| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/memblock.h> |
| #include <linux/page_ext.h> |
| #include <linux/memory.h> |
| #include <linux/vmalloc.h> |
| #include <linux/kmemleak.h> |
| #include <linux/page_owner.h> |
| #include <linux/page_idle.h> |
| #include <linux/page_table_check.h> |
| #include <linux/rcupdate.h> |
| #include <linux/pgalloc_tag.h> |
| |
| /* |
| * struct page extension |
| * |
| * This is the feature to manage memory for extended data per page. |
| * |
| * Until now, we must modify struct page itself to store extra data per page. |
| * This requires rebuilding the kernel and it is really time consuming process. |
| * And, sometimes, rebuild is impossible due to third party module dependency. |
| * At last, enlarging struct page could cause un-wanted system behaviour change. |
| * |
| * This feature is intended to overcome above mentioned problems. This feature |
| * allocates memory for extended data per page in certain place rather than |
| * the struct page itself. This memory can be accessed by the accessor |
| * functions provided by this code. During the boot process, it checks whether |
| * allocation of huge chunk of memory is needed or not. If not, it avoids |
| * allocating memory at all. With this advantage, we can include this feature |
| * into the kernel in default and can avoid rebuild and solve related problems. |
| * |
| * To help these things to work well, there are two callbacks for clients. One |
| * is the need callback which is mandatory if user wants to avoid useless |
| * memory allocation at boot-time. The other is optional, init callback, which |
| * is used to do proper initialization after memory is allocated. |
| * |
| * The need callback is used to decide whether extended memory allocation is |
| * needed or not. Sometimes users want to deactivate some features in this |
| * boot and extra memory would be unnecessary. In this case, to avoid |
| * allocating huge chunk of memory, each clients represent their need of |
| * extra memory through the need callback. If one of the need callbacks |
| * returns true, it means that someone needs extra memory so that |
| * page extension core should allocates memory for page extension. If |
| * none of need callbacks return true, memory isn't needed at all in this boot |
| * and page extension core can skip to allocate memory. As result, |
| * none of memory is wasted. |
| * |
| * When need callback returns true, page_ext checks if there is a request for |
| * extra memory through size in struct page_ext_operations. If it is non-zero, |
| * extra space is allocated for each page_ext entry and offset is returned to |
| * user through offset in struct page_ext_operations. |
| * |
| * The init callback is used to do proper initialization after page extension |
| * is completely initialized. In sparse memory system, extra memory is |
| * allocated some time later than memmap is allocated. In other words, lifetime |
| * of memory for page extension isn't same with memmap for struct page. |
| * Therefore, clients can't store extra data until page extension is |
| * initialized, even if pages are allocated and used freely. This could |
| * cause inadequate state of extra data per page, so, to prevent it, client |
| * can utilize this callback to initialize the state of it correctly. |
| */ |
| |
| #ifdef CONFIG_SPARSEMEM |
| #define PAGE_EXT_INVALID (0x1) |
| #endif |
| |
| #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) |
| static bool need_page_idle(void) |
| { |
| return true; |
| } |
| static struct page_ext_operations page_idle_ops __initdata = { |
| .need = need_page_idle, |
| .need_shared_flags = true, |
| }; |
| #endif |
| |
| static struct page_ext_operations *page_ext_ops[] __initdata = { |
| #ifdef CONFIG_PAGE_OWNER |
| &page_owner_ops, |
| #endif |
| #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) |
| &page_idle_ops, |
| #endif |
| #ifdef CONFIG_MEM_ALLOC_PROFILING |
| &page_alloc_tagging_ops, |
| #endif |
| #ifdef CONFIG_PAGE_TABLE_CHECK |
| &page_table_check_ops, |
| #endif |
| }; |
| |
| unsigned long page_ext_size; |
| |
| static unsigned long total_usage; |
| |
| #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG |
| /* |
| * To ensure correct allocation tagging for pages, page_ext should be available |
| * before the first page allocation. Otherwise early task stacks will be |
| * allocated before page_ext initialization and missing tags will be flagged. |
| */ |
| bool early_page_ext __meminitdata = true; |
| #else |
| bool early_page_ext __meminitdata; |
| #endif |
| static int __init setup_early_page_ext(char *str) |
| { |
| early_page_ext = true; |
| return 0; |
| } |
| early_param("early_page_ext", setup_early_page_ext); |
| |
| static bool __init invoke_need_callbacks(void) |
| { |
| int i; |
| int entries = ARRAY_SIZE(page_ext_ops); |
| bool need = false; |
| |
| for (i = 0; i < entries; i++) { |
| if (page_ext_ops[i]->need()) { |
| if (page_ext_ops[i]->need_shared_flags) { |
| page_ext_size = sizeof(struct page_ext); |
| break; |
| } |
| } |
| } |
| |
| for (i = 0; i < entries; i++) { |
| if (page_ext_ops[i]->need()) { |
| page_ext_ops[i]->offset = page_ext_size; |
| page_ext_size += page_ext_ops[i]->size; |
| need = true; |
| } |
| } |
| |
| return need; |
| } |
| |
| static void __init invoke_init_callbacks(void) |
| { |
| int i; |
| int entries = ARRAY_SIZE(page_ext_ops); |
| |
| for (i = 0; i < entries; i++) { |
| if (page_ext_ops[i]->init) |
| page_ext_ops[i]->init(); |
| } |
| } |
| |
| static inline struct page_ext *get_entry(void *base, unsigned long index) |
| { |
| return base + page_ext_size * index; |
| } |
| |
| #ifndef CONFIG_SPARSEMEM |
| void __init page_ext_init_flatmem_late(void) |
| { |
| invoke_init_callbacks(); |
| } |
| |
| void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) |
| { |
| pgdat->node_page_ext = NULL; |
| } |
| |
| static struct page_ext *lookup_page_ext(const struct page *page) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| unsigned long index; |
| struct page_ext *base; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| base = NODE_DATA(page_to_nid(page))->node_page_ext; |
| /* |
| * The sanity checks the page allocator does upon freeing a |
| * page can reach here before the page_ext arrays are |
| * allocated when feeding a range of pages to the allocator |
| * for the first time during bootup or memory hotplug. |
| */ |
| if (unlikely(!base)) |
| return NULL; |
| index = pfn - round_down(node_start_pfn(page_to_nid(page)), |
| MAX_ORDER_NR_PAGES); |
| return get_entry(base, index); |
| } |
| |
| static int __init alloc_node_page_ext(int nid) |
| { |
| struct page_ext *base; |
| unsigned long table_size; |
| unsigned long nr_pages; |
| |
| nr_pages = NODE_DATA(nid)->node_spanned_pages; |
| if (!nr_pages) |
| return 0; |
| |
| /* |
| * Need extra space if node range is not aligned with |
| * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm |
| * checks buddy's status, range could be out of exact node range. |
| */ |
| if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || |
| !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) |
| nr_pages += MAX_ORDER_NR_PAGES; |
| |
| table_size = page_ext_size * nr_pages; |
| |
| base = memblock_alloc_try_nid( |
| table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), |
| MEMBLOCK_ALLOC_ACCESSIBLE, nid); |
| if (!base) |
| return -ENOMEM; |
| NODE_DATA(nid)->node_page_ext = base; |
| total_usage += table_size; |
| return 0; |
| } |
| |
| void __init page_ext_init_flatmem(void) |
| { |
| |
| int nid, fail; |
| |
| if (!invoke_need_callbacks()) |
| return; |
| |
| for_each_online_node(nid) { |
| fail = alloc_node_page_ext(nid); |
| if (fail) |
| goto fail; |
| } |
| pr_info("allocated %ld bytes of page_ext\n", total_usage); |
| return; |
| |
| fail: |
| pr_crit("allocation of page_ext failed.\n"); |
| panic("Out of memory"); |
| } |
| |
| #else /* CONFIG_SPARSEMEM */ |
| static bool page_ext_invalid(struct page_ext *page_ext) |
| { |
| return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID); |
| } |
| |
| static struct page_ext *lookup_page_ext(const struct page *page) |
| { |
| unsigned long pfn = page_to_pfn(page); |
| struct mem_section *section = __pfn_to_section(pfn); |
| struct page_ext *page_ext = READ_ONCE(section->page_ext); |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| /* |
| * The sanity checks the page allocator does upon freeing a |
| * page can reach here before the page_ext arrays are |
| * allocated when feeding a range of pages to the allocator |
| * for the first time during bootup or memory hotplug. |
| */ |
| if (page_ext_invalid(page_ext)) |
| return NULL; |
| return get_entry(page_ext, pfn); |
| } |
| |
| static void *__meminit alloc_page_ext(size_t size, int nid) |
| { |
| gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; |
| void *addr = NULL; |
| |
| addr = alloc_pages_exact_nid(nid, size, flags); |
| if (addr) { |
| kmemleak_alloc(addr, size, 1, flags); |
| return addr; |
| } |
| |
| addr = vzalloc_node(size, nid); |
| |
| return addr; |
| } |
| |
| static int __meminit init_section_page_ext(unsigned long pfn, int nid) |
| { |
| struct mem_section *section; |
| struct page_ext *base; |
| unsigned long table_size; |
| |
| section = __pfn_to_section(pfn); |
| |
| if (section->page_ext) |
| return 0; |
| |
| table_size = page_ext_size * PAGES_PER_SECTION; |
| base = alloc_page_ext(table_size, nid); |
| |
| /* |
| * The value stored in section->page_ext is (base - pfn) |
| * and it does not point to the memory block allocated above, |
| * causing kmemleak false positives. |
| */ |
| kmemleak_not_leak(base); |
| |
| if (!base) { |
| pr_err("page ext allocation failure\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * The passed "pfn" may not be aligned to SECTION. For the calculation |
| * we need to apply a mask. |
| */ |
| pfn &= PAGE_SECTION_MASK; |
| section->page_ext = (void *)base - page_ext_size * pfn; |
| total_usage += table_size; |
| return 0; |
| } |
| |
| static void free_page_ext(void *addr) |
| { |
| if (is_vmalloc_addr(addr)) { |
| vfree(addr); |
| } else { |
| struct page *page = virt_to_page(addr); |
| size_t table_size; |
| |
| table_size = page_ext_size * PAGES_PER_SECTION; |
| |
| BUG_ON(PageReserved(page)); |
| kmemleak_free(addr); |
| free_pages_exact(addr, table_size); |
| } |
| } |
| |
| static void __free_page_ext(unsigned long pfn) |
| { |
| struct mem_section *ms; |
| struct page_ext *base; |
| |
| ms = __pfn_to_section(pfn); |
| if (!ms || !ms->page_ext) |
| return; |
| |
| base = READ_ONCE(ms->page_ext); |
| /* |
| * page_ext here can be valid while doing the roll back |
| * operation in online_page_ext(). |
| */ |
| if (page_ext_invalid(base)) |
| base = (void *)base - PAGE_EXT_INVALID; |
| WRITE_ONCE(ms->page_ext, NULL); |
| |
| base = get_entry(base, pfn); |
| free_page_ext(base); |
| } |
| |
| static void __invalidate_page_ext(unsigned long pfn) |
| { |
| struct mem_section *ms; |
| void *val; |
| |
| ms = __pfn_to_section(pfn); |
| if (!ms || !ms->page_ext) |
| return; |
| val = (void *)ms->page_ext + PAGE_EXT_INVALID; |
| WRITE_ONCE(ms->page_ext, val); |
| } |
| |
| static int __meminit online_page_ext(unsigned long start_pfn, |
| unsigned long nr_pages, |
| int nid) |
| { |
| unsigned long start, end, pfn; |
| int fail = 0; |
| |
| start = SECTION_ALIGN_DOWN(start_pfn); |
| end = SECTION_ALIGN_UP(start_pfn + nr_pages); |
| |
| if (nid == NUMA_NO_NODE) { |
| /* |
| * In this case, "nid" already exists and contains valid memory. |
| * "start_pfn" passed to us is a pfn which is an arg for |
| * online__pages(), and start_pfn should exist. |
| */ |
| nid = pfn_to_nid(start_pfn); |
| VM_BUG_ON(!node_online(nid)); |
| } |
| |
| for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) |
| fail = init_section_page_ext(pfn, nid); |
| if (!fail) |
| return 0; |
| |
| /* rollback */ |
| end = pfn - PAGES_PER_SECTION; |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) |
| __free_page_ext(pfn); |
| |
| return -ENOMEM; |
| } |
| |
| static void __meminit offline_page_ext(unsigned long start_pfn, |
| unsigned long nr_pages) |
| { |
| unsigned long start, end, pfn; |
| |
| start = SECTION_ALIGN_DOWN(start_pfn); |
| end = SECTION_ALIGN_UP(start_pfn + nr_pages); |
| |
| /* |
| * Freeing of page_ext is done in 3 steps to avoid |
| * use-after-free of it: |
| * 1) Traverse all the sections and mark their page_ext |
| * as invalid. |
| * 2) Wait for all the existing users of page_ext who |
| * started before invalidation to finish. |
| * 3) Free the page_ext. |
| */ |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) |
| __invalidate_page_ext(pfn); |
| |
| synchronize_rcu(); |
| |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) |
| __free_page_ext(pfn); |
| } |
| |
| static int __meminit page_ext_callback(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| struct memory_notify *mn = arg; |
| int ret = 0; |
| |
| switch (action) { |
| case MEM_GOING_ONLINE: |
| ret = online_page_ext(mn->start_pfn, |
| mn->nr_pages, mn->status_change_nid); |
| break; |
| case MEM_OFFLINE: |
| offline_page_ext(mn->start_pfn, |
| mn->nr_pages); |
| break; |
| case MEM_CANCEL_ONLINE: |
| offline_page_ext(mn->start_pfn, |
| mn->nr_pages); |
| break; |
| case MEM_GOING_OFFLINE: |
| break; |
| case MEM_ONLINE: |
| case MEM_CANCEL_OFFLINE: |
| break; |
| } |
| |
| return notifier_from_errno(ret); |
| } |
| |
| void __init page_ext_init(void) |
| { |
| unsigned long pfn; |
| int nid; |
| |
| if (!invoke_need_callbacks()) |
| return; |
| |
| for_each_node_state(nid, N_MEMORY) { |
| unsigned long start_pfn, end_pfn; |
| |
| start_pfn = node_start_pfn(nid); |
| end_pfn = node_end_pfn(nid); |
| /* |
| * start_pfn and end_pfn may not be aligned to SECTION and the |
| * page->flags of out of node pages are not initialized. So we |
| * scan [start_pfn, the biggest section's pfn < end_pfn) here. |
| */ |
| for (pfn = start_pfn; pfn < end_pfn; |
| pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { |
| |
| if (!pfn_valid(pfn)) |
| continue; |
| /* |
| * Nodes's pfns can be overlapping. |
| * We know some arch can have a nodes layout such as |
| * -------------pfn--------------> |
| * N0 | N1 | N2 | N0 | N1 | N2|.... |
| */ |
| if (pfn_to_nid(pfn) != nid) |
| continue; |
| if (init_section_page_ext(pfn, nid)) |
| goto oom; |
| cond_resched(); |
| } |
| } |
| hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI); |
| pr_info("allocated %ld bytes of page_ext\n", total_usage); |
| invoke_init_callbacks(); |
| return; |
| |
| oom: |
| panic("Out of memory"); |
| } |
| |
| void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) |
| { |
| } |
| |
| #endif |
| |
| /** |
| * page_ext_get() - Get the extended information for a page. |
| * @page: The page we're interested in. |
| * |
| * Ensures that the page_ext will remain valid until page_ext_put() |
| * is called. |
| * |
| * Return: NULL if no page_ext exists for this page. |
| * Context: Any context. Caller may not sleep until they have called |
| * page_ext_put(). |
| */ |
| struct page_ext *page_ext_get(const struct page *page) |
| { |
| struct page_ext *page_ext; |
| |
| rcu_read_lock(); |
| page_ext = lookup_page_ext(page); |
| if (!page_ext) { |
| rcu_read_unlock(); |
| return NULL; |
| } |
| |
| return page_ext; |
| } |
| |
| /** |
| * page_ext_put() - Working with page extended information is done. |
| * @page_ext: Page extended information received from page_ext_get(). |
| * |
| * The page extended information of the page may not be valid after this |
| * function is called. |
| * |
| * Return: None. |
| * Context: Any context with corresponding page_ext_get() is called. |
| */ |
| void page_ext_put(struct page_ext *page_ext) |
| { |
| if (unlikely(!page_ext)) |
| return; |
| |
| rcu_read_unlock(); |
| } |