| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Texas Instruments K3 RTC driver |
| * |
| * Copyright (C) 2021-2022 Texas Instruments Incorporated - https://www.ti.com/ |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/sys_soc.h> |
| #include <linux/property.h> |
| #include <linux/regmap.h> |
| #include <linux/rtc.h> |
| |
| /* Registers */ |
| #define REG_K3RTC_S_CNT_LSW 0x08 |
| #define REG_K3RTC_S_CNT_MSW 0x0c |
| #define REG_K3RTC_COMP 0x10 |
| #define REG_K3RTC_ON_OFF_S_CNT_LSW 0x20 |
| #define REG_K3RTC_ON_OFF_S_CNT_MSW 0x24 |
| #define REG_K3RTC_SCRATCH0 0x30 |
| #define REG_K3RTC_SCRATCH7 0x4c |
| #define REG_K3RTC_GENERAL_CTL 0x50 |
| #define REG_K3RTC_IRQSTATUS_RAW_SYS 0x54 |
| #define REG_K3RTC_IRQSTATUS_SYS 0x58 |
| #define REG_K3RTC_IRQENABLE_SET_SYS 0x5c |
| #define REG_K3RTC_IRQENABLE_CLR_SYS 0x60 |
| #define REG_K3RTC_SYNCPEND 0x68 |
| #define REG_K3RTC_KICK0 0x70 |
| #define REG_K3RTC_KICK1 0x74 |
| |
| /* Freeze when lsw is read and unfreeze when msw is read */ |
| #define K3RTC_CNT_FMODE_S_CNT_VALUE (0x2 << 24) |
| |
| /* Magic values for lock/unlock */ |
| #define K3RTC_KICK0_UNLOCK_VALUE 0x83e70b13 |
| #define K3RTC_KICK1_UNLOCK_VALUE 0x95a4f1e0 |
| |
| /* Multiplier for ppb conversions */ |
| #define K3RTC_PPB_MULT (1000000000LL) |
| /* Min and max values supported with 'offset' interface (swapped sign) */ |
| #define K3RTC_MIN_OFFSET (-277761) |
| #define K3RTC_MAX_OFFSET (277778) |
| |
| static const struct regmap_config ti_k3_rtc_regmap_config = { |
| .name = "peripheral-registers", |
| .reg_bits = 32, |
| .val_bits = 32, |
| .reg_stride = 4, |
| .max_register = REG_K3RTC_KICK1, |
| }; |
| |
| enum ti_k3_rtc_fields { |
| K3RTC_KICK0, |
| K3RTC_KICK1, |
| K3RTC_S_CNT_LSW, |
| K3RTC_S_CNT_MSW, |
| K3RTC_O32K_OSC_DEP_EN, |
| K3RTC_UNLOCK, |
| K3RTC_CNT_FMODE, |
| K3RTC_PEND, |
| K3RTC_RELOAD_FROM_BBD, |
| K3RTC_COMP, |
| |
| K3RTC_ALM_S_CNT_LSW, |
| K3RTC_ALM_S_CNT_MSW, |
| K3RTC_IRQ_STATUS_RAW, |
| K3RTC_IRQ_STATUS, |
| K3RTC_IRQ_ENABLE_SET, |
| K3RTC_IRQ_ENABLE_CLR, |
| |
| K3RTC_IRQ_STATUS_ALT, |
| K3RTC_IRQ_ENABLE_CLR_ALT, |
| |
| K3_RTC_MAX_FIELDS |
| }; |
| |
| static const struct reg_field ti_rtc_reg_fields[] = { |
| [K3RTC_KICK0] = REG_FIELD(REG_K3RTC_KICK0, 0, 31), |
| [K3RTC_KICK1] = REG_FIELD(REG_K3RTC_KICK1, 0, 31), |
| [K3RTC_S_CNT_LSW] = REG_FIELD(REG_K3RTC_S_CNT_LSW, 0, 31), |
| [K3RTC_S_CNT_MSW] = REG_FIELD(REG_K3RTC_S_CNT_MSW, 0, 15), |
| [K3RTC_O32K_OSC_DEP_EN] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 21, 21), |
| [K3RTC_UNLOCK] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 23, 23), |
| [K3RTC_CNT_FMODE] = REG_FIELD(REG_K3RTC_GENERAL_CTL, 24, 25), |
| [K3RTC_PEND] = REG_FIELD(REG_K3RTC_SYNCPEND, 0, 1), |
| [K3RTC_RELOAD_FROM_BBD] = REG_FIELD(REG_K3RTC_SYNCPEND, 31, 31), |
| [K3RTC_COMP] = REG_FIELD(REG_K3RTC_COMP, 0, 31), |
| |
| /* We use on to off as alarm trigger */ |
| [K3RTC_ALM_S_CNT_LSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_LSW, 0, 31), |
| [K3RTC_ALM_S_CNT_MSW] = REG_FIELD(REG_K3RTC_ON_OFF_S_CNT_MSW, 0, 15), |
| [K3RTC_IRQ_STATUS_RAW] = REG_FIELD(REG_K3RTC_IRQSTATUS_RAW_SYS, 0, 0), |
| [K3RTC_IRQ_STATUS] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 0, 0), |
| [K3RTC_IRQ_ENABLE_SET] = REG_FIELD(REG_K3RTC_IRQENABLE_SET_SYS, 0, 0), |
| [K3RTC_IRQ_ENABLE_CLR] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 0, 0), |
| /* Off to on is alternate */ |
| [K3RTC_IRQ_STATUS_ALT] = REG_FIELD(REG_K3RTC_IRQSTATUS_SYS, 1, 1), |
| [K3RTC_IRQ_ENABLE_CLR_ALT] = REG_FIELD(REG_K3RTC_IRQENABLE_CLR_SYS, 1, 1), |
| }; |
| |
| /** |
| * struct ti_k3_rtc - Private data for ti-k3-rtc |
| * @irq: IRQ |
| * @sync_timeout_us: data sync timeout period in uSec |
| * @rate_32k: 32k clock rate in Hz |
| * @rtc_dev: rtc device |
| * @regmap: rtc mmio regmap |
| * @r_fields: rtc register fields |
| */ |
| struct ti_k3_rtc { |
| unsigned int irq; |
| u32 sync_timeout_us; |
| unsigned long rate_32k; |
| struct rtc_device *rtc_dev; |
| struct regmap *regmap; |
| struct regmap_field *r_fields[K3_RTC_MAX_FIELDS]; |
| }; |
| |
| static int k3rtc_field_read(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f) |
| { |
| int ret; |
| int val; |
| |
| ret = regmap_field_read(priv->r_fields[f], &val); |
| /* |
| * We shouldn't be seeing regmap fail on us for mmio reads |
| * This is possible if clock context fails, but that isn't the case for us |
| */ |
| if (WARN_ON_ONCE(ret)) |
| return ret; |
| return val; |
| } |
| |
| static void k3rtc_field_write(struct ti_k3_rtc *priv, enum ti_k3_rtc_fields f, u32 val) |
| { |
| regmap_field_write(priv->r_fields[f], val); |
| } |
| |
| /** |
| * k3rtc_fence - Ensure a register sync took place between the two domains |
| * @priv: pointer to priv data |
| * |
| * Return: 0 if the sync took place, else returns -ETIMEDOUT |
| */ |
| static int k3rtc_fence(struct ti_k3_rtc *priv) |
| { |
| int ret; |
| |
| ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_PEND], ret, |
| !ret, 2, priv->sync_timeout_us); |
| |
| return ret; |
| } |
| |
| static inline int k3rtc_check_unlocked(struct ti_k3_rtc *priv) |
| { |
| int ret; |
| |
| ret = k3rtc_field_read(priv, K3RTC_UNLOCK); |
| if (ret < 0) |
| return ret; |
| |
| return (ret) ? 0 : 1; |
| } |
| |
| static int k3rtc_unlock_rtc(struct ti_k3_rtc *priv) |
| { |
| int ret; |
| |
| ret = k3rtc_check_unlocked(priv); |
| if (!ret) |
| return ret; |
| |
| k3rtc_field_write(priv, K3RTC_KICK0, K3RTC_KICK0_UNLOCK_VALUE); |
| k3rtc_field_write(priv, K3RTC_KICK1, K3RTC_KICK1_UNLOCK_VALUE); |
| |
| /* Skip fence since we are going to check the unlock bit as fence */ |
| ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_UNLOCK], ret, |
| ret, 2, priv->sync_timeout_us); |
| |
| return ret; |
| } |
| |
| /* |
| * This is the list of SoCs affected by TI's i2327 errata causing the RTC |
| * state-machine to break if not unlocked fast enough during boot. These |
| * SoCs must have the bootloader unlock this device very early in the |
| * boot-flow before we (Linux) can use this device. |
| */ |
| static const struct soc_device_attribute has_erratum_i2327[] = { |
| { .family = "AM62X", .revision = "SR1.0" }, |
| { /* sentinel */ } |
| }; |
| |
| static int k3rtc_configure(struct device *dev) |
| { |
| int ret; |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| |
| /* |
| * HWBUG: The compare state machine is broken if the RTC module |
| * is NOT unlocked in under one second of boot - which is pretty long |
| * time from the perspective of Linux driver (module load, u-boot |
| * shell all can take much longer than this. |
| * |
| * In such occurrence, it is assumed that the RTC module is unusable |
| */ |
| if (soc_device_match(has_erratum_i2327)) { |
| ret = k3rtc_check_unlocked(priv); |
| /* If there is an error OR if we are locked, return error */ |
| if (ret) { |
| dev_err(dev, |
| HW_ERR "Erratum i2327 unlock QUIRK! Cannot operate!!\n"); |
| return -EFAULT; |
| } |
| } else { |
| /* May need to explicitly unlock first time */ |
| ret = k3rtc_unlock_rtc(priv); |
| if (ret) { |
| dev_err(dev, "Failed to unlock(%d)!\n", ret); |
| return ret; |
| } |
| } |
| |
| /* Enable Shadow register sync on 32k clock boundary */ |
| k3rtc_field_write(priv, K3RTC_O32K_OSC_DEP_EN, 0x1); |
| |
| /* |
| * Wait at least clock sync time before proceeding further programming. |
| * This ensures that the 32k based sync is active. |
| */ |
| usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 5); |
| |
| /* We need to ensure fence here to make sure sync here */ |
| ret = k3rtc_fence(priv); |
| if (ret) { |
| dev_err(dev, |
| "Failed fence osc_dep enable(%d) - is 32k clk working?!\n", ret); |
| return ret; |
| } |
| |
| /* |
| * FMODE setting: Reading lower seconds will freeze value on higher |
| * seconds. This also implies that we must *ALWAYS* read lower seconds |
| * prior to reading higher seconds |
| */ |
| k3rtc_field_write(priv, K3RTC_CNT_FMODE, K3RTC_CNT_FMODE_S_CNT_VALUE); |
| |
| /* Clear any spurious IRQ sources if any */ |
| k3rtc_field_write(priv, K3RTC_IRQ_STATUS_ALT, 0x1); |
| k3rtc_field_write(priv, K3RTC_IRQ_STATUS, 0x1); |
| /* Disable all IRQs */ |
| k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR_ALT, 0x1); |
| k3rtc_field_write(priv, K3RTC_IRQ_ENABLE_CLR, 0x1); |
| |
| /* And.. Let us Sync the writes in */ |
| return k3rtc_fence(priv); |
| } |
| |
| static int ti_k3_rtc_read_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| u32 seconds_lo, seconds_hi; |
| |
| seconds_lo = k3rtc_field_read(priv, K3RTC_S_CNT_LSW); |
| seconds_hi = k3rtc_field_read(priv, K3RTC_S_CNT_MSW); |
| |
| rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, tm); |
| |
| return 0; |
| } |
| |
| static int ti_k3_rtc_set_time(struct device *dev, struct rtc_time *tm) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| time64_t seconds; |
| |
| seconds = rtc_tm_to_time64(tm); |
| |
| /* |
| * Read operation on LSW will freeze the RTC, so to update |
| * the time, we cannot use field operations. Just write since the |
| * reserved bits are ignored. |
| */ |
| regmap_write(priv->regmap, REG_K3RTC_S_CNT_LSW, seconds); |
| regmap_write(priv->regmap, REG_K3RTC_S_CNT_MSW, seconds >> 32); |
| |
| return k3rtc_fence(priv); |
| } |
| |
| static int ti_k3_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| u32 reg; |
| u32 offset = enabled ? K3RTC_IRQ_ENABLE_SET : K3RTC_IRQ_ENABLE_CLR; |
| |
| reg = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET); |
| if ((enabled && reg) || (!enabled && !reg)) |
| return 0; |
| |
| k3rtc_field_write(priv, offset, 0x1); |
| |
| /* |
| * Ensure the write sync is through - NOTE: it should be OK to have |
| * ISR to fire as we are checking sync (which should be done in a 32k |
| * cycle or so). |
| */ |
| return k3rtc_fence(priv); |
| } |
| |
| static int ti_k3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| u32 seconds_lo, seconds_hi; |
| |
| seconds_lo = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_LSW); |
| seconds_hi = k3rtc_field_read(priv, K3RTC_ALM_S_CNT_MSW); |
| |
| rtc_time64_to_tm((((time64_t)seconds_hi) << 32) | (time64_t)seconds_lo, &alarm->time); |
| |
| alarm->enabled = k3rtc_field_read(priv, K3RTC_IRQ_ENABLE_SET); |
| |
| return 0; |
| } |
| |
| static int ti_k3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| time64_t seconds; |
| int ret; |
| |
| seconds = rtc_tm_to_time64(&alarm->time); |
| |
| k3rtc_field_write(priv, K3RTC_ALM_S_CNT_LSW, seconds); |
| k3rtc_field_write(priv, K3RTC_ALM_S_CNT_MSW, (seconds >> 32)); |
| |
| /* Make sure the alarm time is synced in */ |
| ret = k3rtc_fence(priv); |
| if (ret) { |
| dev_err(dev, "Failed to fence(%d)! Potential config issue?\n", ret); |
| return ret; |
| } |
| |
| /* Alarm IRQ enable will do a sync */ |
| return ti_k3_rtc_alarm_irq_enable(dev, alarm->enabled); |
| } |
| |
| static int ti_k3_rtc_read_offset(struct device *dev, long *offset) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| u32 ticks_per_hr = priv->rate_32k * 3600; |
| int comp; |
| s64 tmp; |
| |
| comp = k3rtc_field_read(priv, K3RTC_COMP); |
| |
| /* Convert from RTC calibration register format to ppb format */ |
| tmp = comp * (s64)K3RTC_PPB_MULT; |
| if (tmp < 0) |
| tmp -= ticks_per_hr / 2LL; |
| else |
| tmp += ticks_per_hr / 2LL; |
| tmp = div_s64(tmp, ticks_per_hr); |
| |
| /* Offset value operates in negative way, so swap sign */ |
| *offset = (long)-tmp; |
| |
| return 0; |
| } |
| |
| static int ti_k3_rtc_set_offset(struct device *dev, long offset) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| u32 ticks_per_hr = priv->rate_32k * 3600; |
| int comp; |
| s64 tmp; |
| |
| /* Make sure offset value is within supported range */ |
| if (offset < K3RTC_MIN_OFFSET || offset > K3RTC_MAX_OFFSET) |
| return -ERANGE; |
| |
| /* Convert from ppb format to RTC calibration register format */ |
| tmp = offset * (s64)ticks_per_hr; |
| if (tmp < 0) |
| tmp -= K3RTC_PPB_MULT / 2LL; |
| else |
| tmp += K3RTC_PPB_MULT / 2LL; |
| tmp = div_s64(tmp, K3RTC_PPB_MULT); |
| |
| /* Offset value operates in negative way, so swap sign */ |
| comp = (int)-tmp; |
| |
| k3rtc_field_write(priv, K3RTC_COMP, comp); |
| |
| return k3rtc_fence(priv); |
| } |
| |
| static irqreturn_t ti_k3_rtc_interrupt(s32 irq, void *dev_id) |
| { |
| struct device *dev = dev_id; |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| u32 reg; |
| int ret; |
| |
| /* |
| * IRQ assertion can be very fast, however, the IRQ Status clear |
| * de-assert depends on 32k clock edge in the 32k domain |
| * If we clear the status prior to the first 32k clock edge, |
| * the status bit is cleared, but the IRQ stays re-asserted. |
| * |
| * To prevent this condition, we need to wait for clock sync time. |
| * We can either do that by polling the 32k observability signal for |
| * a toggle OR we could just sleep and let the processor do other |
| * stuff. |
| */ |
| usleep_range(priv->sync_timeout_us, priv->sync_timeout_us + 2); |
| |
| /* Lets make sure that this is a valid interrupt */ |
| reg = k3rtc_field_read(priv, K3RTC_IRQ_STATUS); |
| |
| if (!reg) { |
| u32 raw = k3rtc_field_read(priv, K3RTC_IRQ_STATUS_RAW); |
| |
| dev_err(dev, |
| HW_ERR |
| "Erratum i2327/IRQ trig: status: 0x%08x / 0x%08x\n", reg, raw); |
| return IRQ_NONE; |
| } |
| |
| /* |
| * Write 1 to clear status reg |
| * We cannot use a field operation here due to a potential race between |
| * 32k domain and vbus domain. |
| */ |
| regmap_write(priv->regmap, REG_K3RTC_IRQSTATUS_SYS, 0x1); |
| |
| /* Sync the write in */ |
| ret = k3rtc_fence(priv); |
| if (ret) { |
| dev_err(dev, "Failed to fence irq status clr(%d)!\n", ret); |
| return IRQ_NONE; |
| } |
| |
| /* |
| * Force the 32k status to be reloaded back in to ensure status is |
| * reflected back correctly. |
| */ |
| k3rtc_field_write(priv, K3RTC_RELOAD_FROM_BBD, 0x1); |
| |
| /* Ensure the write sync is through */ |
| ret = k3rtc_fence(priv); |
| if (ret) { |
| dev_err(dev, "Failed to fence reload from bbd(%d)!\n", ret); |
| return IRQ_NONE; |
| } |
| |
| /* Now we ensure that the status bit is cleared */ |
| ret = regmap_field_read_poll_timeout(priv->r_fields[K3RTC_IRQ_STATUS], |
| ret, !ret, 2, priv->sync_timeout_us); |
| if (ret) { |
| dev_err(dev, "Time out waiting for status clear\n"); |
| return IRQ_NONE; |
| } |
| |
| /* Notify RTC core on event */ |
| rtc_update_irq(priv->rtc_dev, 1, RTC_IRQF | RTC_AF); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct rtc_class_ops ti_k3_rtc_ops = { |
| .read_time = ti_k3_rtc_read_time, |
| .set_time = ti_k3_rtc_set_time, |
| .read_alarm = ti_k3_rtc_read_alarm, |
| .set_alarm = ti_k3_rtc_set_alarm, |
| .read_offset = ti_k3_rtc_read_offset, |
| .set_offset = ti_k3_rtc_set_offset, |
| .alarm_irq_enable = ti_k3_rtc_alarm_irq_enable, |
| }; |
| |
| static int ti_k3_rtc_scratch_read(void *priv_data, unsigned int offset, |
| void *val, size_t bytes) |
| { |
| struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data; |
| |
| return regmap_bulk_read(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4); |
| } |
| |
| static int ti_k3_rtc_scratch_write(void *priv_data, unsigned int offset, |
| void *val, size_t bytes) |
| { |
| struct ti_k3_rtc *priv = (struct ti_k3_rtc *)priv_data; |
| int ret; |
| |
| ret = regmap_bulk_write(priv->regmap, REG_K3RTC_SCRATCH0 + offset, val, bytes / 4); |
| if (ret) |
| return ret; |
| |
| return k3rtc_fence(priv); |
| } |
| |
| static struct nvmem_config ti_k3_rtc_nvmem_config = { |
| .name = "ti_k3_rtc_scratch", |
| .word_size = 4, |
| .stride = 4, |
| .size = REG_K3RTC_SCRATCH7 - REG_K3RTC_SCRATCH0 + 4, |
| .reg_read = ti_k3_rtc_scratch_read, |
| .reg_write = ti_k3_rtc_scratch_write, |
| }; |
| |
| static int k3rtc_get_32kclk(struct device *dev, struct ti_k3_rtc *priv) |
| { |
| struct clk *clk; |
| |
| clk = devm_clk_get_enabled(dev, "osc32k"); |
| if (IS_ERR(clk)) |
| return PTR_ERR(clk); |
| |
| priv->rate_32k = clk_get_rate(clk); |
| |
| /* Make sure we are exact 32k clock. Else, try to compensate delay */ |
| if (priv->rate_32k != 32768) |
| dev_warn(dev, "Clock rate %ld is not 32768! Could misbehave!\n", |
| priv->rate_32k); |
| |
| /* |
| * Sync timeout should be two 32k clk sync cycles = ~61uS. We double |
| * it to comprehend intermediate bus segment and cpu frequency |
| * deltas |
| */ |
| priv->sync_timeout_us = (u32)(DIV_ROUND_UP_ULL(1000000, priv->rate_32k) * 4); |
| |
| return 0; |
| } |
| |
| static int k3rtc_get_vbusclk(struct device *dev, struct ti_k3_rtc *priv) |
| { |
| struct clk *clk; |
| |
| /* Note: VBUS isn't a context clock, it is needed for hardware operation */ |
| clk = devm_clk_get_enabled(dev, "vbus"); |
| if (IS_ERR(clk)) |
| return PTR_ERR(clk); |
| |
| return 0; |
| } |
| |
| static int ti_k3_rtc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct ti_k3_rtc *priv; |
| void __iomem *rtc_base; |
| int ret; |
| |
| priv = devm_kzalloc(dev, sizeof(struct ti_k3_rtc), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| rtc_base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(rtc_base)) |
| return PTR_ERR(rtc_base); |
| |
| priv->regmap = devm_regmap_init_mmio(dev, rtc_base, &ti_k3_rtc_regmap_config); |
| if (IS_ERR(priv->regmap)) |
| return PTR_ERR(priv->regmap); |
| |
| ret = devm_regmap_field_bulk_alloc(dev, priv->regmap, priv->r_fields, |
| ti_rtc_reg_fields, K3_RTC_MAX_FIELDS); |
| if (ret) |
| return ret; |
| |
| ret = k3rtc_get_32kclk(dev, priv); |
| if (ret) |
| return ret; |
| ret = k3rtc_get_vbusclk(dev, priv); |
| if (ret) |
| return ret; |
| |
| ret = platform_get_irq(pdev, 0); |
| if (ret < 0) |
| return ret; |
| priv->irq = (unsigned int)ret; |
| |
| priv->rtc_dev = devm_rtc_allocate_device(dev); |
| if (IS_ERR(priv->rtc_dev)) |
| return PTR_ERR(priv->rtc_dev); |
| |
| priv->rtc_dev->ops = &ti_k3_rtc_ops; |
| priv->rtc_dev->range_max = (1ULL << 48) - 1; /* 48Bit seconds */ |
| ti_k3_rtc_nvmem_config.priv = priv; |
| |
| ret = devm_request_threaded_irq(dev, priv->irq, NULL, |
| ti_k3_rtc_interrupt, |
| IRQF_TRIGGER_HIGH | IRQF_ONESHOT, |
| dev_name(dev), dev); |
| if (ret) { |
| dev_err(dev, "Could not request IRQ: %d\n", ret); |
| return ret; |
| } |
| |
| platform_set_drvdata(pdev, priv); |
| |
| ret = k3rtc_configure(dev); |
| if (ret) |
| return ret; |
| |
| if (device_property_present(dev, "wakeup-source")) |
| device_init_wakeup(dev, true); |
| else |
| device_set_wakeup_capable(dev, true); |
| |
| ret = devm_rtc_register_device(priv->rtc_dev); |
| if (ret) |
| return ret; |
| |
| return devm_rtc_nvmem_register(priv->rtc_dev, &ti_k3_rtc_nvmem_config); |
| } |
| |
| static const struct of_device_id ti_k3_rtc_of_match_table[] = { |
| {.compatible = "ti,am62-rtc" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, ti_k3_rtc_of_match_table); |
| |
| static int __maybe_unused ti_k3_rtc_suspend(struct device *dev) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| return enable_irq_wake(priv->irq); |
| |
| return 0; |
| } |
| |
| static int __maybe_unused ti_k3_rtc_resume(struct device *dev) |
| { |
| struct ti_k3_rtc *priv = dev_get_drvdata(dev); |
| |
| if (device_may_wakeup(dev)) |
| disable_irq_wake(priv->irq); |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(ti_k3_rtc_pm_ops, ti_k3_rtc_suspend, ti_k3_rtc_resume); |
| |
| static struct platform_driver ti_k3_rtc_driver = { |
| .probe = ti_k3_rtc_probe, |
| .driver = { |
| .name = "rtc-ti-k3", |
| .of_match_table = ti_k3_rtc_of_match_table, |
| .pm = &ti_k3_rtc_pm_ops, |
| }, |
| }; |
| module_platform_driver(ti_k3_rtc_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("TI K3 RTC driver"); |
| MODULE_AUTHOR("Nishanth Menon"); |