| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. |
| * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/compat.h> |
| #include <linux/completion.h> |
| #include <linux/buffer_head.h> |
| #include <linux/pagemap.h> |
| #include <linux/uio.h> |
| #include <linux/blkdev.h> |
| #include <linux/mm.h> |
| #include <linux/mount.h> |
| #include <linux/fs.h> |
| #include <linux/filelock.h> |
| #include <linux/gfs2_ondisk.h> |
| #include <linux/falloc.h> |
| #include <linux/swap.h> |
| #include <linux/crc32.h> |
| #include <linux/writeback.h> |
| #include <linux/uaccess.h> |
| #include <linux/dlm.h> |
| #include <linux/dlm_plock.h> |
| #include <linux/delay.h> |
| #include <linux/backing-dev.h> |
| #include <linux/fileattr.h> |
| |
| #include "gfs2.h" |
| #include "incore.h" |
| #include "bmap.h" |
| #include "aops.h" |
| #include "dir.h" |
| #include "glock.h" |
| #include "glops.h" |
| #include "inode.h" |
| #include "log.h" |
| #include "meta_io.h" |
| #include "quota.h" |
| #include "rgrp.h" |
| #include "trans.h" |
| #include "util.h" |
| |
| /** |
| * gfs2_llseek - seek to a location in a file |
| * @file: the file |
| * @offset: the offset |
| * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) |
| * |
| * SEEK_END requires the glock for the file because it references the |
| * file's size. |
| * |
| * Returns: The new offset, or errno |
| */ |
| |
| static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) |
| { |
| struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); |
| struct gfs2_holder i_gh; |
| loff_t error; |
| |
| switch (whence) { |
| case SEEK_END: |
| error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, |
| &i_gh); |
| if (!error) { |
| error = generic_file_llseek(file, offset, whence); |
| gfs2_glock_dq_uninit(&i_gh); |
| } |
| break; |
| |
| case SEEK_DATA: |
| error = gfs2_seek_data(file, offset); |
| break; |
| |
| case SEEK_HOLE: |
| error = gfs2_seek_hole(file, offset); |
| break; |
| |
| case SEEK_CUR: |
| case SEEK_SET: |
| /* |
| * These don't reference inode->i_size and don't depend on the |
| * block mapping, so we don't need the glock. |
| */ |
| error = generic_file_llseek(file, offset, whence); |
| break; |
| default: |
| error = -EINVAL; |
| } |
| |
| return error; |
| } |
| |
| /** |
| * gfs2_readdir - Iterator for a directory |
| * @file: The directory to read from |
| * @ctx: What to feed directory entries to |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct inode *dir = file->f_mapping->host; |
| struct gfs2_inode *dip = GFS2_I(dir); |
| struct gfs2_holder d_gh; |
| int error; |
| |
| error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); |
| if (error) |
| return error; |
| |
| error = gfs2_dir_read(dir, ctx, &file->f_ra); |
| |
| gfs2_glock_dq_uninit(&d_gh); |
| |
| return error; |
| } |
| |
| /* |
| * struct fsflag_gfs2flag |
| * |
| * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, |
| * and to GFS2_DIF_JDATA for non-directories. |
| */ |
| static struct { |
| u32 fsflag; |
| u32 gfsflag; |
| } fsflag_gfs2flag[] = { |
| {FS_SYNC_FL, GFS2_DIF_SYNC}, |
| {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, |
| {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, |
| {FS_NOATIME_FL, GFS2_DIF_NOATIME}, |
| {FS_INDEX_FL, GFS2_DIF_EXHASH}, |
| {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, |
| {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, |
| }; |
| |
| static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) |
| { |
| int i; |
| u32 fsflags = 0; |
| |
| if (S_ISDIR(inode->i_mode)) |
| gfsflags &= ~GFS2_DIF_JDATA; |
| else |
| gfsflags &= ~GFS2_DIF_INHERIT_JDATA; |
| |
| for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) |
| if (gfsflags & fsflag_gfs2flag[i].gfsflag) |
| fsflags |= fsflag_gfs2flag[i].fsflag; |
| return fsflags; |
| } |
| |
| int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_holder gh; |
| int error; |
| u32 fsflags; |
| |
| if (d_is_special(dentry)) |
| return -ENOTTY; |
| |
| gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); |
| error = gfs2_glock_nq(&gh); |
| if (error) |
| goto out_uninit; |
| |
| fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); |
| |
| fileattr_fill_flags(fa, fsflags); |
| |
| gfs2_glock_dq(&gh); |
| out_uninit: |
| gfs2_holder_uninit(&gh); |
| return error; |
| } |
| |
| void gfs2_set_inode_flags(struct inode *inode) |
| { |
| struct gfs2_inode *ip = GFS2_I(inode); |
| unsigned int flags = inode->i_flags; |
| |
| flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); |
| if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) |
| flags |= S_NOSEC; |
| if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) |
| flags |= S_IMMUTABLE; |
| if (ip->i_diskflags & GFS2_DIF_APPENDONLY) |
| flags |= S_APPEND; |
| if (ip->i_diskflags & GFS2_DIF_NOATIME) |
| flags |= S_NOATIME; |
| if (ip->i_diskflags & GFS2_DIF_SYNC) |
| flags |= S_SYNC; |
| inode->i_flags = flags; |
| } |
| |
| /* Flags that can be set by user space */ |
| #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ |
| GFS2_DIF_IMMUTABLE| \ |
| GFS2_DIF_APPENDONLY| \ |
| GFS2_DIF_NOATIME| \ |
| GFS2_DIF_SYNC| \ |
| GFS2_DIF_TOPDIR| \ |
| GFS2_DIF_INHERIT_JDATA) |
| |
| /** |
| * do_gfs2_set_flags - set flags on an inode |
| * @inode: The inode |
| * @reqflags: The flags to set |
| * @mask: Indicates which flags are valid |
| * |
| */ |
| static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask) |
| { |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct buffer_head *bh; |
| struct gfs2_holder gh; |
| int error; |
| u32 new_flags, flags; |
| |
| error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); |
| if (error) |
| return error; |
| |
| error = 0; |
| flags = ip->i_diskflags; |
| new_flags = (flags & ~mask) | (reqflags & mask); |
| if ((new_flags ^ flags) == 0) |
| goto out; |
| |
| if (!IS_IMMUTABLE(inode)) { |
| error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE); |
| if (error) |
| goto out; |
| } |
| if ((flags ^ new_flags) & GFS2_DIF_JDATA) { |
| if (new_flags & GFS2_DIF_JDATA) |
| gfs2_log_flush(sdp, ip->i_gl, |
| GFS2_LOG_HEAD_FLUSH_NORMAL | |
| GFS2_LFC_SET_FLAGS); |
| error = filemap_fdatawrite(inode->i_mapping); |
| if (error) |
| goto out; |
| error = filemap_fdatawait(inode->i_mapping); |
| if (error) |
| goto out; |
| if (new_flags & GFS2_DIF_JDATA) |
| gfs2_ordered_del_inode(ip); |
| } |
| error = gfs2_trans_begin(sdp, RES_DINODE, 0); |
| if (error) |
| goto out; |
| error = gfs2_meta_inode_buffer(ip, &bh); |
| if (error) |
| goto out_trans_end; |
| inode_set_ctime_current(inode); |
| gfs2_trans_add_meta(ip->i_gl, bh); |
| ip->i_diskflags = new_flags; |
| gfs2_dinode_out(ip, bh->b_data); |
| brelse(bh); |
| gfs2_set_inode_flags(inode); |
| gfs2_set_aops(inode); |
| out_trans_end: |
| gfs2_trans_end(sdp); |
| out: |
| gfs2_glock_dq_uninit(&gh); |
| return error; |
| } |
| |
| int gfs2_fileattr_set(struct mnt_idmap *idmap, |
| struct dentry *dentry, struct fileattr *fa) |
| { |
| struct inode *inode = d_inode(dentry); |
| u32 fsflags = fa->flags, gfsflags = 0; |
| u32 mask; |
| int i; |
| |
| if (d_is_special(dentry)) |
| return -ENOTTY; |
| |
| if (fileattr_has_fsx(fa)) |
| return -EOPNOTSUPP; |
| |
| for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { |
| if (fsflags & fsflag_gfs2flag[i].fsflag) { |
| fsflags &= ~fsflag_gfs2flag[i].fsflag; |
| gfsflags |= fsflag_gfs2flag[i].gfsflag; |
| } |
| } |
| if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) |
| return -EINVAL; |
| |
| mask = GFS2_FLAGS_USER_SET; |
| if (S_ISDIR(inode->i_mode)) { |
| mask &= ~GFS2_DIF_JDATA; |
| } else { |
| /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ |
| if (gfsflags & GFS2_DIF_TOPDIR) |
| return -EINVAL; |
| mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); |
| } |
| |
| return do_gfs2_set_flags(inode, gfsflags, mask); |
| } |
| |
| static int gfs2_getlabel(struct file *filp, char __user *label) |
| { |
| struct inode *inode = file_inode(filp); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| |
| if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| switch(cmd) { |
| case FITRIM: |
| return gfs2_fitrim(filp, (void __user *)arg); |
| case FS_IOC_GETFSLABEL: |
| return gfs2_getlabel(filp, (char __user *)arg); |
| } |
| |
| return -ENOTTY; |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) |
| { |
| switch(cmd) { |
| /* Keep this list in sync with gfs2_ioctl */ |
| case FITRIM: |
| case FS_IOC_GETFSLABEL: |
| break; |
| default: |
| return -ENOIOCTLCMD; |
| } |
| |
| return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); |
| } |
| #else |
| #define gfs2_compat_ioctl NULL |
| #endif |
| |
| /** |
| * gfs2_size_hint - Give a hint to the size of a write request |
| * @filep: The struct file |
| * @offset: The file offset of the write |
| * @size: The length of the write |
| * |
| * When we are about to do a write, this function records the total |
| * write size in order to provide a suitable hint to the lower layers |
| * about how many blocks will be required. |
| * |
| */ |
| |
| static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) |
| { |
| struct inode *inode = file_inode(filep); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; |
| int hint = min_t(size_t, INT_MAX, blks); |
| |
| if (hint > atomic_read(&ip->i_sizehint)) |
| atomic_set(&ip->i_sizehint, hint); |
| } |
| |
| /** |
| * gfs2_allocate_page_backing - Allocate blocks for a write fault |
| * @page: The (locked) page to allocate backing for |
| * @length: Size of the allocation |
| * |
| * We try to allocate all the blocks required for the page in one go. This |
| * might fail for various reasons, so we keep trying until all the blocks to |
| * back this page are allocated. If some of the blocks are already allocated, |
| * that is ok too. |
| */ |
| static int gfs2_allocate_page_backing(struct page *page, unsigned int length) |
| { |
| u64 pos = page_offset(page); |
| |
| do { |
| struct iomap iomap = { }; |
| |
| if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap)) |
| return -EIO; |
| |
| if (length < iomap.length) |
| iomap.length = length; |
| length -= iomap.length; |
| pos += iomap.length; |
| } while (length > 0); |
| |
| return 0; |
| } |
| |
| /** |
| * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable |
| * @vmf: The virtual memory fault containing the page to become writable |
| * |
| * When the page becomes writable, we need to ensure that we have |
| * blocks allocated on disk to back that page. |
| */ |
| |
| static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) |
| { |
| struct page *page = vmf->page; |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct gfs2_alloc_parms ap = { .aflags = 0, }; |
| u64 offset = page_offset(page); |
| unsigned int data_blocks, ind_blocks, rblocks; |
| vm_fault_t ret = VM_FAULT_LOCKED; |
| struct gfs2_holder gh; |
| unsigned int length; |
| loff_t size; |
| int err; |
| |
| sb_start_pagefault(inode->i_sb); |
| |
| gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); |
| err = gfs2_glock_nq(&gh); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_uninit; |
| } |
| |
| /* Check page index against inode size */ |
| size = i_size_read(inode); |
| if (offset >= size) { |
| ret = VM_FAULT_SIGBUS; |
| goto out_unlock; |
| } |
| |
| /* Update file times before taking page lock */ |
| file_update_time(vmf->vma->vm_file); |
| |
| /* page is wholly or partially inside EOF */ |
| if (size - offset < PAGE_SIZE) |
| length = size - offset; |
| else |
| length = PAGE_SIZE; |
| |
| gfs2_size_hint(vmf->vma->vm_file, offset, length); |
| |
| set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); |
| set_bit(GIF_SW_PAGED, &ip->i_flags); |
| |
| /* |
| * iomap_writepage / iomap_writepages currently don't support inline |
| * files, so always unstuff here. |
| */ |
| |
| if (!gfs2_is_stuffed(ip) && |
| !gfs2_write_alloc_required(ip, offset, length)) { |
| lock_page(page); |
| if (!PageUptodate(page) || page->mapping != inode->i_mapping) { |
| ret = VM_FAULT_NOPAGE; |
| unlock_page(page); |
| } |
| goto out_unlock; |
| } |
| |
| err = gfs2_rindex_update(sdp); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_unlock; |
| } |
| |
| gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); |
| ap.target = data_blocks + ind_blocks; |
| err = gfs2_quota_lock_check(ip, &ap); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_unlock; |
| } |
| err = gfs2_inplace_reserve(ip, &ap); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_quota_unlock; |
| } |
| |
| rblocks = RES_DINODE + ind_blocks; |
| if (gfs2_is_jdata(ip)) |
| rblocks += data_blocks ? data_blocks : 1; |
| if (ind_blocks || data_blocks) { |
| rblocks += RES_STATFS + RES_QUOTA; |
| rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); |
| } |
| err = gfs2_trans_begin(sdp, rblocks, 0); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_trans_fail; |
| } |
| |
| /* Unstuff, if required, and allocate backing blocks for page */ |
| if (gfs2_is_stuffed(ip)) { |
| err = gfs2_unstuff_dinode(ip); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_trans_end; |
| } |
| } |
| |
| lock_page(page); |
| /* If truncated, we must retry the operation, we may have raced |
| * with the glock demotion code. |
| */ |
| if (!PageUptodate(page) || page->mapping != inode->i_mapping) { |
| ret = VM_FAULT_NOPAGE; |
| goto out_page_locked; |
| } |
| |
| err = gfs2_allocate_page_backing(page, length); |
| if (err) |
| ret = vmf_fs_error(err); |
| |
| out_page_locked: |
| if (ret != VM_FAULT_LOCKED) |
| unlock_page(page); |
| out_trans_end: |
| gfs2_trans_end(sdp); |
| out_trans_fail: |
| gfs2_inplace_release(ip); |
| out_quota_unlock: |
| gfs2_quota_unlock(ip); |
| out_unlock: |
| gfs2_glock_dq(&gh); |
| out_uninit: |
| gfs2_holder_uninit(&gh); |
| if (ret == VM_FAULT_LOCKED) { |
| set_page_dirty(page); |
| wait_for_stable_page(page); |
| } |
| sb_end_pagefault(inode->i_sb); |
| return ret; |
| } |
| |
| static vm_fault_t gfs2_fault(struct vm_fault *vmf) |
| { |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_holder gh; |
| vm_fault_t ret; |
| int err; |
| |
| gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); |
| err = gfs2_glock_nq(&gh); |
| if (err) { |
| ret = vmf_fs_error(err); |
| goto out_uninit; |
| } |
| ret = filemap_fault(vmf); |
| gfs2_glock_dq(&gh); |
| out_uninit: |
| gfs2_holder_uninit(&gh); |
| return ret; |
| } |
| |
| static const struct vm_operations_struct gfs2_vm_ops = { |
| .fault = gfs2_fault, |
| .map_pages = filemap_map_pages, |
| .page_mkwrite = gfs2_page_mkwrite, |
| }; |
| |
| /** |
| * gfs2_mmap |
| * @file: The file to map |
| * @vma: The VMA which described the mapping |
| * |
| * There is no need to get a lock here unless we should be updating |
| * atime. We ignore any locking errors since the only consequence is |
| * a missed atime update (which will just be deferred until later). |
| * |
| * Returns: 0 |
| */ |
| |
| static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); |
| |
| if (!(file->f_flags & O_NOATIME) && |
| !IS_NOATIME(&ip->i_inode)) { |
| struct gfs2_holder i_gh; |
| int error; |
| |
| error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, |
| &i_gh); |
| if (error) |
| return error; |
| /* grab lock to update inode */ |
| gfs2_glock_dq_uninit(&i_gh); |
| file_accessed(file); |
| } |
| vma->vm_ops = &gfs2_vm_ops; |
| |
| return 0; |
| } |
| |
| /** |
| * gfs2_open_common - This is common to open and atomic_open |
| * @inode: The inode being opened |
| * @file: The file being opened |
| * |
| * This maybe called under a glock or not depending upon how it has |
| * been called. We must always be called under a glock for regular |
| * files, however. For other file types, it does not matter whether |
| * we hold the glock or not. |
| * |
| * Returns: Error code or 0 for success |
| */ |
| |
| int gfs2_open_common(struct inode *inode, struct file *file) |
| { |
| struct gfs2_file *fp; |
| int ret; |
| |
| if (S_ISREG(inode->i_mode)) { |
| ret = generic_file_open(inode, file); |
| if (ret) |
| return ret; |
| |
| if (!gfs2_is_jdata(GFS2_I(inode))) |
| file->f_mode |= FMODE_CAN_ODIRECT; |
| } |
| |
| fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); |
| if (!fp) |
| return -ENOMEM; |
| |
| mutex_init(&fp->f_fl_mutex); |
| |
| gfs2_assert_warn(GFS2_SB(inode), !file->private_data); |
| file->private_data = fp; |
| if (file->f_mode & FMODE_WRITE) { |
| ret = gfs2_qa_get(GFS2_I(inode)); |
| if (ret) |
| goto fail; |
| } |
| return 0; |
| |
| fail: |
| kfree(file->private_data); |
| file->private_data = NULL; |
| return ret; |
| } |
| |
| /** |
| * gfs2_open - open a file |
| * @inode: the inode to open |
| * @file: the struct file for this opening |
| * |
| * After atomic_open, this function is only used for opening files |
| * which are already cached. We must still get the glock for regular |
| * files to ensure that we have the file size uptodate for the large |
| * file check which is in the common code. That is only an issue for |
| * regular files though. |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_open(struct inode *inode, struct file *file) |
| { |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_holder i_gh; |
| int error; |
| bool need_unlock = false; |
| |
| if (S_ISREG(ip->i_inode.i_mode)) { |
| error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, |
| &i_gh); |
| if (error) |
| return error; |
| need_unlock = true; |
| } |
| |
| error = gfs2_open_common(inode, file); |
| |
| if (need_unlock) |
| gfs2_glock_dq_uninit(&i_gh); |
| |
| return error; |
| } |
| |
| /** |
| * gfs2_release - called to close a struct file |
| * @inode: the inode the struct file belongs to |
| * @file: the struct file being closed |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_release(struct inode *inode, struct file *file) |
| { |
| struct gfs2_inode *ip = GFS2_I(inode); |
| |
| kfree(file->private_data); |
| file->private_data = NULL; |
| |
| if (file->f_mode & FMODE_WRITE) { |
| if (gfs2_rs_active(&ip->i_res)) |
| gfs2_rs_delete(ip); |
| gfs2_qa_put(ip); |
| } |
| return 0; |
| } |
| |
| /** |
| * gfs2_fsync - sync the dirty data for a file (across the cluster) |
| * @file: the file that points to the dentry |
| * @start: the start position in the file to sync |
| * @end: the end position in the file to sync |
| * @datasync: set if we can ignore timestamp changes |
| * |
| * We split the data flushing here so that we don't wait for the data |
| * until after we've also sent the metadata to disk. Note that for |
| * data=ordered, we will write & wait for the data at the log flush |
| * stage anyway, so this is unlikely to make much of a difference |
| * except in the data=writeback case. |
| * |
| * If the fdatawrite fails due to any reason except -EIO, we will |
| * continue the remainder of the fsync, although we'll still report |
| * the error at the end. This is to match filemap_write_and_wait_range() |
| * behaviour. |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_fsync(struct file *file, loff_t start, loff_t end, |
| int datasync) |
| { |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| int sync_state = inode->i_state & I_DIRTY; |
| struct gfs2_inode *ip = GFS2_I(inode); |
| int ret = 0, ret1 = 0; |
| |
| if (mapping->nrpages) { |
| ret1 = filemap_fdatawrite_range(mapping, start, end); |
| if (ret1 == -EIO) |
| return ret1; |
| } |
| |
| if (!gfs2_is_jdata(ip)) |
| sync_state &= ~I_DIRTY_PAGES; |
| if (datasync) |
| sync_state &= ~I_DIRTY_SYNC; |
| |
| if (sync_state) { |
| ret = sync_inode_metadata(inode, 1); |
| if (ret) |
| return ret; |
| if (gfs2_is_jdata(ip)) |
| ret = file_write_and_wait(file); |
| if (ret) |
| return ret; |
| gfs2_ail_flush(ip->i_gl, 1); |
| } |
| |
| if (mapping->nrpages) |
| ret = file_fdatawait_range(file, start, end); |
| |
| return ret ? ret : ret1; |
| } |
| |
| static inline bool should_fault_in_pages(struct iov_iter *i, |
| struct kiocb *iocb, |
| size_t *prev_count, |
| size_t *window_size) |
| { |
| size_t count = iov_iter_count(i); |
| size_t size, offs; |
| |
| if (!count) |
| return false; |
| if (!user_backed_iter(i)) |
| return false; |
| |
| /* |
| * Try to fault in multiple pages initially. When that doesn't result |
| * in any progress, fall back to a single page. |
| */ |
| size = PAGE_SIZE; |
| offs = offset_in_page(iocb->ki_pos); |
| if (*prev_count != count) { |
| size_t nr_dirtied; |
| |
| nr_dirtied = max(current->nr_dirtied_pause - |
| current->nr_dirtied, 8); |
| size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT); |
| } |
| |
| *prev_count = count; |
| *window_size = size - offs; |
| return true; |
| } |
| |
| static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, |
| struct gfs2_holder *gh) |
| { |
| struct file *file = iocb->ki_filp; |
| struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); |
| size_t prev_count = 0, window_size = 0; |
| size_t read = 0; |
| ssize_t ret; |
| |
| /* |
| * In this function, we disable page faults when we're holding the |
| * inode glock while doing I/O. If a page fault occurs, we indicate |
| * that the inode glock may be dropped, fault in the pages manually, |
| * and retry. |
| * |
| * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger |
| * physical as well as manual page faults, and we need to disable both |
| * kinds. |
| * |
| * For direct I/O, gfs2 takes the inode glock in deferred mode. This |
| * locking mode is compatible with other deferred holders, so multiple |
| * processes and nodes can do direct I/O to a file at the same time. |
| * There's no guarantee that reads or writes will be atomic. Any |
| * coordination among readers and writers needs to happen externally. |
| */ |
| |
| if (!iov_iter_count(to)) |
| return 0; /* skip atime */ |
| |
| gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); |
| retry: |
| ret = gfs2_glock_nq(gh); |
| if (ret) |
| goto out_uninit; |
| pagefault_disable(); |
| to->nofault = true; |
| ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, |
| IOMAP_DIO_PARTIAL, NULL, read); |
| to->nofault = false; |
| pagefault_enable(); |
| if (ret <= 0 && ret != -EFAULT) |
| goto out_unlock; |
| /* No increment (+=) because iomap_dio_rw returns a cumulative value. */ |
| if (ret > 0) |
| read = ret; |
| |
| if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) { |
| gfs2_glock_dq(gh); |
| window_size -= fault_in_iov_iter_writeable(to, window_size); |
| if (window_size) |
| goto retry; |
| } |
| out_unlock: |
| if (gfs2_holder_queued(gh)) |
| gfs2_glock_dq(gh); |
| out_uninit: |
| gfs2_holder_uninit(gh); |
| /* User space doesn't expect partial success. */ |
| if (ret < 0) |
| return ret; |
| return read; |
| } |
| |
| static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, |
| struct gfs2_holder *gh) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| struct gfs2_inode *ip = GFS2_I(inode); |
| size_t prev_count = 0, window_size = 0; |
| size_t written = 0; |
| bool enough_retries; |
| ssize_t ret; |
| |
| /* |
| * In this function, we disable page faults when we're holding the |
| * inode glock while doing I/O. If a page fault occurs, we indicate |
| * that the inode glock may be dropped, fault in the pages manually, |
| * and retry. |
| * |
| * For writes, iomap_dio_rw only triggers manual page faults, so we |
| * don't need to disable physical ones. |
| */ |
| |
| /* |
| * Deferred lock, even if its a write, since we do no allocation on |
| * this path. All we need to change is the atime, and this lock mode |
| * ensures that other nodes have flushed their buffered read caches |
| * (i.e. their page cache entries for this inode). We do not, |
| * unfortunately, have the option of only flushing a range like the |
| * VFS does. |
| */ |
| gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); |
| retry: |
| ret = gfs2_glock_nq(gh); |
| if (ret) |
| goto out_uninit; |
| /* Silently fall back to buffered I/O when writing beyond EOF */ |
| if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode)) |
| goto out_unlock; |
| |
| from->nofault = true; |
| ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, |
| IOMAP_DIO_PARTIAL, NULL, written); |
| from->nofault = false; |
| if (ret <= 0) { |
| if (ret == -ENOTBLK) |
| ret = 0; |
| if (ret != -EFAULT) |
| goto out_unlock; |
| } |
| /* No increment (+=) because iomap_dio_rw returns a cumulative value. */ |
| if (ret > 0) |
| written = ret; |
| |
| enough_retries = prev_count == iov_iter_count(from) && |
| window_size <= PAGE_SIZE; |
| if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { |
| gfs2_glock_dq(gh); |
| window_size -= fault_in_iov_iter_readable(from, window_size); |
| if (window_size) { |
| if (!enough_retries) |
| goto retry; |
| /* fall back to buffered I/O */ |
| ret = 0; |
| } |
| } |
| out_unlock: |
| if (gfs2_holder_queued(gh)) |
| gfs2_glock_dq(gh); |
| out_uninit: |
| gfs2_holder_uninit(gh); |
| /* User space doesn't expect partial success. */ |
| if (ret < 0) |
| return ret; |
| return written; |
| } |
| |
| static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| { |
| struct gfs2_inode *ip; |
| struct gfs2_holder gh; |
| size_t prev_count = 0, window_size = 0; |
| size_t read = 0; |
| ssize_t ret; |
| |
| /* |
| * In this function, we disable page faults when we're holding the |
| * inode glock while doing I/O. If a page fault occurs, we indicate |
| * that the inode glock may be dropped, fault in the pages manually, |
| * and retry. |
| */ |
| |
| if (iocb->ki_flags & IOCB_DIRECT) |
| return gfs2_file_direct_read(iocb, to, &gh); |
| |
| pagefault_disable(); |
| iocb->ki_flags |= IOCB_NOIO; |
| ret = generic_file_read_iter(iocb, to); |
| iocb->ki_flags &= ~IOCB_NOIO; |
| pagefault_enable(); |
| if (ret >= 0) { |
| if (!iov_iter_count(to)) |
| return ret; |
| read = ret; |
| } else if (ret != -EFAULT) { |
| if (ret != -EAGAIN) |
| return ret; |
| if (iocb->ki_flags & IOCB_NOWAIT) |
| return ret; |
| } |
| ip = GFS2_I(iocb->ki_filp->f_mapping->host); |
| gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); |
| retry: |
| ret = gfs2_glock_nq(&gh); |
| if (ret) |
| goto out_uninit; |
| pagefault_disable(); |
| ret = generic_file_read_iter(iocb, to); |
| pagefault_enable(); |
| if (ret <= 0 && ret != -EFAULT) |
| goto out_unlock; |
| if (ret > 0) |
| read += ret; |
| |
| if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) { |
| gfs2_glock_dq(&gh); |
| window_size -= fault_in_iov_iter_writeable(to, window_size); |
| if (window_size) |
| goto retry; |
| } |
| out_unlock: |
| if (gfs2_holder_queued(&gh)) |
| gfs2_glock_dq(&gh); |
| out_uninit: |
| gfs2_holder_uninit(&gh); |
| return read ? read : ret; |
| } |
| |
| static ssize_t gfs2_file_buffered_write(struct kiocb *iocb, |
| struct iov_iter *from, |
| struct gfs2_holder *gh) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file_inode(file); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct gfs2_holder *statfs_gh = NULL; |
| size_t prev_count = 0, window_size = 0; |
| size_t orig_count = iov_iter_count(from); |
| size_t written = 0; |
| ssize_t ret; |
| |
| /* |
| * In this function, we disable page faults when we're holding the |
| * inode glock while doing I/O. If a page fault occurs, we indicate |
| * that the inode glock may be dropped, fault in the pages manually, |
| * and retry. |
| */ |
| |
| if (inode == sdp->sd_rindex) { |
| statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS); |
| if (!statfs_gh) |
| return -ENOMEM; |
| } |
| |
| gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh); |
| if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { |
| retry: |
| window_size -= fault_in_iov_iter_readable(from, window_size); |
| if (!window_size) { |
| ret = -EFAULT; |
| goto out_uninit; |
| } |
| from->count = min(from->count, window_size); |
| } |
| ret = gfs2_glock_nq(gh); |
| if (ret) |
| goto out_uninit; |
| |
| if (inode == sdp->sd_rindex) { |
| struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode); |
| |
| ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE, |
| GL_NOCACHE, statfs_gh); |
| if (ret) |
| goto out_unlock; |
| } |
| |
| pagefault_disable(); |
| ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); |
| pagefault_enable(); |
| if (ret > 0) |
| written += ret; |
| |
| if (inode == sdp->sd_rindex) |
| gfs2_glock_dq_uninit(statfs_gh); |
| |
| if (ret <= 0 && ret != -EFAULT) |
| goto out_unlock; |
| |
| from->count = orig_count - written; |
| if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) { |
| gfs2_glock_dq(gh); |
| goto retry; |
| } |
| out_unlock: |
| if (gfs2_holder_queued(gh)) |
| gfs2_glock_dq(gh); |
| out_uninit: |
| gfs2_holder_uninit(gh); |
| kfree(statfs_gh); |
| from->count = orig_count - written; |
| return written ? written : ret; |
| } |
| |
| /** |
| * gfs2_file_write_iter - Perform a write to a file |
| * @iocb: The io context |
| * @from: The data to write |
| * |
| * We have to do a lock/unlock here to refresh the inode size for |
| * O_APPEND writes, otherwise we can land up writing at the wrong |
| * offset. There is still a race, but provided the app is using its |
| * own file locking, this will make O_APPEND work as expected. |
| * |
| */ |
| |
| static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file_inode(file); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_holder gh; |
| ssize_t ret; |
| |
| gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); |
| |
| if (iocb->ki_flags & IOCB_APPEND) { |
| ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); |
| if (ret) |
| return ret; |
| gfs2_glock_dq_uninit(&gh); |
| } |
| |
| inode_lock(inode); |
| ret = generic_write_checks(iocb, from); |
| if (ret <= 0) |
| goto out_unlock; |
| |
| ret = file_remove_privs(file); |
| if (ret) |
| goto out_unlock; |
| |
| ret = file_update_time(file); |
| if (ret) |
| goto out_unlock; |
| |
| if (iocb->ki_flags & IOCB_DIRECT) { |
| struct address_space *mapping = file->f_mapping; |
| ssize_t buffered, ret2; |
| |
| ret = gfs2_file_direct_write(iocb, from, &gh); |
| if (ret < 0 || !iov_iter_count(from)) |
| goto out_unlock; |
| |
| iocb->ki_flags |= IOCB_DSYNC; |
| buffered = gfs2_file_buffered_write(iocb, from, &gh); |
| if (unlikely(buffered <= 0)) { |
| if (!ret) |
| ret = buffered; |
| goto out_unlock; |
| } |
| |
| /* |
| * We need to ensure that the page cache pages are written to |
| * disk and invalidated to preserve the expected O_DIRECT |
| * semantics. If the writeback or invalidate fails, only report |
| * the direct I/O range as we don't know if the buffered pages |
| * made it to disk. |
| */ |
| ret2 = generic_write_sync(iocb, buffered); |
| invalidate_mapping_pages(mapping, |
| (iocb->ki_pos - buffered) >> PAGE_SHIFT, |
| (iocb->ki_pos - 1) >> PAGE_SHIFT); |
| if (!ret || ret2 > 0) |
| ret += ret2; |
| } else { |
| ret = gfs2_file_buffered_write(iocb, from, &gh); |
| if (likely(ret > 0)) |
| ret = generic_write_sync(iocb, ret); |
| } |
| |
| out_unlock: |
| inode_unlock(inode); |
| return ret; |
| } |
| |
| static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, |
| int mode) |
| { |
| struct super_block *sb = inode->i_sb; |
| struct gfs2_inode *ip = GFS2_I(inode); |
| loff_t end = offset + len; |
| struct buffer_head *dibh; |
| int error; |
| |
| error = gfs2_meta_inode_buffer(ip, &dibh); |
| if (unlikely(error)) |
| return error; |
| |
| gfs2_trans_add_meta(ip->i_gl, dibh); |
| |
| if (gfs2_is_stuffed(ip)) { |
| error = gfs2_unstuff_dinode(ip); |
| if (unlikely(error)) |
| goto out; |
| } |
| |
| while (offset < end) { |
| struct iomap iomap = { }; |
| |
| error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap); |
| if (error) |
| goto out; |
| offset = iomap.offset + iomap.length; |
| if (!(iomap.flags & IOMAP_F_NEW)) |
| continue; |
| error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, |
| iomap.length >> inode->i_blkbits, |
| GFP_NOFS); |
| if (error) { |
| fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); |
| goto out; |
| } |
| } |
| out: |
| brelse(dibh); |
| return error; |
| } |
| |
| /** |
| * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of |
| * blocks, determine how many bytes can be written. |
| * @ip: The inode in question. |
| * @len: Max cap of bytes. What we return in *len must be <= this. |
| * @data_blocks: Compute and return the number of data blocks needed |
| * @ind_blocks: Compute and return the number of indirect blocks needed |
| * @max_blocks: The total blocks available to work with. |
| * |
| * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. |
| */ |
| static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, |
| unsigned int *data_blocks, unsigned int *ind_blocks, |
| unsigned int max_blocks) |
| { |
| loff_t max = *len; |
| const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); |
| unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); |
| |
| for (tmp = max_data; tmp > sdp->sd_diptrs;) { |
| tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); |
| max_data -= tmp; |
| } |
| |
| *data_blocks = max_data; |
| *ind_blocks = max_blocks - max_data; |
| *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; |
| if (*len > max) { |
| *len = max; |
| gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); |
| } |
| } |
| |
| static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) |
| { |
| struct inode *inode = file_inode(file); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_alloc_parms ap = { .aflags = 0, }; |
| unsigned int data_blocks = 0, ind_blocks = 0, rblocks; |
| loff_t bytes, max_bytes, max_blks; |
| int error; |
| const loff_t pos = offset; |
| const loff_t count = len; |
| loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); |
| loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; |
| loff_t max_chunk_size = UINT_MAX & bsize_mask; |
| |
| next = (next + 1) << sdp->sd_sb.sb_bsize_shift; |
| |
| offset &= bsize_mask; |
| |
| len = next - offset; |
| bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; |
| if (!bytes) |
| bytes = UINT_MAX; |
| bytes &= bsize_mask; |
| if (bytes == 0) |
| bytes = sdp->sd_sb.sb_bsize; |
| |
| gfs2_size_hint(file, offset, len); |
| |
| gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); |
| ap.min_target = data_blocks + ind_blocks; |
| |
| while (len > 0) { |
| if (len < bytes) |
| bytes = len; |
| if (!gfs2_write_alloc_required(ip, offset, bytes)) { |
| len -= bytes; |
| offset += bytes; |
| continue; |
| } |
| |
| /* We need to determine how many bytes we can actually |
| * fallocate without exceeding quota or going over the |
| * end of the fs. We start off optimistically by assuming |
| * we can write max_bytes */ |
| max_bytes = (len > max_chunk_size) ? max_chunk_size : len; |
| |
| /* Since max_bytes is most likely a theoretical max, we |
| * calculate a more realistic 'bytes' to serve as a good |
| * starting point for the number of bytes we may be able |
| * to write */ |
| gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); |
| ap.target = data_blocks + ind_blocks; |
| |
| error = gfs2_quota_lock_check(ip, &ap); |
| if (error) |
| return error; |
| /* ap.allowed tells us how many blocks quota will allow |
| * us to write. Check if this reduces max_blks */ |
| max_blks = UINT_MAX; |
| if (ap.allowed) |
| max_blks = ap.allowed; |
| |
| error = gfs2_inplace_reserve(ip, &ap); |
| if (error) |
| goto out_qunlock; |
| |
| /* check if the selected rgrp limits our max_blks further */ |
| if (ip->i_res.rs_reserved < max_blks) |
| max_blks = ip->i_res.rs_reserved; |
| |
| /* Almost done. Calculate bytes that can be written using |
| * max_blks. We also recompute max_bytes, data_blocks and |
| * ind_blocks */ |
| calc_max_reserv(ip, &max_bytes, &data_blocks, |
| &ind_blocks, max_blks); |
| |
| rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + |
| RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); |
| if (gfs2_is_jdata(ip)) |
| rblocks += data_blocks ? data_blocks : 1; |
| |
| error = gfs2_trans_begin(sdp, rblocks, |
| PAGE_SIZE >> inode->i_blkbits); |
| if (error) |
| goto out_trans_fail; |
| |
| error = fallocate_chunk(inode, offset, max_bytes, mode); |
| gfs2_trans_end(sdp); |
| |
| if (error) |
| goto out_trans_fail; |
| |
| len -= max_bytes; |
| offset += max_bytes; |
| gfs2_inplace_release(ip); |
| gfs2_quota_unlock(ip); |
| } |
| |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) |
| i_size_write(inode, pos + count); |
| file_update_time(file); |
| mark_inode_dirty(inode); |
| |
| if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) |
| return vfs_fsync_range(file, pos, pos + count - 1, |
| (file->f_flags & __O_SYNC) ? 0 : 1); |
| return 0; |
| |
| out_trans_fail: |
| gfs2_inplace_release(ip); |
| out_qunlock: |
| gfs2_quota_unlock(ip); |
| return error; |
| } |
| |
| static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) |
| { |
| struct inode *inode = file_inode(file); |
| struct gfs2_sbd *sdp = GFS2_SB(inode); |
| struct gfs2_inode *ip = GFS2_I(inode); |
| struct gfs2_holder gh; |
| int ret; |
| |
| if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) |
| return -EOPNOTSUPP; |
| /* fallocate is needed by gfs2_grow to reserve space in the rindex */ |
| if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) |
| return -EOPNOTSUPP; |
| |
| inode_lock(inode); |
| |
| gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); |
| ret = gfs2_glock_nq(&gh); |
| if (ret) |
| goto out_uninit; |
| |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| (offset + len) > inode->i_size) { |
| ret = inode_newsize_ok(inode, offset + len); |
| if (ret) |
| goto out_unlock; |
| } |
| |
| ret = get_write_access(inode); |
| if (ret) |
| goto out_unlock; |
| |
| if (mode & FALLOC_FL_PUNCH_HOLE) { |
| ret = __gfs2_punch_hole(file, offset, len); |
| } else { |
| ret = __gfs2_fallocate(file, mode, offset, len); |
| if (ret) |
| gfs2_rs_deltree(&ip->i_res); |
| } |
| |
| put_write_access(inode); |
| out_unlock: |
| gfs2_glock_dq(&gh); |
| out_uninit: |
| gfs2_holder_uninit(&gh); |
| inode_unlock(inode); |
| return ret; |
| } |
| |
| static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, |
| struct file *out, loff_t *ppos, |
| size_t len, unsigned int flags) |
| { |
| ssize_t ret; |
| |
| gfs2_size_hint(out, *ppos, len); |
| |
| ret = iter_file_splice_write(pipe, out, ppos, len, flags); |
| return ret; |
| } |
| |
| #ifdef CONFIG_GFS2_FS_LOCKING_DLM |
| |
| /** |
| * gfs2_lock - acquire/release a posix lock on a file |
| * @file: the file pointer |
| * @cmd: either modify or retrieve lock state, possibly wait |
| * @fl: type and range of lock |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) |
| { |
| struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); |
| struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| |
| if (!(fl->fl_flags & FL_POSIX)) |
| return -ENOLCK; |
| if (unlikely(gfs2_withdrawn(sdp))) { |
| if (fl->fl_type == F_UNLCK) |
| locks_lock_file_wait(file, fl); |
| return -EIO; |
| } |
| if (cmd == F_CANCELLK) |
| return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl); |
| else if (IS_GETLK(cmd)) |
| return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); |
| else if (fl->fl_type == F_UNLCK) |
| return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); |
| else |
| return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); |
| } |
| |
| static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh) |
| { |
| struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl); |
| |
| /* |
| * Make sure gfs2_glock_put() won't sleep under the file->f_lock |
| * spinlock. |
| */ |
| |
| spin_lock(&file->f_lock); |
| gfs2_holder_uninit(fl_gh); |
| spin_unlock(&file->f_lock); |
| gfs2_glock_put(gl); |
| } |
| |
| static int do_flock(struct file *file, int cmd, struct file_lock *fl) |
| { |
| struct gfs2_file *fp = file->private_data; |
| struct gfs2_holder *fl_gh = &fp->f_fl_gh; |
| struct gfs2_inode *ip = GFS2_I(file_inode(file)); |
| struct gfs2_glock *gl; |
| unsigned int state; |
| u16 flags; |
| int error = 0; |
| int sleeptime; |
| |
| state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; |
| flags = GL_EXACT | GL_NOPID; |
| if (!IS_SETLKW(cmd)) |
| flags |= LM_FLAG_TRY_1CB; |
| |
| mutex_lock(&fp->f_fl_mutex); |
| |
| if (gfs2_holder_initialized(fl_gh)) { |
| struct file_lock request; |
| if (fl_gh->gh_state == state) |
| goto out; |
| locks_init_lock(&request); |
| request.fl_type = F_UNLCK; |
| request.fl_flags = FL_FLOCK; |
| locks_lock_file_wait(file, &request); |
| gfs2_glock_dq(fl_gh); |
| gfs2_holder_reinit(state, flags, fl_gh); |
| } else { |
| error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, |
| &gfs2_flock_glops, CREATE, &gl); |
| if (error) |
| goto out; |
| spin_lock(&file->f_lock); |
| gfs2_holder_init(gl, state, flags, fl_gh); |
| spin_unlock(&file->f_lock); |
| gfs2_glock_put(gl); |
| } |
| for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { |
| error = gfs2_glock_nq(fl_gh); |
| if (error != GLR_TRYFAILED) |
| break; |
| fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB; |
| fl_gh->gh_flags |= LM_FLAG_TRY; |
| msleep(sleeptime); |
| } |
| if (error) { |
| __flock_holder_uninit(file, fl_gh); |
| if (error == GLR_TRYFAILED) |
| error = -EAGAIN; |
| } else { |
| error = locks_lock_file_wait(file, fl); |
| gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); |
| } |
| |
| out: |
| mutex_unlock(&fp->f_fl_mutex); |
| return error; |
| } |
| |
| static void do_unflock(struct file *file, struct file_lock *fl) |
| { |
| struct gfs2_file *fp = file->private_data; |
| struct gfs2_holder *fl_gh = &fp->f_fl_gh; |
| |
| mutex_lock(&fp->f_fl_mutex); |
| locks_lock_file_wait(file, fl); |
| if (gfs2_holder_initialized(fl_gh)) { |
| gfs2_glock_dq(fl_gh); |
| __flock_holder_uninit(file, fl_gh); |
| } |
| mutex_unlock(&fp->f_fl_mutex); |
| } |
| |
| /** |
| * gfs2_flock - acquire/release a flock lock on a file |
| * @file: the file pointer |
| * @cmd: either modify or retrieve lock state, possibly wait |
| * @fl: type and range of lock |
| * |
| * Returns: errno |
| */ |
| |
| static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) |
| { |
| if (!(fl->fl_flags & FL_FLOCK)) |
| return -ENOLCK; |
| |
| if (fl->fl_type == F_UNLCK) { |
| do_unflock(file, fl); |
| return 0; |
| } else { |
| return do_flock(file, cmd, fl); |
| } |
| } |
| |
| const struct file_operations gfs2_file_fops = { |
| .llseek = gfs2_llseek, |
| .read_iter = gfs2_file_read_iter, |
| .write_iter = gfs2_file_write_iter, |
| .iopoll = iocb_bio_iopoll, |
| .unlocked_ioctl = gfs2_ioctl, |
| .compat_ioctl = gfs2_compat_ioctl, |
| .mmap = gfs2_mmap, |
| .open = gfs2_open, |
| .release = gfs2_release, |
| .fsync = gfs2_fsync, |
| .lock = gfs2_lock, |
| .flock = gfs2_flock, |
| .splice_read = copy_splice_read, |
| .splice_write = gfs2_file_splice_write, |
| .setlease = simple_nosetlease, |
| .fallocate = gfs2_fallocate, |
| }; |
| |
| const struct file_operations gfs2_dir_fops = { |
| .iterate_shared = gfs2_readdir, |
| .unlocked_ioctl = gfs2_ioctl, |
| .compat_ioctl = gfs2_compat_ioctl, |
| .open = gfs2_open, |
| .release = gfs2_release, |
| .fsync = gfs2_fsync, |
| .lock = gfs2_lock, |
| .flock = gfs2_flock, |
| .llseek = default_llseek, |
| }; |
| |
| #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ |
| |
| const struct file_operations gfs2_file_fops_nolock = { |
| .llseek = gfs2_llseek, |
| .read_iter = gfs2_file_read_iter, |
| .write_iter = gfs2_file_write_iter, |
| .iopoll = iocb_bio_iopoll, |
| .unlocked_ioctl = gfs2_ioctl, |
| .compat_ioctl = gfs2_compat_ioctl, |
| .mmap = gfs2_mmap, |
| .open = gfs2_open, |
| .release = gfs2_release, |
| .fsync = gfs2_fsync, |
| .splice_read = copy_splice_read, |
| .splice_write = gfs2_file_splice_write, |
| .setlease = generic_setlease, |
| .fallocate = gfs2_fallocate, |
| }; |
| |
| const struct file_operations gfs2_dir_fops_nolock = { |
| .iterate_shared = gfs2_readdir, |
| .unlocked_ioctl = gfs2_ioctl, |
| .compat_ioctl = gfs2_compat_ioctl, |
| .open = gfs2_open, |
| .release = gfs2_release, |
| .fsync = gfs2_fsync, |
| .llseek = default_llseek, |
| }; |
| |