poll_table_struct *wait); |
| int do_tcp_getsockopt(struct sock *sk, int level, |
| int optname, sockptr_t optval, sockptr_t optlen); |
| int tcp_getsockopt(struct sock *sk, int level, int optname, |
| char __user *optval, int __user *optlen); |
| bool tcp_bpf_bypass_getsockopt(int level, int optname); |
| int do_tcp_setsockopt(struct sock *sk, int level, int optname, |
| sockptr_t optval, unsigned int optlen); |
| int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, |
| unsigned int optlen); |
| void tcp_set_keepalive(struct sock *sk, int val); |
| void tcp_syn_ack_timeout(const struct request_sock *req); |
| int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, |
| int flags, int *addr_len); |
| int tcp_set_rcvlowat(struct sock *sk, int val); |
| int tcp_set_window_clamp(struct sock *sk, int val); |
| void tcp_update_recv_tstamps(struct sk_buff *skb, |
| struct scm_timestamping_internal *tss); |
| void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, |
| struct scm_timestamping_internal *tss); |
| void tcp_data_ready(struct sock *sk); |
| #ifdef CONFIG_MMU |
| int tcp_mmap(struct file *file, struct socket *sock, |
| struct vm_area_struct *vma); |
| #endif |
| void tcp_parse_options(const struct net *net, const struct sk_buff *skb, |
| struct tcp_options_received *opt_rx, |
| int estab, struct tcp_fastopen_cookie *foc); |
| |
| /* |
| * BPF SKB-less helpers |
| */ |
| u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, |
| struct tcphdr *th, u32 *cookie); |
| u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, |
| struct tcphdr *th, u32 *cookie); |
| u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); |
| u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, |
| const struct tcp_request_sock_ops *af_ops, |
| struct sock *sk, struct tcphdr *th); |
| /* |
| * TCP v4 functions exported for the inet6 API |
| */ |
| |
| void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); |
| void tcp_v4_mtu_reduced(struct sock *sk); |
| void tcp_req_err(struct sock *sk, u32 seq, bool abort); |
| void tcp_ld_RTO_revert(struct sock *sk, u32 seq); |
| int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); |
| struct sock *tcp_create_openreq_child(const struct sock *sk, |
| struct request_sock *req, |
| struct sk_buff *skb); |
| void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); |
| struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct dst_entry *dst, |
| struct request_sock *req_unhash, |
| bool *own_req); |
| int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); |
| int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); |
| int tcp_connect(struct sock *sk); |
| enum tcp_synack_type { |
| TCP_SYNACK_NORMAL, |
| TCP_SYNACK_FASTOPEN, |
| TCP_SYNACK_COOKIE, |
| }; |
| struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, |
| struct request_sock *req, |
| struct tcp_fastopen_cookie *foc, |
| enum tcp_synack_type synack_type, |
| struct sk_buff *syn_skb); |
| int tcp_disconnect(struct sock *sk, int flags); |
| |
| void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); |
| int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); |
| void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); |
| |
| /* From syncookies.c */ |
| struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct dst_entry *dst); |
| int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); |
| struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); |
| struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, |
| struct sock *sk, struct sk_buff *skb, |
| struct tcp_options_received *tcp_opt, |
| int mss, u32 tsoff); |
| |
| #if IS_ENABLED(CONFIG_BPF) |
| struct bpf_tcp_req_attrs { |
| u32 rcv_tsval; |
| u32 rcv_tsecr; |
| u16 mss; |
| u8 rcv_wscale; |
| u8 snd_wscale; |
| u8 ecn_ok; |
| u8 wscale_ok; |
| u8 sack_ok; |
| u8 tstamp_ok; |
| u8 usec_ts_ok; |
| u8 reserved[3]; |
| }; |
| #endif |
| |
| #ifdef CONFIG_SYN_COOKIES |
| |
| /* Syncookies use a monotonic timer which increments every 60 seconds. |
| * This counter is used both as a hash input and partially encoded into |
| * the cookie value. A cookie is only validated further if the delta |
| * between the current counter value and the encoded one is less than this, |
| * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if |
| * the counter advances immediately after a cookie is generated). |
| */ |
| #define MAX_SYNCOOKIE_AGE 2 |
| #define TCP_SYNCOOKIE_PERIOD (60 * HZ) |
| #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) |
| |
| /* syncookies: remember time of last synqueue overflow |
| * But do not dirty this field too often (once per second is enough) |
| * It is racy as we do not hold a lock, but race is very minor. |
| */ |
| static inline void tcp_synq_overflow(const struct sock *sk) |
| { |
| unsigned int last_overflow; |
| unsigned int now = jiffies; |
| |
| if (sk->sk_reuseport) { |
| struct sock_reuseport *reuse; |
| |
| reuse = rcu_dereference(sk->sk_reuseport_cb); |
| if (likely(reuse)) { |
| last_overflow = READ_ONCE(reuse->synq_overflow_ts); |
| if (!time_between32(now, last_overflow, |
| last_overflow + HZ)) |
| WRITE_ONCE(reuse->synq_overflow_ts, now); |
| return; |
| } |
| } |
| |
| last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); |
| if (!time_between32(now, last_overflow, last_overflow + HZ)) |
| WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); |
| } |
| |
| /* syncookies: no recent synqueue overflow on this listening socket? */ |
| static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) |
| { |
| unsigned int last_overflow; |
| unsigned int now = jiffies; |
| |
| if (sk->sk_reuseport) { |
| struct sock_reuseport *reuse; |
| |
| reuse = rcu_dereference(sk->sk_reuseport_cb); |
| if (likely(reuse)) { |
| last_overflow = READ_ONCE(reuse->synq_overflow_ts); |
| return !time_between32(now, last_overflow - HZ, |
| last_overflow + |
| TCP_SYNCOOKIE_VALID); |
| } |
| } |
| |
| last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); |
| |
| /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, |
| * then we're under synflood. However, we have to use |
| * 'last_overflow - HZ' as lower bound. That's because a concurrent |
| * tcp_synq_overflow() could update .ts_recent_stamp after we read |
| * jiffies but before we store .ts_recent_stamp into last_overflow, |
| * which could lead to rejecting a valid syncookie. |
| */ |
| return !time_between32(now, last_overflow - HZ, |
| last_overflow + TCP_SYNCOOKIE_VALID); |
| } |
| |
| static inline u32 tcp_cookie_time(void) |
| { |
| u64 val = get_jiffies_64(); |
| |
| do_div(val, TCP_SYNCOOKIE_PERIOD); |
| return val; |
| } |
| |
| /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ |
| static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) |
| { |
| if (usec_ts) |
| return div_u64(val, NSEC_PER_USEC); |
| |
| return div_u64(val, NSEC_PER_MSEC); |
| } |
| |
| u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, |
| u16 *mssp); |
| __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); |
| u64 cookie_init_timestamp(struct request_sock *req, u64 now); |
| bool cookie_timestamp_decode(const struct net *net, |
| struct tcp_options_received *opt); |
| |
| static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) |
| { |
| return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || |
| dst_feature(dst, RTAX_FEATURE_ECN); |
| } |
| |
| #if IS_ENABLED(CONFIG_BPF) |
| static inline bool cookie_bpf_ok(struct sk_buff *skb) |
| { |
| return skb->sk; |
| } |
| |
| struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); |
| #else |
| static inline bool cookie_bpf_ok(struct sk_buff *skb) |
| { |
| return false; |
| } |
| |
| static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, |
| struct sk_buff *skb) |
| { |
| return NULL; |
| } |
| #endif |
| |
| /* From net/ipv6/syncookies.c */ |
| int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); |
| struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); |
| |
| u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, |
| const struct tcphdr *th, u16 *mssp); |
| __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); |
| #endif |
| /* tcp_output.c */ |
| |
| void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); |
| void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); |
| void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, |
| int nonagle); |
| int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); |
| int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); |
| void tcp_retransmit_timer(struct sock *sk); |
| void tcp_xmit_retransmit_queue(struct sock *); |
| void tcp_simple_retransmit(struct sock *); |
| void tcp_enter_recovery(struct sock *sk, bool ece_ack); |
| int tcp_trim_head(struct sock *, struct sk_buff *, u32); |
| enum tcp_queue { |
| TCP_FRAG_IN_WRITE_QUEUE, |
| TCP_FRAG_IN_RTX_QUEUE, |
| }; |
| int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, |
| struct sk_buff *skb, u32 len, |
| unsigned int mss_now, gfp_t gfp); |
| |
| void tcp_send_probe0(struct sock *); |
| int tcp_write_wakeup(struct sock *, int mib); |
| void tcp_send_fin(struct sock *sk); |
| void tcp_send_active_reset(struct sock *sk, gfp_t priority, |
| enum sk_rst_reason reason); |
| int tcp_send_synack(struct sock *); |
| void tcp_push_one(struct sock *, unsigned int mss_now); |
| void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); |
| void tcp_send_ack(struct sock *sk); |
| void tcp_send_delayed_ack(struct sock *sk); |
| void tcp_send_loss_probe(struct sock *sk); |
| bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); |
| void tcp_skb_collapse_tstamp(struct sk_buff *skb, |
| const struct sk_buff *next_skb); |
| |
| /* tcp_input.c */ |
| void tcp_rearm_rto(struct sock *sk); |
| void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); |
| void tcp_reset(struct sock *sk, struct sk_buff *skb); |
| void tcp_fin(struct sock *sk); |
| void tcp_check_space(struct sock *sk); |
| void tcp_sack_compress_send_ack(struct sock *sk); |
| |
| /* tcp_timer.c */ |
| void tcp_init_xmit_timers(struct sock *); |
| static inline void tcp_clear_xmit_timers(struct sock *sk) |
| { |
| if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) |
| __sock_put(sk); |
| |
| if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) |
| __sock_put(sk); |
| |
| inet_csk_clear_xmit_timers(sk); |
| } |
| |
| unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); |
| unsigned int tcp_current_mss(struct sock *sk); |
| u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); |
| |
| /* Bound MSS / TSO packet size with the half of the window */ |
| static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) |
| { |
| int cutoff; |
| |
| /* When peer uses tiny windows, there is no use in packetizing |
| * to sub-MSS pieces for the sake of SWS or making sure there |
| * are enough packets in the pipe for fast recovery. |
| * |
| * On the other hand, for extremely large MSS devices, handling |
| * smaller than MSS windows in this way does make sense. |
| */ |
| if (tp->max_window > TCP_MSS_DEFAULT) |
| cutoff = (tp->max_window >> 1); |
| else |
| cutoff = tp->max_window; |
| |
| if (cutoff && pktsize > cutoff) |
| return max_t(int, cutoff, 68U - tp->tcp_header_len); |
| else |
| return pktsize; |
| } |
| |
| /* tcp.c */ |
| void tcp_get_info(struct sock *, struct tcp_info *); |
| |
| /* Read 'sendfile()'-style from a TCP socket */ |
| int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, |
| sk_read_actor_t recv_actor); |
| int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); |
| struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); |
| void tcp_read_done(struct sock *sk, size_t len); |
| |
| void tcp_initialize_rcv_mss(struct sock *sk); |
| |
| int tcp_mtu_to_mss(struct sock *sk, int pmtu); |
| int tcp_mss_to_mtu(struct sock *sk, int mss); |
| void tcp_mtup_init(struct sock *sk); |
| |
| static inline void tcp_bound_rto(struct sock *sk) |
| { |
| if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) |
| inet_csk(sk)->icsk_rto = TCP_RTO_MAX; |
| } |
| |
| static inline u32 __tcp_set_rto(const struct tcp_sock *tp) |
| { |
| return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); |
| } |
| |
| static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) |
| { |
| /* mptcp hooks are only on the slow path */ |
| if (sk_is_mptcp((struct sock *)tp)) |
| return; |
| |
| tp->pred_flags = htonl((tp->tcp_header_len << 26) | |
| ntohl(TCP_FLAG_ACK) | |
| snd_wnd); |
| } |
| |
| static inline void tcp_fast_path_on(struct tcp_sock *tp) |
| { |
| __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); |
| } |
| |
| static inline void tcp_fast_path_check(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && |
| tp->rcv_wnd && |
| atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && |
| !tp->urg_data) |
| tcp_fast_path_on(tp); |
| } |
| |
| u32 tcp_delack_max(const struct sock *sk); |
| |
| /* Compute the actual rto_min value */ |
| static inline u32 tcp_rto_min(const struct sock *sk) |
| { |
| const struct dst_entry *dst = __sk_dst_get(sk); |
| u32 rto_min = inet_csk(sk)->icsk_rto_min; |
| |
| if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) |
| rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); |
| return rto_min; |
| } |
| |
| static inline u32 tcp_rto_min_us(const struct sock *sk) |
| { |
| return jiffies_to_usecs(tcp_rto_min(sk)); |
| } |
| |
| static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) |
| { |
| return dst_metric_locked(dst, RTAX_CC_ALGO); |
| } |
| |
| /* Minimum RTT in usec. ~0 means not available. */ |
| static inline u32 tcp_min_rtt(const struct tcp_sock *tp) |
| { |
| return minmax_get(&tp->rtt_min); |
| } |
| |
| /* Compute the actual receive window we are currently advertising. |
| * Rcv_nxt can be after the window if our peer push more data |
| * than the offered window. |
| */ |
| static inline u32 tcp_receive_window(const struct tcp_sock *tp) |
| { |
| s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; |
| |
| if (win < 0) |
| win = 0; |
| return (u32) win; |
| } |
| |
| /* Choose a new window, without checks for shrinking, and without |
| * scaling applied to the result. The caller does these things |
| * if necessary. This is a "raw" window selection. |
| */ |
| u32 __tcp_select_window(struct sock *sk); |
| |
| void tcp_send_window_probe(struct sock *sk); |
| |
| /* TCP uses 32bit jiffies to save some space. |
| * Note that this is different from tcp_time_stamp, which |
| * historically has been the same until linux-4.13. |
| */ |
| #define tcp_jiffies32 ((u32)jiffies) |
| |
| /* |
| * Deliver a 32bit value for TCP timestamp option (RFC 7323) |
| * It is no longer tied to jiffies, but to 1 ms clock. |
| * Note: double check if you want to use tcp_jiffies32 instead of this. |
| */ |
| #define TCP_TS_HZ 1000 |
| |
| static inline u64 tcp_clock_ns(void) |
| { |
| return ktime_get_ns(); |
| } |
| |
| static inline u64 tcp_clock_us(void) |
| { |
| return div_u64(tcp_clock_ns(), NSEC_PER_USEC); |
| } |
| |
| static inline u64 tcp_clock_ms(void) |
| { |
| return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); |
| } |
| |
| /* TCP Timestamp included in TS option (RFC 1323) can either use ms |
| * or usec resolution. Each socket carries a flag to select one or other |
| * resolution, as the route attribute could change anytime. |
| * Each flow must stick to initial resolution. |
| */ |
| static inline u32 tcp_clock_ts(bool usec_ts) |
| { |
| return usec_ts ? tcp_clock_us() : tcp_clock_ms(); |
| } |
| |
| static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) |
| { |
| return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); |
| } |
| |
| static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) |
| { |
| if (tp->tcp_usec_ts) |
| return tp->tcp_mstamp; |
| return tcp_time_stamp_ms(tp); |
| } |
| |
| void tcp_mstamp_refresh(struct tcp_sock *tp); |
| |
| static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) |
| { |
| return max_t(s64, t1 - t0, 0); |
| } |
| |
| /* provide the departure time in us unit */ |
| static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) |
| { |
| return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); |
| } |
| |
| /* Provide skb TSval in usec or ms unit */ |
| static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) |
| { |
| if (usec_ts) |
| return tcp_skb_timestamp_us(skb); |
| |
| return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); |
| } |
| |
| static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) |
| { |
| return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; |
| } |
| |
| static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) |
| { |
| return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; |
| } |
| |
| #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) |
| |
| #define TCPHDR_FIN 0x01 |
| #define TCPHDR_SYN 0x02 |
| #define TCPHDR_RST 0x04 |
| #define TCPHDR_PSH 0x08 |
| #define TCPHDR_ACK 0x10 |
| #define TCPHDR_URG 0x20 |
| #define TCPHDR_ECE 0x40 |
| #define TCPHDR_CWR 0x80 |
| |
| #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) |
| |
| /* State flags for sacked in struct tcp_skb_cb */ |
| enum tcp_skb_cb_sacked_flags { |
| TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ |
| TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ |
| TCPCB_LOST = (1 << 2), /* SKB is lost */ |
| TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | |
| TCPCB_LOST), /* All tag bits */ |
| TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ |
| TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ |
| TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | |
| TCPCB_REPAIRED), |
| }; |
| |
| /* This is what the send packet queuing engine uses to pass |
| * TCP per-packet control information to the transmission code. |
| * We also store the host-order sequence numbers in here too. |
| * This is 44 bytes if IPV6 is enabled. |
| * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. |
| */ |
| struct tcp_skb_cb { |
| __u32 seq; /* Starting sequence number */ |
| __u32 end_seq; /* SEQ + FIN + SYN + datalen */ |
| union { |
| /* Note : |
| * tcp_gso_segs/size are used in write queue only, |
| * cf tcp_skb_pcount()/tcp_skb_mss() |
| */ |
| struct { |
| u16 tcp_gso_segs; |
| u16 tcp_gso_size; |
| }; |
| }; |
| __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ |
| |
| __u8 sacked; /* State flags for SACK. */ |
| __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ |
| __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ |
| eor:1, /* Is skb MSG_EOR marked? */ |
| has_rxtstamp:1, /* SKB has a RX timestamp */ |
| unused:5; |
| __u32 ack_seq; /* Sequence number ACK'd */ |
| union { |
| struct { |
| #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) |
| /* There is space for up to 24 bytes */ |
| __u32 is_app_limited:1, /* cwnd not fully used? */ |
| delivered_ce:20, |
| unused:11; |
| /* pkts S/ACKed so far upon tx of skb, incl retrans: */ |
| __u32 delivered; |
| /* start of send pipeline phase */ |
| u64 first_tx_mstamp; |
| /* when we reached the "delivered" count */ |
| u64 delivered_mstamp; |
| } tx; /* only used for outgoing skbs */ |
| union { |
| struct inet_skb_parm h4; |
| #if IS_ENABLED(CONFIG_IPV6) |
| struct inet6_skb_parm h6; |
| #endif |
| } header; /* For incoming skbs */ |
| }; |
| }; |
| |
| #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) |
| |
| extern const struct inet_connection_sock_af_ops ipv4_specific; |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| /* This is the variant of inet6_iif() that must be used by TCP, |
| * as TCP moves IP6CB into a different location in skb->cb[] |
| */ |
| static inline int tcp_v6_iif(const struct sk_buff *skb) |
| { |
| return TCP_SKB_CB(skb)->header.h6.iif; |
| } |
| |
| static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) |
| { |
| bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); |
| |
| return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; |
| } |
| |
| /* TCP_SKB_CB reference means this can not be used from early demux */ |
| static inline int tcp_v6_sdif(const struct sk_buff *skb) |
| { |
| #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) |
| if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) |
| return TCP_SKB_CB(skb)->header.h6.iif; |
| #endif |
| return 0; |
| } |
| |
| extern const struct inet_connection_sock_af_ops ipv6_specific; |
| |
| INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); |
| INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); |
| void tcp_v6_early_demux(struct sk_buff *skb); |
| |
| #endif |
| |
| /* TCP_SKB_CB reference means this can not be used from early demux */ |
| static inline int tcp_v4_sdif(struct sk_buff *skb) |
| { |
| #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) |
| if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) |
| return TCP_SKB_CB(skb)->header.h4.iif; |
| #endif |
| return 0; |
| } |
| |
| /* Due to TSO, an SKB can be composed of multiple actual |
| * packets. To keep these tracked properly, we use this. |
| */ |
| static inline int tcp_skb_pcount(const struct sk_buff *skb) |
| { |
| return TCP_SKB_CB(skb)->tcp_gso_segs; |
| } |
| |
| static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) |
| { |
| TCP_SKB_CB(skb)->tcp_gso_segs = segs; |
| } |
| |
| static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) |
| { |
| TCP_SKB_CB(skb)->tcp_gso_segs += segs; |
| } |
| |
| /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ |
| static inline int tcp_skb_mss(const struct sk_buff *skb) |
| { |
| return TCP_SKB_CB(skb)->tcp_gso_size; |
| } |
| |
| static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) |
| { |
| return likely(!TCP_SKB_CB(skb)->eor); |
| } |
| |
| static inline bool tcp_skb_can_collapse(const struct sk_buff *to, |
| const struct sk_buff *from) |
| { |
| return likely(tcp_skb_can_collapse_to(to) && |
| mptcp_skb_can_collapse(to, from) && |
| skb_pure_zcopy_same(to, from)); |
| } |
| |
| /* Events passed to congestion control interface */ |
| enum tcp_ca_event { |
| CA_EVENT_TX_START, /* first transmit when no packets in flight */ |
| CA_EVENT_CWND_RESTART, /* congestion window restart */ |
| CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ |
| CA_EVENT_LOSS, /* loss timeout */ |
| CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ |
| CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ |
| }; |
| |
| /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ |
| enum tcp_ca_ack_event_flags { |
| CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ |
| CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ |
| CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ |
| }; |
| |
| /* |
| * Interface for adding new TCP congestion control handlers |
| */ |
| #define TCP_CA_NAME_MAX 16 |
| #define TCP_CA_MAX 128 |
| #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) |
| |
| #define TCP_CA_UNSPEC 0 |
| |
| /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ |
| #define TCP_CONG_NON_RESTRICTED 0x1 |
| /* Requires ECN/ECT set on all packets */ |
| #define TCP_CONG_NEEDS_ECN 0x2 |
| #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) |
| |
| union tcp_cc_info; |
| |
| struct ack_sample { |
| u32 pkts_acked; |
| s32 rtt_us; |
| u32 in_flight; |
| }; |
| |
| /* A rate sample measures the number of (original/retransmitted) data |
| * packets delivered "delivered" over an interval of time "interval_us". |
| * The tcp_rate.c code fills in the rate sample, and congestion |
| * control modules that define a cong_control function to run at the end |
| * of ACK processing can optionally chose to consult this sample when |
| * setting cwnd and pacing rate. |
| * A sample is invalid if "delivered" or "interval_us" is negative. |
| */ |
| struct rate_sample { |
| u64 prior_mstamp; /* starting timestamp for interval */ |
| u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ |
| u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ |
| s32 delivered; /* number of packets delivered over interval */ |
| s32 delivered_ce; /* number of packets delivered w/ CE marks*/ |
| long interval_us; /* time for tp->delivered to incr "delivered" */ |
| u32 snd_interval_us; /* snd interval for delivered packets */ |
| u32 rcv_interval_us; /* rcv interval for delivered packets */ |
| long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ |
| int losses; /* number of packets marked lost upon ACK */ |
| u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ |
| u32 prior_in_flight; /* in flight before this ACK */ |
| u32 last_end_seq; /* end_seq of most recently ACKed packet */ |
| bool is_app_limited; /* is sample from packet with bubble in pipe? */ |
| bool is_retrans; /* is sample from retransmission? */ |
| bool is_ack_delayed; /* is this (likely) a delayed ACK? */ |
| }; |
| |
| struct tcp_congestion_ops { |
| /* fast path fields are put first to fill one cache line */ |
| |
| /* return slow start threshold (required) */ |
| u32 (*ssthresh)(struct sock *sk); |
| |
| /* do new cwnd calculation (required) */ |
| void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); |
| |
| /* call before changing ca_state (optional) */ |
| void (*set_state)(struct sock *sk, u8 new_state); |
| |
| /* call when cwnd event occurs (optional) */ |
| void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); |
| |
| /* call when ack arrives (optional) */ |
| void (*in_ack_event)(struct sock *sk, u32 flags); |
| |
| /* hook for packet ack accounting (optional) */ |
| void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); |
| |
| /* override sysctl_tcp_min_tso_segs */ |
| u32 (*min_tso_segs)(struct sock *sk); |
| |
| /* call when packets are delivered to update cwnd and pacing rate, |
| * after all the ca_state processing. (optional) |
| */ |
| void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); |
| |
| |
| /* new value of cwnd after loss (required) */ |
| u32 (*undo_cwnd)(struct sock *sk); |
| /* returns the multiplier used in tcp_sndbuf_expand (optional) */ |
| u32 (*sndbuf_expand)(struct sock *sk); |
| |
| /* control/slow paths put last */ |
| /* get info for inet_diag (optional) */ |
| size_t (*get_info)(struct sock *sk, u32 ext, int *attr, |
| union tcp_cc_info *info); |
| |
| char name[TCP_CA_NAME_MAX]; |
| struct module *owner; |
| struct list_head list; |
| u32 key; |
| u32 flags; |
| |
| /* initialize private data (optional) */ |
| void (*init)(struct sock *sk); |
| /* cleanup private data (optional) */ |
| void (*release)(struct sock *sk); |
| } ____cacheline_aligned_in_smp; |
| |
| int tcp_register_congestion_control(struct tcp_congestion_ops *type); |
| void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); |
| int tcp_update_congestion_control(struct tcp_congestion_ops *type, |
| struct tcp_congestion_ops *old_type); |
| int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); |
| |
| void tcp_assign_congestion_control(struct sock *sk); |
| void tcp_init_congestion_control(struct sock *sk); |
| void tcp_cleanup_congestion_control(struct sock *sk); |
| int tcp_set_default_congestion_control(struct net *net, const char *name); |
| void tcp_get_default_congestion_control(struct net *net, char *name); |
| void tcp_get_available_congestion_control(char *buf, size_t len); |
| void tcp_get_allowed_congestion_control(char *buf, size_t len); |
| int tcp_set_allowed_congestion_control(char *allowed); |
| int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, |
| bool cap_net_admin); |
| u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); |
| void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); |
| |
| u32 tcp_reno_ssthresh(struct sock *sk); |
| u32 tcp_reno_undo_cwnd(struct sock *sk); |
| void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); |
| extern struct tcp_congestion_ops tcp_reno; |
| |
| struct tcp_congestion_ops *tcp_ca_find(const char *name); |
| struct tcp_congestion_ops *tcp_ca_find_key(u32 key); |
| u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); |
| #ifdef CONFIG_INET |
| char *tcp_ca_get_name_by_key(u32 key, char *buffer); |
| #else |
| static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static inline bool tcp_ca_needs_ecn(const struct sock *sk) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; |
| } |
| |
| static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) |
| { |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| if (icsk->icsk_ca_ops->cwnd_event) |
| icsk->icsk_ca_ops->cwnd_event(sk, event); |
| } |
| |
| /* From tcp_cong.c */ |
| void tcp_set_ca_state(struct sock *sk, const u8 ca_state); |
| |
| /* From tcp_rate.c */ |
| void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); |
| void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, |
| struct rate_sample *rs); |
| void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, |
| bool is_sack_reneg, struct rate_sample *rs); |
| void tcp_rate_check_app_limited(struct sock *sk); |
| |
| static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) |
| { |
| return t1 > t2 || (t1 == t2 && after(seq1, seq2)); |
| } |
| |
| /* These functions determine how the current flow behaves in respect of SACK |
| * handling. SACK is negotiated with the peer, and therefore it can vary |
| * between different flows. |
| * |
| * tcp_is_sack - SACK enabled |
| * tcp_is_reno - No SACK |
| */ |
| static inline int tcp_is_sack(const struct tcp_sock *tp) |
| { |
| return likely(tp->rx_opt.sack_ok); |
| } |
| |
| static inline bool tcp_is_reno(const struct tcp_sock *tp) |
| { |
| return !tcp_is_sack(tp); |
| } |
| |
| static inline unsigned int tcp_left_out(const struct tcp_sock *tp) |
| { |
| return tp->sacked_out + tp->lost_out; |
| } |
| |
| /* This determines how many packets are "in the network" to the best |
| * of our knowledge. In many cases it is conservative, but where |
| * detailed information is available from the receiver (via SACK |
| * blocks etc.) we can make more aggressive calculations. |
| * |
| * Use this for decisions involving congestion control, use just |
| * tp->packets_out to determine if the send queue is empty or not. |
| * |
| * Read this equation as: |
| * |
| * "Packets sent once on transmission queue" MINUS |
| * "Packets left network, but not honestly ACKed yet" PLUS |
| * "Packets fast retransmitted" |
| */ |
| static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) |
| { |
| return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; |
| } |
| |
| #define TCP_INFINITE_SSTHRESH 0x7fffffff |
| |
| static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) |
| { |
| return tp->snd_cwnd; |
| } |
| |
| static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) |
| { |
| WARN_ON_ONCE((int)val <= 0); |
| tp->snd_cwnd = val; |
| } |
| |
| static inline bool tcp_in_slow_start(const struct tcp_sock *tp) |
| { |
| return tcp_snd_cwnd(tp) < tp->snd_ssthresh; |
| } |
| |
| static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) |
| { |
| return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; |
| } |
| |
| static inline bool tcp_in_cwnd_reduction(const struct sock *sk) |
| { |
| return (TCPF_CA_CWR | TCPF_CA_Recovery) & |
| (1 << inet_csk(sk)->icsk_ca_state); |
| } |
| |
| /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. |
| * The exception is cwnd reduction phase, when cwnd is decreasing towards |
| * ssthresh. |
| */ |
| static inline __u32 tcp_current_ssthresh(const struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tcp_in_cwnd_reduction(sk)) |
| return tp->snd_ssthresh; |
| else |
| return max(tp->snd_ssthresh, |
| ((tcp_snd_cwnd(tp) >> 1) + |
| (tcp_snd_cwnd(tp) >> 2))); |
| } |
| |
| /* Use define here intentionally to get WARN_ON location shown at the caller */ |
| #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) |
| |
| void tcp_enter_cwr(struct sock *sk); |
| __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); |
| |
| /* The maximum number of MSS of available cwnd for which TSO defers |
| * sending if not using sysctl_tcp_tso_win_divisor. |
| */ |
| static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) |
| { |
| return 3; |
| } |
| |
| /* Returns end sequence number of the receiver's advertised window */ |
| static inline u32 tcp_wnd_end(const struct tcp_sock *tp) |
| { |
| return tp->snd_una + tp->snd_wnd; |
| } |
| |
| /* We follow the spirit of RFC2861 to validate cwnd but implement a more |
| * flexible approach. The RFC suggests cwnd should not be raised unless |
| * it was fully used previously. And that's exactly what we do in |
| * congestion avoidance mode. But in slow start we allow cwnd to grow |
| * as long as the application has used half the cwnd. |
| * Example : |
| * cwnd is 10 (IW10), but application sends 9 frames. |
| * We allow cwnd to reach 18 when all frames are ACKed. |
| * This check is safe because it's as aggressive as slow start which already |
| * risks 100% overshoot. The advantage is that we discourage application to |
| * either send more filler packets or data to artificially blow up the cwnd |
| * usage, and allow application-limited process to probe bw more aggressively. |
| */ |
| static inline bool tcp_is_cwnd_limited(const struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (tp->is_cwnd_limited) |
| return true; |
| |
| /* If in slow start, ensure cwnd grows to twice what was ACKed. */ |
| if (tcp_in_slow_start(tp)) |
| return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; |
| |
| return false; |
| } |
| |
| /* BBR congestion control needs pacing. |
| * Same remark for SO_MAX_PACING_RATE. |
| * sch_fq packet scheduler is efficiently handling pacing, |
| * but is not always installed/used. |
| * Return true if TCP stack should pace packets itself. |
| */ |
| static inline bool tcp_needs_internal_pacing(const struct sock *sk) |
| { |
| return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; |
| } |
| |
| /* Estimates in how many jiffies next packet for this flow can be sent. |
| * Scheduling a retransmit timer too early would be silly. |
| */ |
| static inline unsigned long tcp_pacing_delay(const struct sock *sk) |
| { |
| s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; |
| |
| return delay > 0 ? nsecs_to_jiffies(delay) : 0; |
| } |
| |
| static inline void tcp_reset_xmit_timer(struct sock *sk, |
| const int what, |
| unsigned long when, |
| const unsigned long max_when) |
| { |
| inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), |
| max_when); |
| } |
| |
| /* Something is really bad, we could not queue an additional packet, |
| * because qdisc is full or receiver sent a 0 window, or we are paced. |
| * We do not want to add fuel to the fire, or abort too early, |
| * so make sure the timer we arm now is at least 200ms in the future, |
| * regardless of current icsk_rto value (as it could be ~2ms) |
| */ |
| static inline unsigned long tcp_probe0_base(const struct sock *sk) |
| { |
| return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); |
| } |
| |
| /* Variant of inet_csk_rto_backoff() used for zero window probes */ |
| static inline unsigned long tcp_probe0_when(const struct sock *sk, |
| unsigned long max_when) |
| { |
| u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, |
| inet_csk(sk)->icsk_backoff); |
| u64 when = (u64)tcp_probe0_base(sk) << backoff; |
| |
| return (unsigned long)min_t(u64, when, max_when); |
| } |
| |
| static inline void tcp_check_probe_timer(struct sock *sk) |
| { |
| if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) |
| tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, |
| tcp_probe0_base(sk), TCP_RTO_MAX); |
| } |
| |
| static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) |
| { |
| tp->snd_wl1 = seq; |
| } |
| |
| static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) |
| { |
| tp->snd_wl1 = seq; |
| } |
| |
| /* |
| * Calculate(/check) TCP checksum |
| */ |
| static inline __sum16 tcp_v4_check(int len, __be32 saddr, |
| __be32 daddr, __wsum base) |
| { |
| return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); |
| } |
| |
| static inline bool tcp_checksum_complete(struct sk_buff *skb) |
| { |
| return !skb_csum_unnecessary(skb) && |
| __skb_checksum_complete(skb); |
| } |
| |
| bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, |
| enum skb_drop_reason *reason); |
| |
| |
| int tcp_filter(struct sock *sk, struct sk_buff *skb); |
| void tcp_set_state(struct sock *sk, int state); |
| void tcp_done(struct sock *sk); |
| int tcp_abort(struct sock *sk, int err); |
| |
| static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) |
| { |
| rx_opt->dsack = 0; |
| rx_opt->num_sacks = 0; |
| } |
| |
| void tcp_cwnd_restart(struct sock *sk, s32 delta); |
| |
| static inline void tcp_slow_start_after_idle_check(struct sock *sk) |
| { |
| const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; |
| struct tcp_sock *tp = tcp_sk(sk); |
| s32 delta; |
| |
| if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || |
| tp->packets_out || ca_ops->cong_control) |
| return; |
| delta = tcp_jiffies32 - tp->lsndtime; |
| if (delta > inet_csk(sk)->icsk_rto) |
| tcp_cwnd_restart(sk, delta); |
| } |
| |
| /* Determine a window scaling and initial window to offer. */ |
| void tcp_select_initial_window(const struct sock *sk, int __space, |
| __u32 mss, __u32 *rcv_wnd, |
| __u32 *window_clamp, int wscale_ok, |
| __u8 *rcv_wscale, __u32 init_rcv_wnd); |
| |
| static inline int __tcp_win_from_space(u8 scaling_ratio, int space) |
| { |
| s64 scaled_space = (s64)space * scaling_ratio; |
| |
| return scaled_space >> TCP_RMEM_TO_WIN_SCALE; |
| } |
| |
| static inline int tcp_win_from_space(const struct sock *sk, int space) |
| { |
| return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); |
| } |
| |
| /* inverse of __tcp_win_from_space() */ |
| static inline int __tcp_space_from_win(u8 scaling_ratio, int win) |
| { |
| u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; |
| |
| do_div(val, scaling_ratio); |
| return val; |
| } |
| |
| static inline int tcp_space_from_win(const struct sock *sk, int win) |
| { |
| return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); |
| } |
| |
| /* Assume a 50% default for skb->len/skb->truesize ratio. |
| * This may be adjusted later in tcp_measure_rcv_mss(). |
| */ |
| #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) |
| |
| static inline void tcp_scaling_ratio_init(struct sock *sk) |
| { |
| tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; |
| } |
| |
| /* Note: caller must be prepared to deal with negative returns */ |
| static inline int tcp_space(const struct sock *sk) |
| { |
| return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - |
| READ_ONCE(sk->sk_backlog.len) - |
| atomic_read(&sk->sk_rmem_alloc)); |
| } |
| |
| static inline int tcp_full_space(const struct sock *sk) |
| { |
| return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); |
| } |
| |
| static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) |
| { |
| int unused_mem = sk_unused_reserved_mem(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); |
| if (unused_mem) |
| tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, |
| tcp_win_from_space(sk, unused_mem)); |
| } |
| |
| static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) |
| { |
| __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); |
| } |
| |
| void tcp_cleanup_rbuf(struct sock *sk, int copied); |
| void __tcp_cleanup_rbuf(struct sock *sk, int copied); |
| |
| |
| /* We provision sk_rcvbuf around 200% of sk_rcvlowat. |
| * If 87.5 % (7/8) of the space has been consumed, we want to override |
| * SO_RCVLOWAT constraint, since we are receiving skbs with too small |
| * len/truesize ratio. |
| */ |
| static inline bool tcp_rmem_pressure(const struct sock *sk) |
| { |
| int rcvbuf, threshold; |
| |
| if (tcp_under_memory_pressure(sk)) |
| return true; |
| |
| rcvbuf = READ_ONCE(sk->sk_rcvbuf); |
| threshold = rcvbuf - (rcvbuf >> 3); |
| |
| return atomic_read(&sk->sk_rmem_alloc) > threshold; |
| } |
| |
| static inline bool tcp_epollin_ready(const struct sock *sk, int target) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); |
| |
| if (avail <= 0) |
| return false; |
| |
| return (avail >= target) || tcp_rmem_pressure(sk) || |
| (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); |
| } |
| |
| extern void tcp_openreq_init_rwin(struct request_sock *req, |
| const struct sock *sk_listener, |
| const struct dst_entry *dst); |
| |
| void tcp_enter_memory_pressure(struct sock *sk); |
| void tcp_leave_memory_pressure(struct sock *sk); |
| |
| static inline int keepalive_intvl_when(const struct tcp_sock *tp) |
| { |
| struct net *net = sock_net((struct sock *)tp); |
| int val; |
| |
| /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() |
| * and do_tcp_setsockopt(). |
| */ |
| val = READ_ONCE(tp->keepalive_intvl); |
| |
| return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); |
| } |
| |
| static inline int keepalive_time_when(const struct tcp_sock *tp) |
| { |
| struct net *net = sock_net((struct sock *)tp); |
| int val; |
| |
| /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ |
| val = READ_ONCE(tp->keepalive_time); |
| |
| return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); |
| } |
| |
| static inline int keepalive_probes(const struct tcp_sock *tp) |
| { |
| struct net *net = sock_net((struct sock *)tp); |
| int val; |
| |
| /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() |
| * and do_tcp_setsockopt(). |
| */ |
| val = READ_ONCE(tp->keepalive_probes); |
| |
| return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); |
| } |
| |
| static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) |
| { |
| const struct inet_connection_sock *icsk = &tp->inet_conn; |
| |
| return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, |
| tcp_jiffies32 - tp->rcv_tstamp); |
| } |
| |
| static inline int tcp_fin_time(const struct sock *sk) |
| { |
| int fin_timeout = tcp_sk(sk)->linger2 ? : |
| READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); |
| const int rto = inet_csk(sk)->icsk_rto; |
| |
| if (fin_timeout < (rto << 2) - (rto >> 1)) |
| fin_timeout = (rto << 2) - (rto >> 1); |
| |
| return fin_timeout; |
| } |
| |
| static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, |
| int paws_win) |
| { |
| if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) |
| return true; |
| if (unlikely(!time_before32(ktime_get_seconds(), |
| rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) |
| return true; |
| /* |
| * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, |
| * then following tcp messages have valid values. Ignore 0 value, |
| * or else 'negative' tsval might forbid us to accept their packets. |
| */ |
| if (!rx_opt->ts_recent) |
| return true; |
| return false; |
| } |
| |
| static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, |
| int rst) |
| { |
| if (tcp_paws_check(rx_opt, 0)) |
| return false; |
| |
| /* RST segments are not recommended to carry timestamp, |
| and, if they do, it is recommended to ignore PAWS because |
| "their cleanup function should take precedence over timestamps." |
| Certainly, it is mistake. It is necessary to understand the reasons |
| of this constraint to relax it: if peer reboots, clock may go |
| out-of-sync and half-open connections will not be reset. |
| Actually, the problem would be not existing if all |
| the implementations followed draft about maintaining clock |
| via reboots. Linux-2.2 DOES NOT! |
| |
| However, we can relax time bounds for RST segments to MSL. |
| */ |
| if (rst && !time_before32(ktime_get_seconds(), |
| rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) |
| return false; |
| return true; |
| } |
| |
| bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, |
| int mib_idx, u32 *last_oow_ack_time); |
| |
| static inline void tcp_mib_init(struct net *net) |
| { |
| /* See RFC 2012 */ |
| TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); |
| TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); |
| TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); |
| TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); |
| } |
| |
| /* from STCP */ |
| static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) |
| { |
| tp->lost_skb_hint = NULL; |
| } |
| |
| static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) |
| { |
| tcp_clear_retrans_hints_partial(tp); |
| tp->retransmit_skb_hint = NULL; |
| } |
| |
| #define tcp_md5_addr tcp_ao_addr |
| |
| /* - key database */ |
| struct tcp_md5sig_key { |
| struct hlist_node node; |
| u8 keylen; |
| u8 family; /* AF_INET or AF_INET6 */ |
| u8 prefixlen; |
| u8 flags; |
| union tcp_md5_addr addr; |
| int l3index; /* set if key added with L3 scope */ |
| u8 key[TCP_MD5SIG_MAXKEYLEN]; |
| struct rcu_head rcu; |
| }; |
| |
| /* - sock block */ |
| struct tcp_md5sig_info { |
| struct hlist_head head; |
| struct rcu_head rcu; |
| }; |
| |
| /* - pseudo header */ |
| struct tcp4_pseudohdr { |
| __be32 saddr; |
| __be32 daddr; |
| __u8 pad; |
| __u8 protocol; |
| __be16 len; |
| }; |
| |
| struct tcp6_pseudohdr { |
| struct in6_addr saddr; |
| struct in6_addr daddr; |
| __be32 len; |
| __be32 protocol; /* including padding */ |
| }; |
| |
| union tcp_md5sum_block { |
| struct tcp4_pseudohdr ip4; |
| #if IS_ENABLED(CONFIG_IPV6) |
| struct tcp6_pseudohdr ip6; |
| #endif |
| }; |
| |
| /* |
| * struct tcp_sigpool - per-CPU pool of ahash_requests |
| * @scratch: per-CPU temporary area, that can be used between |
| * tcp_sigpool_start() and tcp_sigpool_end() to perform |
| * crypto request |
| * @req: pre-allocated ahash request |
| */ |
| struct tcp_sigpool { |
| void *scratch; |
| struct ahash_request *req; |
| }; |
| |
| int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); |
| void tcp_sigpool_get(unsigned int id); |
| void tcp_sigpool_release(unsigned int id); |
| int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, |
| const struct sk_buff *skb, |
| unsigned int header_len); |
| |
| /** |
| * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash |
| * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() |
| * @c: returned tcp_sigpool for usage (uninitialized on failure) |
| * |
| * Returns 0 on success, error otherwise. |
| */ |
| int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); |
| /** |
| * tcp_sigpool_end - enable bh and stop using tcp_sigpool |
| * @c: tcp_sigpool context that was returned by tcp_sigpool_start() |
| */ |
| void tcp_sigpool_end(struct tcp_sigpool *c); |
| size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); |
| /* - functions */ |
| int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, |
| const struct sock *sk, const struct sk_buff *skb); |
| int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, |
| int family, u8 prefixlen, int l3index, u8 flags, |
| const u8 *newkey, u8 newkeylen); |
| int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, |
| int family, u8 prefixlen, int l3index, |
| struct tcp_md5sig_key *key); |
| |
| int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, |
| int family, u8 prefixlen, int l3index, u8 flags); |
| void tcp_clear_md5_list(struct sock *sk); |
| struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, |
| const struct sock *addr_sk); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, |
| const union tcp_md5_addr *addr, |
| int family, bool any_l3index); |
| static inline struct tcp_md5sig_key * |
| tcp_md5_do_lookup(const struct sock *sk, int l3index, |
| const union tcp_md5_addr *addr, int family) |
| { |
| if (!static_branch_unlikely(&tcp_md5_needed.key)) |
| return NULL; |
| return __tcp_md5_do_lookup(sk, l3index, addr, family, false); |
| } |
| |
| static inline struct tcp_md5sig_key * |
| tcp_md5_do_lookup_any_l3index(const struct sock *sk, |
| const union tcp_md5_addr *addr, int family) |
| { |
| if (!static_branch_unlikely(&tcp_md5_needed.key)) |
| return NULL; |
| return __tcp_md5_do_lookup(sk, 0, addr, family, true); |
| } |
| |
| enum skb_drop_reason |
| tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, |
| const void *saddr, const void *daddr, |
| int family, int l3index, const __u8 *hash_location); |
| |
| |
| #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) |
| #else |
| static inline struct tcp_md5sig_key * |
| tcp_md5_do_lookup(const struct sock *sk, int l3index, |
| const union tcp_md5_addr *addr, int family) |
| { |
| return NULL; |
| } |
| |
| static inline struct tcp_md5sig_key * |
| tcp_md5_do_lookup_any_l3index(const struct sock *sk, |
| const union tcp_md5_addr *addr, int family) |
| { |
| return NULL; |
| } |
| |
| static inline enum skb_drop_reason |
| tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, |
| const void *saddr, const void *daddr, |
| int family, int l3index, const __u8 *hash_location) |
| { |
| return SKB_NOT_DROPPED_YET; |
| } |
| #define tcp_twsk_md5_key(twsk) NULL |
| #endif |
| |
| int tcp_md5_alloc_sigpool(void); |
| void tcp_md5_release_sigpool(void); |
| void tcp_md5_add_sigpool(void); |
| extern int tcp_md5_sigpool_id; |
| |
| int tcp_md5_hash_key(struct tcp_sigpool *hp, |
| const struct tcp_md5sig_key *key); |
| |
| /* From tcp_fastopen.c */ |
| void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, |
| struct tcp_fastopen_cookie *cookie); |
| void tcp_fastopen_cache_set(struct sock *sk, u16 mss, |
| struct tcp_fastopen_cookie *cookie, bool syn_lost, |
| u16 try_exp); |
| struct tcp_fastopen_request { |
| /* Fast Open cookie. Size 0 means a cookie request */ |
| struct tcp_fastopen_cookie cookie; |
| struct msghdr *data; /* data in MSG_FASTOPEN */ |
| size_t size; |
| int copied; /* queued in tcp_connect() */ |
| struct ubuf_info *uarg; |
| }; |
| void tcp_free_fastopen_req(struct tcp_sock *tp); |
| void tcp_fastopen_destroy_cipher(struct sock *sk); |
| void tcp_fastopen_ctx_destroy(struct net *net); |
| int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, |
| void *primary_key, void *backup_key); |
| int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, |
| u64 *key); |
| void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); |
| struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct tcp_fastopen_cookie *foc, |
| const struct dst_entry *dst); |
| void tcp_fastopen_init_key_once(struct net *net); |
| bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, |
| struct tcp_fastopen_cookie *cookie); |
| bool tcp_fastopen_defer_connect(struct sock *sk, int *err); |
| #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) |
| #define TCP_FASTOPEN_KEY_MAX 2 |
| #define TCP_FASTOPEN_KEY_BUF_LENGTH \ |
| (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) |
| |
| /* Fastopen key context */ |
| struct tcp_fastopen_context { |
| siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; |
| int num; |
| struct rcu_head rcu; |
| }; |
| |
| void tcp_fastopen_active_disable(struct sock *sk); |
| bool tcp_fastopen_active_should_disable(struct sock *sk); |
| void tcp_fastopen_active_disable_ofo_check(struct sock *sk); |
| void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); |
| |
| /* Caller needs to wrap with rcu_read_(un)lock() */ |
| static inline |
| struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) |
| { |
| struct tcp_fastopen_context *ctx; |
| |
| ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); |
| if (!ctx) |
| ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); |
| return ctx; |
| } |
| |
| static inline |
| bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, |
| const struct tcp_fastopen_cookie *orig) |
| { |
| if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && |
| orig->len == foc->len && |
| !memcmp(orig->val, foc->val, foc->len)) |
| return true; |
| return false; |
| } |
| |
| static inline |
| int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) |
| { |
| return ctx->num; |
| } |
| |
| /* Latencies incurred by various limits for a sender. They are |
| * chronograph-like stats that are mutually exclusive. |
| */ |
| enum tcp_chrono { |
| TCP_CHRONO_UNSPEC, |
| TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ |
| TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ |
| TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ |
| __TCP_CHRONO_MAX, |
| }; |
| |
| void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); |
| void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); |
| |
| /* This helper is needed, because skb->tcp_tsorted_anchor uses |
| * the same memory storage than skb->destructor/_skb_refdst |
| */ |
| static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) |
| { |
| skb->destructor = NULL; |
| skb->_skb_refdst = 0UL; |
| } |
| |
| #define tcp_skb_tsorted_save(skb) { \ |
| unsigned long _save = skb->_skb_refdst; \ |
| skb->_skb_refdst = 0UL; |
| |
| #define tcp_skb_tsorted_restore(skb) \ |
| skb->_skb_refdst = _save; \ |
| } |
| |
| void tcp_write_queue_purge(struct sock *sk); |
| |
| static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) |
| { |
| return skb_rb_first(&sk->tcp_rtx_queue); |
| } |
| |
| static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) |
| { |
| return skb_rb_last(&sk->tcp_rtx_queue); |
| } |
| |
| static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) |
| { |
| return skb_peek_tail(&sk->sk_write_queue); |
| } |
| |
| #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ |
| skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) |
| |
| static inline struct sk_buff *tcp_send_head(const struct sock *sk) |
| { |
| return skb_peek(&sk->sk_write_queue); |
| } |
| |
| static inline bool tcp_skb_is_last(const struct sock *sk, |
| const struct sk_buff *skb) |
| { |
| return skb_queue_is_last(&sk->sk_write_queue, skb); |
| } |
| |
| /** |
| * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue |
| * @sk: socket |
| * |
| * Since the write queue can have a temporary empty skb in it, |
| * we must not use "return skb_queue_empty(&sk->sk_write_queue)" |
| */ |
| static inline bool tcp_write_queue_empty(const struct sock *sk) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| |
| return tp->write_seq == tp->snd_nxt; |
| } |
| |
| static inline bool tcp_rtx_queue_empty(const struct sock *sk) |
| { |
| return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); |
| } |
| |
| static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) |
| { |
| return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); |
| } |
| |
| static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) |
| { |
| __skb_queue_tail(&sk->sk_write_queue, skb); |
| |
| /* Queue it, remembering where we must start sending. */ |
| if (sk->sk_write_queue.next == skb) |
| tcp_chrono_start(sk, TCP_CHRONO_BUSY); |
| } |
| |
| /* Insert new before skb on the write queue of sk. */ |
| static inline void tcp_insert_write_queue_before(struct sk_buff *new, |
| struct sk_buff *skb, |
| struct sock *sk) |
| { |
| __skb_queue_before(&sk->sk_write_queue, skb, new); |
| } |
| |
| static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) |
| { |
| tcp_skb_tsorted_anchor_cleanup(skb); |
| __skb_unlink(skb, &sk->sk_write_queue); |
| } |
| |
| void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); |
| |
| static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) |
| { |
| tcp_skb_tsorted_anchor_cleanup(skb); |
| rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); |
| } |
| |
| static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) |
| { |
| list_del(&skb->tcp_tsorted_anchor); |
| tcp_rtx_queue_unlink(skb, sk); |
| tcp_wmem_free_skb(sk, skb); |
| } |
| |
| static inline void tcp_push_pending_frames(struct sock *sk) |
| { |
| if (tcp_send_head(sk)) { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); |
| } |
| } |
| |
| /* Start sequence of the skb just after the highest skb with SACKed |
| * bit, valid only if sacked_out > 0 or when the caller has ensured |
| * validity by itself. |
| */ |
| static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) |
| { |
| if (!tp->sacked_out) |
| return tp->snd_una; |
| |
| if (tp->highest_sack == NULL) |
| return tp->snd_nxt; |
| |
| return TCP_SKB_CB(tp->highest_sack)->seq; |
| } |
| |
| static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) |
| { |
| tcp_sk(sk)->highest_sack = skb_rb_next(skb); |
| } |
| |
| static inline struct sk_buff *tcp_highest_sack(struct sock *sk) |
| { |
| return tcp_sk(sk)->highest_sack; |
| } |
| |
| static inline void tcp_highest_sack_reset(struct sock *sk) |
| { |
| tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); |
| } |
| |
| /* Called when old skb is about to be deleted and replaced by new skb */ |
| static inline void tcp_highest_sack_replace(struct sock *sk, |
| struct sk_buff *old, |
| struct sk_buff *new) |
| { |
| if (old == tcp_highest_sack(sk)) |
| tcp_sk(sk)->highest_sack = new; |
| } |
| |
| /* This helper checks if socket has IP_TRANSPARENT set */ |
| static inline bool inet_sk_transparent(const struct sock *sk) |
| { |
| switch (sk->sk_state) { |
| case TCP_TIME_WAIT: |
| return inet_twsk(sk)->tw_transparent; |
| case TCP_NEW_SYN_RECV: |
| return inet_rsk(inet_reqsk(sk))->no_srccheck; |
| } |
| return inet_test_bit(TRANSPARENT, sk); |
| } |
| |
| /* Determines whether this is a thin stream (which may suffer from |
| * increased latency). Used to trigger latency-reducing mechanisms. |
| */ |
| static inline bool tcp_stream_is_thin(struct tcp_sock *tp) |
| { |
| return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); |
| } |
| |
| /* /proc */ |
| enum tcp_seq_states { |
| TCP_SEQ_STATE_LISTENING, |
| TCP_SEQ_STATE_ESTABLISHED, |
| }; |
| |
| void *tcp_seq_start(struct seq_file *seq, loff_t *pos); |
| void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); |
| void tcp_seq_stop(struct seq_file *seq, void *v); |
| |
| struct tcp_seq_afinfo { |
| sa_family_t family; |
| }; |
| |
| struct tcp_iter_state { |
| struct seq_net_private p; |
| enum tcp_seq_states state; |
| struct sock *syn_wait_sk; |
| int bucket, offset, sbucket, num; |
| loff_t last_pos; |
| }; |
| |
| extern struct request_sock_ops tcp_request_sock_ops; |
| extern struct request_sock_ops tcp6_request_sock_ops; |
| |
| void tcp_v4_destroy_sock(struct sock *sk); |
| |
| struct sk_buff *tcp_gso_segment(struct sk_buff *skb, |
| netdev_features_t features); |
| struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); |
| struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); |
| struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, |
| struct tcphdr *th); |
| INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); |
| INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); |
| INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); |
| INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); |
| #ifdef CONFIG_INET |
| void tcp_gro_complete(struct sk_buff *skb); |
| #else |
| static inline void tcp_gro_complete(struct sk_buff *skb) { } |
| #endif |
| |
| void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); |
| |
| static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) |
| { |
| struct net *net = sock_net((struct sock *)tp); |
| u32 val; |
| |
| val = READ_ONCE(tp->notsent_lowat); |
| |
| return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); |
| } |
| |
| bool tcp_stream_memory_free(const struct sock *sk, int wake); |
| |
| #ifdef CONFIG_PROC_FS |
| int tcp4_proc_init(void); |
| void tcp4_proc_exit(void); |
| #endif |
| |
| int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); |
| int tcp_conn_request(struct request_sock_ops *rsk_ops, |
| const struct tcp_request_sock_ops *af_ops, |
| struct sock *sk, struct sk_buff *skb); |
| |
| /* TCP af-specific functions */ |
| struct tcp_sock_af_ops { |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, |
| const struct sock *addr_sk); |
| int (*calc_md5_hash)(char *location, |
| const struct tcp_md5sig_key *md5, |
| const struct sock *sk, |
| const struct sk_buff *skb); |
| int (*md5_parse)(struct sock *sk, |
| int optname, |
| sockptr_t optval, |
| int optlen); |
| #endif |
| #ifdef CONFIG_TCP_AO |
| int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); |
| struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, |
| struct sock *addr_sk, |
| int sndid, int rcvid); |
| int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, |
| const struct sock *sk, |
| __be32 sisn, __be32 disn, bool send); |
| int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, |
| const struct sock *sk, const struct sk_buff *skb, |
| const u8 *tkey, int hash_offset, u32 sne); |
| #endif |
| }; |
| |
| struct tcp_request_sock_ops { |
| u16 mss_clamp; |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, |
| const struct sock *addr_sk); |
| int (*calc_md5_hash) (char *location, |
| const struct tcp_md5sig_key *md5, |
| const struct sock *sk, |
| const struct sk_buff *skb); |
| #endif |
| #ifdef CONFIG_TCP_AO |
| struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, |
| struct request_sock *req, |
| int sndid, int rcvid); |
| int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); |
| int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, |
| struct request_sock *req, const struct sk_buff *skb, |
| int hash_offset, u32 sne); |
| #endif |
| #ifdef CONFIG_SYN_COOKIES |
| __u32 (*cookie_init_seq)(const struct sk_buff *skb, |
| __u16 *mss); |
| #endif |
| struct dst_entry *(*route_req)(const struct sock *sk, |
| struct sk_buff *skb, |
| struct flowi *fl, |
| struct request_sock *req, |
| u32 tw_isn); |
| u32 (*init_seq)(const struct sk_buff *skb); |
| u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); |
| int (*send_synack)(const struct sock *sk, struct dst_entry *dst, |
| struct flowi *fl, struct request_sock *req, |
| struct tcp_fastopen_cookie *foc, |
| enum tcp_synack_type synack_type, |
| struct sk_buff *syn_skb); |
| }; |
| |
| extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; |
| #if IS_ENABLED(CONFIG_IPV6) |
| extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; |
| #endif |
| |
| #ifdef CONFIG_SYN_COOKIES |
| static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, |
| const struct sock *sk, struct sk_buff *skb, |
| __u16 *mss) |
| { |
| tcp_synq_overflow(sk); |
| __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); |
| return ops->cookie_init_seq(skb, mss); |
| } |
| #else |
| static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, |
| const struct sock *sk, struct sk_buff *skb, |
| __u16 *mss) |
| { |
| return 0; |
| } |
| #endif |
| |
| struct tcp_key { |
| union { |
| struct { |
| struct tcp_ao_key *ao_key; |
| char *traffic_key; |
| u32 sne; |
| u8 rcv_next; |
| }; |
| struct tcp_md5sig_key *md5_key; |
| }; |
| enum { |
| TCP_KEY_NONE = 0, |
| TCP_KEY_MD5, |
| TCP_KEY_AO, |
| } type; |
| }; |
| |
| static inline void tcp_get_current_key(const struct sock *sk, |
| struct tcp_key *out) |
| { |
| #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) |
| const struct tcp_sock *tp = tcp_sk(sk); |
| #endif |
| |
| #ifdef CONFIG_TCP_AO |
| if (static_branch_unlikely(&tcp_ao_needed.key)) { |
| struct tcp_ao_info *ao; |
| |
| ao = rcu_dereference_protected(tp->ao_info, |
| lockdep_sock_is_held(sk)); |
| if (ao) { |
| out->ao_key = READ_ONCE(ao->current_key); |
| out->type = TCP_KEY_AO; |
| return; |
| } |
| } |
| #endif |
| #ifdef CONFIG_TCP_MD5SIG |
| if (static_branch_unlikely(&tcp_md5_needed.key) && |
| rcu_access_pointer(tp->md5sig_info)) { |
| out->md5_key = tp->af_specific->md5_lookup(sk, sk); |
| if (out->md5_key) { |
| out->type = TCP_KEY_MD5; |
| return; |
| } |
| } |
| #endif |
| out->type = TCP_KEY_NONE; |
| } |
| |
| static inline bool tcp_key_is_md5(const struct tcp_key *key) |
| { |
| #ifdef CONFIG_TCP_MD5SIG |
| if (static_branch_unlikely(&tcp_md5_needed.key) && |
| key->type == TCP_KEY_MD5) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static inline bool tcp_key_is_ao(const struct tcp_key *key) |
| { |
| #ifdef CONFIG_TCP_AO |
| if (static_branch_unlikely(&tcp_ao_needed.key) && |
| key->type == TCP_KEY_AO) |
| return true; |
| #endif |
| return false; |
| } |
| |
| int tcpv4_offload_init(void); |
| |
| void tcp_v4_init(void); |
| void tcp_init(void); |
| |
| /* tcp_recovery.c */ |
| void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); |
| void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); |
| extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, |
| u32 reo_wnd); |
| extern bool tcp_rack_mark_lost(struct sock *sk); |
| extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, |
| u64 xmit_time); |
| extern void tcp_rack_reo_timeout(struct sock *sk); |
| extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); |
| |
| /* tcp_plb.c */ |
| |
| /* |
| * Scaling factor for fractions in PLB. For example, tcp_plb_update_state |
| * expects cong_ratio which represents fraction of traffic that experienced |
| * congestion over a single RTT. In order to avoid floating point operations, |
| * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. |
| */ |
| #define TCP_PLB_SCALE 8 |
| |
| /* State for PLB (Protective Load Balancing) for a single TCP connection. */ |
| struct tcp_plb_state { |
| u8 consec_cong_rounds:5, /* consecutive congested rounds */ |
| unused:3; |
| u32 pause_until; /* jiffies32 when PLB can resume rerouting */ |
| }; |
| |
| static inline void tcp_plb_init(const struct sock *sk, |
| struct tcp_plb_state *plb) |
| { |
| plb->consec_cong_rounds = 0; |
| plb->pause_until = 0; |
| } |
| void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, |
| const int cong_ratio); |
| void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); |
| void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); |
| |
| /* At how many usecs into the future should the RTO fire? */ |
| static inline s64 tcp_rto_delta_us(const struct sock *sk) |
| { |
| const struct sk_buff *skb = tcp_rtx_queue_head(sk); |
| u32 rto = inet_csk(sk)->icsk_rto; |
| u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); |
| |
| return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; |
| } |
| |
| /* |
| * Save and compile IPv4 options, return a pointer to it |
| */ |
| static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, |
| struct sk_buff *skb) |
| { |
| const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; |
| struct ip_options_rcu *dopt = NULL; |
| |
| if (opt->optlen) { |
| int opt_size = sizeof(*dopt) + opt->optlen; |
| |
| dopt = kmalloc(opt_size, GFP_ATOMIC); |
| if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { |
| kfree(dopt); |
| dopt = NULL; |
| } |
| } |
| return dopt; |
| } |
| |
| /* locally generated TCP pure ACKs have skb->truesize == 2 |
| * (check tcp_send_ack() in net/ipv4/tcp_output.c ) |
| * This is much faster than dissecting the packet to find out. |
| * (Think of GRE encapsulations, IPv4, IPv6, ...) |
| */ |
| static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) |
| { |
| return skb->truesize == 2; |
| } |
| |
| static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) |
| { |
| skb->truesize = 2; |
| } |
| |
| static inline int tcp_inq(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int answ; |
| |
| if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { |
| answ = 0; |
| } else if (sock_flag(sk, SOCK_URGINLINE) || |
| !tp->urg_data || |
| before(tp->urg_seq, tp->copied_seq) || |
| !before(tp->urg_seq, tp->rcv_nxt)) { |
| |
| answ = tp->rcv_nxt - tp->copied_seq; |
| |
| /* Subtract 1, if FIN was received */ |
| if (answ && sock_flag(sk, SOCK_DONE)) |
| answ--; |
| } else { |
| answ = tp->urg_seq - tp->copied_seq; |
| } |
| |
| return answ; |
| } |
| |
| int tcp_peek_len(struct socket *sock); |
| |
| static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) |
| { |
| u16 segs_in; |
| |
| segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); |
| |
| /* We update these fields while other threads might |
| * read them from tcp_get_info() |
| */ |
| WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); |
| if (skb->len > tcp_hdrlen(skb)) |
| WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); |
| } |
| |
| /* |
| * TCP listen path runs lockless. |
| * We forced "struct sock" to be const qualified to make sure |
| * we don't modify one of its field by mistake. |
| * Here, we increment sk_drops which is an atomic_t, so we can safely |
| * make sock writable again. |
| */ |
| static inline void tcp_listendrop(const struct sock *sk) |
| { |
| atomic_inc(&((struct sock *)sk)->sk_drops); |
| __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); |
| } |
| |
| enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); |
| |
| /* |
| * Interface for adding Upper Level Protocols over TCP |
| */ |
| |
| #define TCP_ULP_NAME_MAX 16 |
| #define TCP_ULP_MAX 128 |
| #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) |
| |
| struct tcp_ulp_ops { |
| struct list_head list; |
| |
| /* initialize ulp */ |
| int (*init)(struct sock *sk); |
| /* update ulp */ |
| void (*update)(struct sock *sk, struct proto *p, |
| void (*write_space)(struct sock *sk)); |
| /* cleanup ulp */ |
| void (*release)(struct sock *sk); |
| /* diagnostic */ |
| int (*get_info)(struct sock *sk, struct sk_buff *skb); |
| size_t (*get_info_size)(const struct sock *sk); |
| /* clone ulp */ |
| void (*clone)(const struct request_sock *req, struct sock *newsk, |
| const gfp_t priority); |
| |
| char name[TCP_ULP_NAME_MAX]; |
| struct module *owner; |
| }; |
| int tcp_register_ulp(struct tcp_ulp_ops *type); |
| void tcp_unregister_ulp(struct tcp_ulp_ops *type); |
| int tcp_set_ulp(struct sock *sk, const char *name); |
| void tcp_get_available_ulp(char *buf, size_t len); |
| void tcp_cleanup_ulp(struct sock *sk); |
| void tcp_update_ulp(struct sock *sk, struct proto *p, |
| void (*write_space)(struct sock *sk)); |
| |
| #define MODULE_ALIAS_TCP_ULP(name) \ |
| __MODULE_INFO(alias, alias_userspace, name); \ |
| __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) |
| |
| #ifdef CONFIG_NET_SOCK_MSG |
| struct sk_msg; |
| struct sk_psock; |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); |
| void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); |
| #endif /* CONFIG_BPF_SYSCALL */ |
| |
| #ifdef CONFIG_INET |
| void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); |
| #else |
| static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| } |
| #endif |
| |
| int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, |
| struct sk_msg *msg, u32 bytes, int flags); |
| #endif /* CONFIG_NET_SOCK_MSG */ |
| |
| #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) |
| static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_CGROUP_BPF |
| static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, |
| struct sk_buff *skb, |
| unsigned int end_offset) |
| { |
| skops->skb = skb; |
| skops->skb_data_end = skb->data + end_offset; |
| } |
| #else |
| static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, |
| struct sk_buff *skb, |
| unsigned int end_offset) |
| { |
| } |
| #endif |
| |
| /* Call BPF_SOCK_OPS program that returns an int. If the return value |
| * is < 0, then the BPF op failed (for example if the loaded BPF |
| * program does not support the chosen operation or there is no BPF |
| * program loaded). |
| */ |
| #ifdef CONFIG_BPF |
| static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) |
| { |
| struct bpf_sock_ops_kern sock_ops; |
| int ret; |
| |
| memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); |
| if (sk_fullsock(sk)) { |
| sock_ops.is_fullsock = 1; |
| sock_owned_by_me(sk); |
| } |
| |
| sock_ops.sk = sk; |
| sock_ops.op = op; |
| if (nargs > 0) |
| memcpy(sock_ops.args, args, nargs * sizeof(*args)); |
| |
| ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); |
| if (ret == 0) |
| ret = sock_ops.reply; |
| else |
| ret = -1; |
| return ret; |
| } |
| |
| static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) |
| { |
| u32 args[2] = {arg1, arg2}; |
| |
| return tcp_call_bpf(sk, op, 2, args); |
| } |
| |
| static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, |
| u32 arg3) |
| { |
| u32 args[3] = {arg1, arg2, arg3}; |
| |
| return tcp_call_bpf(sk, op, 3, args); |
| } |
| |
| #else |
| static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) |
| { |
| return -EPERM; |
| } |
| |
| static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) |
| { |
| return -EPERM; |
| } |
| |
| static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, |
| u32 arg3) |
| { |
| return -EPERM; |
| } |
| |
| #endif |
| |
| static inline u32 tcp_timeout_init(struct sock *sk) |
| { |
| int timeout; |
| |
| timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); |
| |
| if (timeout <= 0) |
| timeout = TCP_TIMEOUT_INIT; |
| return min_t(int, timeout, TCP_RTO_MAX); |
| } |
| |
| static inline u32 tcp_rwnd_init_bpf(struct sock *sk) |
| { |
| int rwnd; |
| |
| rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); |
| |
| if (rwnd < 0) |
| rwnd = 0; |
| return rwnd; |
| } |
| |
| static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) |
| { |
| return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); |
| } |
| |
| static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) |
| { |
| if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) |
| tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); |
| } |
| |
| #if IS_ENABLED(CONFIG_SMC) |
| extern struct static_key_false tcp_have_smc; |
| #endif |
| |
| #if IS_ENABLED(CONFIG_TLS_DEVICE) |
| void clean_acked_data_enable(struct inet_connection_sock *icsk, |
| void (*cad)(struct sock *sk, u32 ack_seq)); |
| void clean_acked_data_disable(struct inet_connection_sock *icsk); |
| void clean_acked_data_flush(void); |
| #endif |
| |
| DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); |
| static inline void tcp_add_tx_delay(struct sk_buff *skb, |
| const struct tcp_sock *tp) |
| { |
| if (static_branch_unlikely(&tcp_tx_delay_enabled)) |
| skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; |
| } |
| |
| /* Compute Earliest Departure Time for some control packets |
| * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. |
| */ |
| static inline u64 tcp_transmit_time(const struct sock *sk) |
| { |
| if (static_branch_unlikely(&tcp_tx_delay_enabled)) { |
| u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? |
| tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; |
| |
| return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; |
| } |
| return 0; |
| } |
| |
| static inline int tcp_parse_auth_options(const struct tcphdr *th, |
| const u8 **md5_hash, const struct tcp_ao_hdr **aoh) |
| { |
| const u8 *md5_tmp, *ao_tmp; |
| int ret; |
| |
| ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); |
| if (ret) |
| return ret; |
| |
| if (md5_hash) |
| *md5_hash = md5_tmp; |
| |
| if (aoh) { |
| if (!ao_tmp) |
| *aoh = NULL; |
| else |
| *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); |
| } |
| |
| return 0; |
| } |
| |
| static inline bool tcp_ao_required(struct sock *sk, const void *saddr, |
| int family, int l3index, bool stat_inc) |
| { |
| #ifdef CONFIG_TCP_AO |
| struct tcp_ao_info *ao_info; |
| struct tcp_ao_key *ao_key; |
| |
| if (!static_branch_unlikely(&tcp_ao_needed.key)) |
| return false; |
| |
| ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, |
| lockdep_sock_is_held(sk)); |
| if (!ao_info) |
| return false; |
| |
| ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); |
| if (ao_info->ao_required || ao_key) { |
| if (stat_inc) { |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); |
| atomic64_inc(&ao_info->counters.ao_required); |
| } |
| return true; |
| } |
| #endif |
| return false; |
| } |
| |
| /* Called with rcu_read_lock() */ |
| static inline enum skb_drop_reason |
| tcp_inbound_hash(struct sock *sk, const struct request_sock *req, |
| const struct sk_buff *skb, |
| const void *saddr, const void *daddr, |
| int family, int dif, int sdif) |
| { |
| const struct tcphdr *th = tcp_hdr(skb); |
| const struct tcp_ao_hdr *aoh; |
| const __u8 *md5_location; |
| int l3index; |
| |
| /* Invalid option or two times meet any of auth options */ |
| if (tcp_parse_auth_options(th, &md5_location, &aoh)) { |
| tcp_hash_fail("TCP segment has incorrect auth options set", |
| family, skb, ""); |
| return SKB_DROP_REASON_TCP_AUTH_HDR; |
| } |
| |
| if (req) { |
| if (tcp_rsk_used_ao(req) != !!aoh) { |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); |
| tcp_hash_fail("TCP connection can't start/end using TCP-AO", |
| family, skb, "%s", |
| !aoh ? "missing AO" : "AO signed"); |
| return SKB_DROP_REASON_TCP_AOFAILURE; |
| } |
| } |
| |
| /* sdif set, means packet ingressed via a device |
| * in an L3 domain and dif is set to the l3mdev |
| */ |
| l3index = sdif ? dif : 0; |
| |
| /* Fast path: unsigned segments */ |
| if (likely(!md5_location && !aoh)) { |
| /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid |
| * for the remote peer. On TCP-AO established connection |
| * the last key is impossible to remove, so there's |
| * always at least one current_key. |
| */ |
| if (tcp_ao_required(sk, saddr, family, l3index, true)) { |
| tcp_hash_fail("AO hash is required, but not found", |
| family, skb, "L3 index %d", l3index); |
| return SKB_DROP_REASON_TCP_AONOTFOUND; |
| } |
| if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); |
| tcp_hash_fail("MD5 Hash not found", |
| family, skb, "L3 index %d", l3index); |
| return SKB_DROP_REASON_TCP_MD5NOTFOUND; |
| } |
| return SKB_NOT_DROPPED_YET; |
| } |
| |
| if (aoh) |
| return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); |
| |
| return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, |
| l3index, md5_location); |
| } |
| |
| #endif /* _TCP_H */ |