blob: f50274fd558156dd42cdee19ee8ad0438bda1093 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015, 2016 ARM Ltd.
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/list_sort.h>
#include <linux/nospec.h>
#include <asm/kvm_hyp.h>
#include "vgic.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
struct vgic_global kvm_vgic_global_state __ro_after_init = {
.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
};
/*
* Locking order is always:
* kvm->lock (mutex)
* vcpu->mutex (mutex)
* kvm->arch.config_lock (mutex)
* its->cmd_lock (mutex)
* its->its_lock (mutex)
* vgic_cpu->ap_list_lock must be taken with IRQs disabled
* vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled
* vgic_irq->irq_lock must be taken with IRQs disabled
*
* As the ap_list_lock might be taken from the timer interrupt handler,
* we have to disable IRQs before taking this lock and everything lower
* than it.
*
* The config_lock has additional ordering requirements:
* kvm->slots_lock
* kvm->srcu
* kvm->arch.config_lock
*
* If you need to take multiple locks, always take the upper lock first,
* then the lower ones, e.g. first take the its_lock, then the irq_lock.
* If you are already holding a lock and need to take a higher one, you
* have to drop the lower ranking lock first and re-acquire it after having
* taken the upper one.
*
* When taking more than one ap_list_lock at the same time, always take the
* lowest numbered VCPU's ap_list_lock first, so:
* vcpuX->vcpu_id < vcpuY->vcpu_id:
* raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
* raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
*
* Since the VGIC must support injecting virtual interrupts from ISRs, we have
* to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
* spinlocks for any lock that may be taken while injecting an interrupt.
*/
/*
* Index the VM's xarray of mapped LPIs and return a reference to the IRQ
* structure. The caller is expected to call vgic_put_irq() later once it's
* finished with the IRQ.
*/
static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq = NULL;
rcu_read_lock();
irq = xa_load(&dist->lpi_xa, intid);
if (!vgic_try_get_irq_kref(irq))
irq = NULL;
rcu_read_unlock();
return irq;
}
/*
* This looks up the virtual interrupt ID to get the corresponding
* struct vgic_irq. It also increases the refcount, so any caller is expected
* to call vgic_put_irq() once it's finished with this IRQ.
*/
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
u32 intid)
{
/* SGIs and PPIs */
if (intid <= VGIC_MAX_PRIVATE) {
intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
return &vcpu->arch.vgic_cpu.private_irqs[intid];
}
/* SPIs */
if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
}
/* LPIs */
if (intid >= VGIC_MIN_LPI)
return vgic_get_lpi(kvm, intid);
return NULL;
}
/*
* We can't do anything in here, because we lack the kvm pointer to
* lock and remove the item from the lpi_list. So we keep this function
* empty and use the return value of kref_put() to trigger the freeing.
*/
static void vgic_irq_release(struct kref *ref)
{
}
void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
unsigned long flags;
if (irq->intid < VGIC_MIN_LPI)
return;
if (!kref_put(&irq->refcount, vgic_irq_release))
return;
xa_lock_irqsave(&dist->lpi_xa, flags);
__xa_erase(&dist->lpi_xa, irq->intid);
xa_unlock_irqrestore(&dist->lpi_xa, flags);
kfree_rcu(irq, rcu);
}
void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq, *tmp;
unsigned long flags;
raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
if (irq->intid >= VGIC_MIN_LPI) {
raw_spin_lock(&irq->irq_lock);
list_del(&irq->ap_list);
irq->vcpu = NULL;
raw_spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
}
raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
}
void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
{
WARN_ON(irq_set_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
pending));
}
bool vgic_get_phys_line_level(struct vgic_irq *irq)
{
bool line_level;
BUG_ON(!irq->hw);
if (irq->ops && irq->ops->get_input_level)
return irq->ops->get_input_level(irq->intid);
WARN_ON(irq_get_irqchip_state(irq->host_irq,
IRQCHIP_STATE_PENDING,
&line_level));
return line_level;
}
/* Set/Clear the physical active state */
void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
{
BUG_ON(!irq->hw);
WARN_ON(irq_set_irqchip_state(irq->host_irq,
IRQCHIP_STATE_ACTIVE,
active));
}
/**
* vgic_target_oracle - compute the target vcpu for an irq
*
* @irq: The irq to route. Must be already locked.
*
* Based on the current state of the interrupt (enabled, pending,
* active, vcpu and target_vcpu), compute the next vcpu this should be
* given to. Return NULL if this shouldn't be injected at all.
*
* Requires the IRQ lock to be held.
*/
static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
{
lockdep_assert_held(&irq->irq_lock);
/* If the interrupt is active, it must stay on the current vcpu */
if (irq->active)
return irq->vcpu ? : irq->target_vcpu;
/*
* If the IRQ is not active but enabled and pending, we should direct
* it to its configured target VCPU.
* If the distributor is disabled, pending interrupts shouldn't be
* forwarded.
*/
if (irq->enabled && irq_is_pending(irq)) {
if (unlikely(irq->target_vcpu &&
!irq->target_vcpu->kvm->arch.vgic.enabled))
return NULL;
return irq->target_vcpu;
}
/* If neither active nor pending and enabled, then this IRQ should not
* be queued to any VCPU.
*/
return NULL;
}
/*
* The order of items in the ap_lists defines how we'll pack things in LRs as
* well, the first items in the list being the first things populated in the
* LRs.
*
* A hard rule is that active interrupts can never be pushed out of the LRs
* (and therefore take priority) since we cannot reliably trap on deactivation
* of IRQs and therefore they have to be present in the LRs.
*
* Otherwise things should be sorted by the priority field and the GIC
* hardware support will take care of preemption of priority groups etc.
*
* Return negative if "a" sorts before "b", 0 to preserve order, and positive
* to sort "b" before "a".
*/
static int vgic_irq_cmp(void *priv, const struct list_head *a,
const struct list_head *b)
{
struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
bool penda, pendb;
int ret;
/*
* list_sort may call this function with the same element when
* the list is fairly long.
*/
if (unlikely(irqa == irqb))
return 0;
raw_spin_lock(&irqa->irq_lock);
raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
if (irqa->active || irqb->active) {
ret = (int)irqb->active - (int)irqa->active;
goto out;
}
penda = irqa->enabled && irq_is_pending(irqa);
pendb = irqb->enabled && irq_is_pending(irqb);
if (!penda || !pendb) {
ret = (int)pendb - (int)penda;
goto out;
}
/* Both pending and enabled, sort by priority */
ret = irqa->priority - irqb->priority;
out:
raw_spin_unlock(&irqb->irq_lock);
raw_spin_unlock(&irqa->irq_lock);
return ret;
}
/* Must be called with the ap_list_lock held */
static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
lockdep_assert_held(&vgic_cpu->ap_list_lock);
list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
}
/*
* Only valid injection if changing level for level-triggered IRQs or for a
* rising edge, and in-kernel connected IRQ lines can only be controlled by
* their owner.
*/
static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
{
if (irq->owner != owner)
return false;
switch (irq->config) {
case VGIC_CONFIG_LEVEL:
return irq->line_level != level;
case VGIC_CONFIG_EDGE:
return level;
}
return false;
}
/*
* Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
* Do the queuing if necessary, taking the right locks in the right order.
* Returns true when the IRQ was queued, false otherwise.
*
* Needs to be entered with the IRQ lock already held, but will return
* with all locks dropped.
*/
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
unsigned long flags) __releases(&irq->irq_lock)
{
struct kvm_vcpu *vcpu;
lockdep_assert_held(&irq->irq_lock);
retry:
vcpu = vgic_target_oracle(irq);
if (irq->vcpu || !vcpu) {
/*
* If this IRQ is already on a VCPU's ap_list, then it
* cannot be moved or modified and there is no more work for
* us to do.
*
* Otherwise, if the irq is not pending and enabled, it does
* not need to be inserted into an ap_list and there is also
* no more work for us to do.
*/
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
/*
* We have to kick the VCPU here, because we could be
* queueing an edge-triggered interrupt for which we
* get no EOI maintenance interrupt. In that case,
* while the IRQ is already on the VCPU's AP list, the
* VCPU could have EOI'ed the original interrupt and
* won't see this one until it exits for some other
* reason.
*/
if (vcpu) {
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
kvm_vcpu_kick(vcpu);
}
return false;
}
/*
* We must unlock the irq lock to take the ap_list_lock where
* we are going to insert this new pending interrupt.
*/
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
/* someone can do stuff here, which we re-check below */
raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
raw_spin_lock(&irq->irq_lock);
/*
* Did something change behind our backs?
*
* There are two cases:
* 1) The irq lost its pending state or was disabled behind our
* backs and/or it was queued to another VCPU's ap_list.
* 2) Someone changed the affinity on this irq behind our
* backs and we are now holding the wrong ap_list_lock.
*
* In both cases, drop the locks and retry.
*/
if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
raw_spin_unlock(&irq->irq_lock);
raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
flags);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
goto retry;
}
/*
* Grab a reference to the irq to reflect the fact that it is
* now in the ap_list. This is safe as the caller must already hold a
* reference on the irq.
*/
vgic_get_irq_kref(irq);
list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
irq->vcpu = vcpu;
raw_spin_unlock(&irq->irq_lock);
raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
kvm_vcpu_kick(vcpu);
return true;
}
/**
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
* @kvm: The VM structure pointer
* @vcpu: The CPU for PPIs or NULL for global interrupts
* @intid: The INTID to inject a new state to.
* @level: Edge-triggered: true: to trigger the interrupt
* false: to ignore the call
* Level-sensitive true: raise the input signal
* false: lower the input signal
* @owner: The opaque pointer to the owner of the IRQ being raised to verify
* that the caller is allowed to inject this IRQ. Userspace
* injections will have owner == NULL.
*
* The VGIC is not concerned with devices being active-LOW or active-HIGH for
* level-sensitive interrupts. You can think of the level parameter as 1
* being HIGH and 0 being LOW and all devices being active-HIGH.
*/
int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
unsigned int intid, bool level, void *owner)
{
struct vgic_irq *irq;
unsigned long flags;
int ret;
ret = vgic_lazy_init(kvm);
if (ret)
return ret;
if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
return -EINVAL;
trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
irq = vgic_get_irq(kvm, vcpu, intid);
if (!irq)
return -EINVAL;
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (!vgic_validate_injection(irq, level, owner)) {
/* Nothing to see here, move along... */
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(kvm, irq);
return 0;
}
if (irq->config == VGIC_CONFIG_LEVEL)
irq->line_level = level;
else
irq->pending_latch = true;
vgic_queue_irq_unlock(kvm, irq, flags);
vgic_put_irq(kvm, irq);
return 0;
}
/* @irq->irq_lock must be held */
static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
unsigned int host_irq,
struct irq_ops *ops)
{
struct irq_desc *desc;
struct irq_data *data;
/*
* Find the physical IRQ number corresponding to @host_irq
*/
desc = irq_to_desc(host_irq);
if (!desc) {
kvm_err("%s: no interrupt descriptor\n", __func__);
return -EINVAL;
}
data = irq_desc_get_irq_data(desc);
while (data->parent_data)
data = data->parent_data;
irq->hw = true;
irq->host_irq = host_irq;
irq->hwintid = data->hwirq;
irq->ops = ops;
return 0;
}
/* @irq->irq_lock must be held */
static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
{
irq->hw = false;
irq->hwintid = 0;
irq->ops = NULL;
}
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
u32 vintid, struct irq_ops *ops)
{
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
unsigned long flags;
int ret;
BUG_ON(!irq);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return ret;
}
/**
* kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
* @vcpu: The VCPU pointer
* @vintid: The INTID of the interrupt
*
* Reset the active and pending states of a mapped interrupt. Kernel
* subsystems injecting mapped interrupts should reset their interrupt lines
* when we are doing a reset of the VM.
*/
void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
{
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
unsigned long flags;
if (!irq->hw)
goto out;
raw_spin_lock_irqsave(&irq->irq_lock, flags);
irq->active = false;
irq->pending_latch = false;
irq->line_level = false;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
out:
vgic_put_irq(vcpu->kvm, irq);
}
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
{
struct vgic_irq *irq;
unsigned long flags;
if (!vgic_initialized(vcpu->kvm))
return -EAGAIN;
irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
BUG_ON(!irq);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
kvm_vgic_unmap_irq(irq);
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return 0;
}
int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
{
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
unsigned long flags;
int ret = -1;
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->hw)
ret = irq->hwintid;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return ret;
}
/**
* kvm_vgic_set_owner - Set the owner of an interrupt for a VM
*
* @vcpu: Pointer to the VCPU (used for PPIs)
* @intid: The virtual INTID identifying the interrupt (PPI or SPI)
* @owner: Opaque pointer to the owner
*
* Returns 0 if intid is not already used by another in-kernel device and the
* owner is set, otherwise returns an error code.
*/
int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
{
struct vgic_irq *irq;
unsigned long flags;
int ret = 0;
if (!vgic_initialized(vcpu->kvm))
return -EAGAIN;
/* SGIs and LPIs cannot be wired up to any device */
if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
return -EINVAL;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->owner && irq->owner != owner)
ret = -EEXIST;
else
irq->owner = owner;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
return ret;
}
/**
* vgic_prune_ap_list - Remove non-relevant interrupts from the list
*
* @vcpu: The VCPU pointer
*
* Go over the list of "interesting" interrupts, and prune those that we
* won't have to consider in the near future.
*/
static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq, *tmp;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
retry:
raw_spin_lock(&vgic_cpu->ap_list_lock);
list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
bool target_vcpu_needs_kick = false;
raw_spin_lock(&irq->irq_lock);
BUG_ON(vcpu != irq->vcpu);
target_vcpu = vgic_target_oracle(irq);
if (!target_vcpu) {
/*
* We don't need to process this interrupt any
* further, move it off the list.
*/
list_del(&irq->ap_list);
irq->vcpu = NULL;
raw_spin_unlock(&irq->irq_lock);
/*
* This vgic_put_irq call matches the
* vgic_get_irq_kref in vgic_queue_irq_unlock,
* where we added the LPI to the ap_list. As
* we remove the irq from the list, we drop
* also drop the refcount.
*/
vgic_put_irq(vcpu->kvm, irq);
continue;
}
if (target_vcpu == vcpu) {
/* We're on the right CPU */
raw_spin_unlock(&irq->irq_lock);
continue;
}
/* This interrupt looks like it has to be migrated. */
raw_spin_unlock(&irq->irq_lock);
raw_spin_unlock(&vgic_cpu->ap_list_lock);
/*
* Ensure locking order by always locking the smallest
* ID first.
*/
if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
vcpuA = vcpu;
vcpuB = target_vcpu;
} else {
vcpuA = target_vcpu;
vcpuB = vcpu;
}
raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
SINGLE_DEPTH_NESTING);
raw_spin_lock(&irq->irq_lock);
/*
* If the affinity has been preserved, move the
* interrupt around. Otherwise, it means things have
* changed while the interrupt was unlocked, and we
* need to replay this.
*
* In all cases, we cannot trust the list not to have
* changed, so we restart from the beginning.
*/
if (target_vcpu == vgic_target_oracle(irq)) {
struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
list_del(&irq->ap_list);
irq->vcpu = target_vcpu;
list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
target_vcpu_needs_kick = true;
}
raw_spin_unlock(&irq->irq_lock);
raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
if (target_vcpu_needs_kick) {
kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
kvm_vcpu_kick(target_vcpu);
}
goto retry;
}
raw_spin_unlock(&vgic_cpu->ap_list_lock);
}
static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_fold_lr_state(vcpu);
else
vgic_v3_fold_lr_state(vcpu);
}
/* Requires the irq_lock to be held. */
static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
struct vgic_irq *irq, int lr)
{
lockdep_assert_held(&irq->irq_lock);
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_populate_lr(vcpu, irq, lr);
else
vgic_v3_populate_lr(vcpu, irq, lr);
}
static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_clear_lr(vcpu, lr);
else
vgic_v3_clear_lr(vcpu, lr);
}
static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
{
if (kvm_vgic_global_state.type == VGIC_V2)
vgic_v2_set_underflow(vcpu);
else
vgic_v3_set_underflow(vcpu);
}
/* Requires the ap_list_lock to be held. */
static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
bool *multi_sgi)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq;
int count = 0;
*multi_sgi = false;
lockdep_assert_held(&vgic_cpu->ap_list_lock);
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
int w;
raw_spin_lock(&irq->irq_lock);
/* GICv2 SGIs can count for more than one... */
w = vgic_irq_get_lr_count(irq);
raw_spin_unlock(&irq->irq_lock);
count += w;
*multi_sgi |= (w > 1);
}
return count;
}
/* Requires the VCPU's ap_list_lock to be held. */
static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq;
int count;
bool multi_sgi;
u8 prio = 0xff;
int i = 0;
lockdep_assert_held(&vgic_cpu->ap_list_lock);
count = compute_ap_list_depth(vcpu, &multi_sgi);
if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
vgic_sort_ap_list(vcpu);
count = 0;
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
raw_spin_lock(&irq->irq_lock);
/*
* If we have multi-SGIs in the pipeline, we need to
* guarantee that they are all seen before any IRQ of
* lower priority. In that case, we need to filter out
* these interrupts by exiting early. This is easy as
* the AP list has been sorted already.
*/
if (multi_sgi && irq->priority > prio) {
_raw_spin_unlock(&irq->irq_lock);
break;
}
if (likely(vgic_target_oracle(irq) == vcpu)) {
vgic_populate_lr(vcpu, irq, count++);
if (irq->source)
prio = irq->priority;
}
raw_spin_unlock(&irq->irq_lock);
if (count == kvm_vgic_global_state.nr_lr) {
if (!list_is_last(&irq->ap_list,
&vgic_cpu->ap_list_head))
vgic_set_underflow(vcpu);
break;
}
}
/* Nuke remaining LRs */
for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
vgic_clear_lr(vcpu, i);
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
else
vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
}
static inline bool can_access_vgic_from_kernel(void)
{
/*
* GICv2 can always be accessed from the kernel because it is
* memory-mapped, and VHE systems can access GICv3 EL2 system
* registers.
*/
return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
}
static inline void vgic_save_state(struct kvm_vcpu *vcpu)
{
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vgic_v2_save_state(vcpu);
else
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
/* Sync back the hardware VGIC state into our emulation after a guest's run. */
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
int used_lrs;
/* An empty ap_list_head implies used_lrs == 0 */
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
return;
if (can_access_vgic_from_kernel())
vgic_save_state(vcpu);
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
else
used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
if (used_lrs)
vgic_fold_lr_state(vcpu);
vgic_prune_ap_list(vcpu);
}
static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
{
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vgic_v2_restore_state(vcpu);
else
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
/* Flush our emulation state into the GIC hardware before entering the guest. */
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
/*
* If there are no virtual interrupts active or pending for this
* VCPU, then there is no work to do and we can bail out without
* taking any lock. There is a potential race with someone injecting
* interrupts to the VCPU, but it is a benign race as the VCPU will
* either observe the new interrupt before or after doing this check,
* and introducing additional synchronization mechanism doesn't change
* this.
*
* Note that we still need to go through the whole thing if anything
* can be directly injected (GICv4).
*/
if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
!vgic_supports_direct_msis(vcpu->kvm))
return;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
vgic_flush_lr_state(vcpu);
raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
}
if (can_access_vgic_from_kernel())
vgic_restore_state(vcpu);
if (vgic_supports_direct_msis(vcpu->kvm))
vgic_v4_commit(vcpu);
}
void kvm_vgic_load(struct kvm_vcpu *vcpu)
{
if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
return;
}
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vgic_v2_load(vcpu);
else
vgic_v3_load(vcpu);
}
void kvm_vgic_put(struct kvm_vcpu *vcpu)
{
if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
return;
}
if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
vgic_v2_put(vcpu);
else
vgic_v3_put(vcpu);
}
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_irq *irq;
bool pending = false;
unsigned long flags;
struct vgic_vmcr vmcr;
if (!vcpu->kvm->arch.vgic.enabled)
return false;
if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
return true;
vgic_get_vmcr(vcpu, &vmcr);
raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
raw_spin_lock(&irq->irq_lock);
pending = irq_is_pending(irq) && irq->enabled &&
!irq->active &&
irq->priority < vmcr.pmr;
raw_spin_unlock(&irq->irq_lock);
if (pending)
break;
}
raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
return pending;
}
void vgic_kick_vcpus(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
unsigned long c;
/*
* We've injected an interrupt, time to find out who deserves
* a good kick...
*/
kvm_for_each_vcpu(c, vcpu, kvm) {
if (kvm_vgic_vcpu_pending_irq(vcpu)) {
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
kvm_vcpu_kick(vcpu);
}
}
}
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
{
struct vgic_irq *irq;
bool map_is_active;
unsigned long flags;
if (!vgic_initialized(vcpu->kvm))
return false;
irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
map_is_active = irq->hw && irq->active;
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
vgic_put_irq(vcpu->kvm, irq);
return map_is_active;
}
/*
* Level-triggered mapped IRQs are special because we only observe rising
* edges as input to the VGIC.
*
* If the guest never acked the interrupt we have to sample the physical
* line and set the line level, because the device state could have changed
* or we simply need to process the still pending interrupt later.
*
* We could also have entered the guest with the interrupt active+pending.
* On the next exit, we need to re-evaluate the pending state, as it could
* otherwise result in a spurious interrupt by injecting a now potentially
* stale pending state.
*
* If this causes us to lower the level, we have to also clear the physical
* active state, since we will otherwise never be told when the interrupt
* becomes asserted again.
*
* Another case is when the interrupt requires a helping hand on
* deactivation (no HW deactivation, for example).
*/
void vgic_irq_handle_resampling(struct vgic_irq *irq,
bool lr_deactivated, bool lr_pending)
{
if (vgic_irq_is_mapped_level(irq)) {
bool resample = false;
if (unlikely(vgic_irq_needs_resampling(irq))) {
resample = !(irq->active || irq->pending_latch);
} else if (lr_pending || (lr_deactivated && irq->line_level)) {
irq->line_level = vgic_get_phys_line_level(irq);
resample = !irq->line_level;
}
if (resample)
vgic_irq_set_phys_active(irq, false);
}
}