| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> |
| */ |
| /* |
| * This driver supports the sensor part of the first and second revision of |
| * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because |
| * of lack of specs the CPU/RAM voltage & frequency control is not supported! |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/jiffies.h> |
| #include <linux/mutex.h> |
| #include <linux/err.h> |
| #include <linux/delay.h> |
| #include <linux/platform_device.h> |
| #include <linux/hwmon.h> |
| #include <linux/hwmon-sysfs.h> |
| #include <linux/dmi.h> |
| #include <linux/io.h> |
| |
| /* Banks */ |
| #define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ |
| #define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ |
| #define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ |
| #define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ |
| /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ |
| #define ABIT_UGURU_MAX_BANK1_SENSORS 16 |
| /* |
| * Warning if you increase one of the 2 MAX defines below to 10 or higher you |
| * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! |
| */ |
| /* max nr of sensors in bank2, currently mb's with max 6 fans are known */ |
| #define ABIT_UGURU_MAX_BANK2_SENSORS 6 |
| /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ |
| #define ABIT_UGURU_MAX_PWMS 5 |
| /* uGuru sensor bank 1 flags */ /* Alarm if: */ |
| #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ |
| #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ |
| #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ |
| #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ |
| #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ |
| #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ |
| /* uGuru sensor bank 2 flags */ /* Alarm if: */ |
| #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ |
| /* uGuru sensor bank common flags */ |
| #define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ |
| #define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ |
| /* uGuru fan PWM (speed control) flags */ |
| #define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ |
| /* Values used for conversion */ |
| #define ABIT_UGURU_FAN_MAX 15300 /* RPM */ |
| /* Bank1 sensor types */ |
| #define ABIT_UGURU_IN_SENSOR 0 |
| #define ABIT_UGURU_TEMP_SENSOR 1 |
| #define ABIT_UGURU_NC 2 |
| /* |
| * In many cases we need to wait for the uGuru to reach a certain status, most |
| * of the time it will reach this status within 30 - 90 ISA reads, and thus we |
| * can best busy wait. This define gives the total amount of reads to try. |
| */ |
| #define ABIT_UGURU_WAIT_TIMEOUT 125 |
| /* |
| * However sometimes older versions of the uGuru seem to be distracted and they |
| * do not respond for a long time. To handle this we sleep before each of the |
| * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. |
| */ |
| #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5 |
| /* |
| * Normally all expected status in abituguru_ready, are reported after the |
| * first read, but sometimes not and we need to poll. |
| */ |
| #define ABIT_UGURU_READY_TIMEOUT 5 |
| /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ |
| #define ABIT_UGURU_MAX_RETRIES 3 |
| #define ABIT_UGURU_RETRY_DELAY (HZ/5) |
| /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ |
| #define ABIT_UGURU_MAX_TIMEOUTS 2 |
| /* utility macros */ |
| #define ABIT_UGURU_NAME "abituguru" |
| #define ABIT_UGURU_DEBUG(level, format, arg...) \ |
| do { \ |
| if (level <= verbose) \ |
| pr_debug(format , ## arg); \ |
| } while (0) |
| |
| /* Macros to help calculate the sysfs_names array length */ |
| /* |
| * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, |
| * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 |
| */ |
| #define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) |
| /* |
| * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, |
| * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 |
| */ |
| #define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) |
| /* |
| * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, |
| * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 |
| */ |
| #define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) |
| /* |
| * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, |
| * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 |
| */ |
| #define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) |
| /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ |
| #define ABITUGURU_SYSFS_NAMES_LENGTH ( \ |
| ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ |
| ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ |
| ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) |
| |
| /* |
| * All the macros below are named identical to the oguru and oguru2 programs |
| * reverse engineered by Olle Sandberg, hence the names might not be 100% |
| * logical. I could come up with better names, but I prefer keeping the names |
| * identical so that this driver can be compared with his work more easily. |
| */ |
| /* Two i/o-ports are used by uGuru */ |
| #define ABIT_UGURU_BASE 0x00E0 |
| /* Used to tell uGuru what to read and to read the actual data */ |
| #define ABIT_UGURU_CMD 0x00 |
| /* Mostly used to check if uGuru is busy */ |
| #define ABIT_UGURU_DATA 0x04 |
| #define ABIT_UGURU_REGION_LENGTH 5 |
| /* uGuru status' */ |
| #define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ |
| #define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ |
| #define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ |
| #define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ |
| |
| /* Constants */ |
| /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ |
| static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; |
| /* |
| * Min / Max allowed values for sensor2 (fan) alarm threshold, these values |
| * correspond to 300-3000 RPM |
| */ |
| static const u8 abituguru_bank2_min_threshold = 5; |
| static const u8 abituguru_bank2_max_threshold = 50; |
| /* |
| * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 |
| * are temperature trip points. |
| */ |
| static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; |
| /* |
| * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a |
| * special case the minimum allowed pwm% setting for this is 30% (77) on |
| * some MB's this special case is handled in the code! |
| */ |
| static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; |
| static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; |
| |
| |
| /* Insmod parameters */ |
| static bool force; |
| module_param(force, bool, 0); |
| MODULE_PARM_DESC(force, "Set to one to force detection."); |
| static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; |
| module_param_array(bank1_types, int, NULL, 0); |
| MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" |
| " -1 autodetect\n" |
| " 0 volt sensor\n" |
| " 1 temp sensor\n" |
| " 2 not connected"); |
| static int fan_sensors; |
| module_param(fan_sensors, int, 0); |
| MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " |
| "(0 = autodetect)"); |
| static int pwms; |
| module_param(pwms, int, 0); |
| MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " |
| "(0 = autodetect)"); |
| |
| /* Default verbose is 2, since this driver is still in the testing phase */ |
| static int verbose = 2; |
| module_param(verbose, int, 0644); |
| MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" |
| " 0 normal output\n" |
| " 1 + verbose error reporting\n" |
| " 2 + sensors type probing info\n" |
| " 3 + retryable error reporting"); |
| |
| |
| /* |
| * For the Abit uGuru, we need to keep some data in memory. |
| * The structure is dynamically allocated, at the same time when a new |
| * abituguru device is allocated. |
| */ |
| struct abituguru_data { |
| struct device *hwmon_dev; /* hwmon registered device */ |
| struct mutex update_lock; /* protect access to data and uGuru */ |
| unsigned long last_updated; /* In jiffies */ |
| unsigned short addr; /* uguru base address */ |
| char uguru_ready; /* is the uguru in ready state? */ |
| unsigned char update_timeouts; /* |
| * number of update timeouts since last |
| * successful update |
| */ |
| |
| /* |
| * The sysfs attr and their names are generated automatically, for bank1 |
| * we cannot use a predefined array because we don't know beforehand |
| * of a sensor is a volt or a temp sensor, for bank2 and the pwms its |
| * easier todo things the same way. For in sensors we have 9 (temp 7) |
| * sysfs entries per sensor, for bank2 and pwms 6. |
| */ |
| struct sensor_device_attribute_2 sysfs_attr[ |
| ABIT_UGURU_MAX_BANK1_SENSORS * 9 + |
| ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; |
| /* Buffer to store the dynamically generated sysfs names */ |
| char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; |
| |
| /* Bank 1 data */ |
| /* number of and addresses of [0] in, [1] temp sensors */ |
| u8 bank1_sensors[2]; |
| u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; |
| u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; |
| /* |
| * This array holds 3 entries per sensor for the bank 1 sensor settings |
| * (flags, min, max for voltage / flags, warn, shutdown for temp). |
| */ |
| u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; |
| /* |
| * Maximum value for each sensor used for scaling in mV/millidegrees |
| * Celsius. |
| */ |
| int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; |
| |
| /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ |
| u8 bank2_sensors; /* actual number of bank2 sensors found */ |
| u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; |
| u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ |
| |
| /* Alarms 2 bytes for bank1, 1 byte for bank2 */ |
| u8 alarms[3]; |
| |
| /* Fan PWM (speed control) 5 bytes per PWM */ |
| u8 pwms; /* actual number of pwms found */ |
| u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; |
| }; |
| |
| static const char *never_happen = "This should never happen."; |
| static const char *report_this = |
| "Please report this to the abituguru maintainer (see MAINTAINERS)"; |
| |
| /* wait till the uguru is in the specified state */ |
| static int abituguru_wait(struct abituguru_data *data, u8 state) |
| { |
| int timeout = ABIT_UGURU_WAIT_TIMEOUT; |
| |
| while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { |
| timeout--; |
| if (timeout == 0) |
| return -EBUSY; |
| /* |
| * sleep a bit before our last few tries, see the comment on |
| * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. |
| */ |
| if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) |
| msleep(0); |
| } |
| return 0; |
| } |
| |
| /* Put the uguru in ready for input state */ |
| static int abituguru_ready(struct abituguru_data *data) |
| { |
| int timeout = ABIT_UGURU_READY_TIMEOUT; |
| |
| if (data->uguru_ready) |
| return 0; |
| |
| /* Reset? / Prepare for next read/write cycle */ |
| outb(0x00, data->addr + ABIT_UGURU_DATA); |
| |
| /* Wait till the uguru is ready */ |
| if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { |
| ABIT_UGURU_DEBUG(1, |
| "timeout exceeded waiting for ready state\n"); |
| return -EIO; |
| } |
| |
| /* Cmd port MUST be read now and should contain 0xAC */ |
| while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { |
| timeout--; |
| if (timeout == 0) { |
| ABIT_UGURU_DEBUG(1, |
| "CMD reg does not hold 0xAC after ready command\n"); |
| return -EIO; |
| } |
| msleep(0); |
| } |
| |
| /* |
| * After this the ABIT_UGURU_DATA port should contain |
| * ABIT_UGURU_STATUS_INPUT |
| */ |
| timeout = ABIT_UGURU_READY_TIMEOUT; |
| while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { |
| timeout--; |
| if (timeout == 0) { |
| ABIT_UGURU_DEBUG(1, |
| "state != more input after ready command\n"); |
| return -EIO; |
| } |
| msleep(0); |
| } |
| |
| data->uguru_ready = 1; |
| return 0; |
| } |
| |
| /* |
| * Send the bank and then sensor address to the uGuru for the next read/write |
| * cycle. This function gets called as the first part of a read/write by |
| * abituguru_read and abituguru_write. This function should never be |
| * called by any other function. |
| */ |
| static int abituguru_send_address(struct abituguru_data *data, |
| u8 bank_addr, u8 sensor_addr, int retries) |
| { |
| /* |
| * assume the caller does error handling itself if it has not requested |
| * any retries, and thus be quiet. |
| */ |
| int report_errors = retries; |
| |
| for (;;) { |
| /* |
| * Make sure the uguru is ready and then send the bank address, |
| * after this the uguru is no longer "ready". |
| */ |
| if (abituguru_ready(data) != 0) |
| return -EIO; |
| outb(bank_addr, data->addr + ABIT_UGURU_DATA); |
| data->uguru_ready = 0; |
| |
| /* |
| * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again |
| * and send the sensor addr |
| */ |
| if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { |
| if (retries) { |
| ABIT_UGURU_DEBUG(3, "timeout exceeded " |
| "waiting for more input state, %d " |
| "tries remaining\n", retries); |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(ABIT_UGURU_RETRY_DELAY); |
| retries--; |
| continue; |
| } |
| if (report_errors) |
| ABIT_UGURU_DEBUG(1, "timeout exceeded " |
| "waiting for more input state " |
| "(bank: %d)\n", (int)bank_addr); |
| return -EBUSY; |
| } |
| outb(sensor_addr, data->addr + ABIT_UGURU_CMD); |
| return 0; |
| } |
| } |
| |
| /* |
| * Read count bytes from sensor sensor_addr in bank bank_addr and store the |
| * result in buf, retry the send address part of the read retries times. |
| */ |
| static int abituguru_read(struct abituguru_data *data, |
| u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) |
| { |
| int i; |
| |
| /* Send the address */ |
| i = abituguru_send_address(data, bank_addr, sensor_addr, retries); |
| if (i) |
| return i; |
| |
| /* And read the data */ |
| for (i = 0; i < count; i++) { |
| if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { |
| ABIT_UGURU_DEBUG(retries ? 1 : 3, |
| "timeout exceeded waiting for " |
| "read state (bank: %d, sensor: %d)\n", |
| (int)bank_addr, (int)sensor_addr); |
| break; |
| } |
| buf[i] = inb(data->addr + ABIT_UGURU_CMD); |
| } |
| |
| /* Last put the chip back in ready state */ |
| abituguru_ready(data); |
| |
| return i; |
| } |
| |
| /* |
| * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send |
| * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. |
| */ |
| static int abituguru_write(struct abituguru_data *data, |
| u8 bank_addr, u8 sensor_addr, u8 *buf, int count) |
| { |
| /* |
| * We use the ready timeout as we have to wait for 0xAC just like the |
| * ready function |
| */ |
| int i, timeout = ABIT_UGURU_READY_TIMEOUT; |
| |
| /* Send the address */ |
| i = abituguru_send_address(data, bank_addr, sensor_addr, |
| ABIT_UGURU_MAX_RETRIES); |
| if (i) |
| return i; |
| |
| /* And write the data */ |
| for (i = 0; i < count; i++) { |
| if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { |
| ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " |
| "write state (bank: %d, sensor: %d)\n", |
| (int)bank_addr, (int)sensor_addr); |
| break; |
| } |
| outb(buf[i], data->addr + ABIT_UGURU_CMD); |
| } |
| |
| /* |
| * Now we need to wait till the chip is ready to be read again, |
| * so that we can read 0xAC as confirmation that our write has |
| * succeeded. |
| */ |
| if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { |
| ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " |
| "after write (bank: %d, sensor: %d)\n", (int)bank_addr, |
| (int)sensor_addr); |
| return -EIO; |
| } |
| |
| /* Cmd port MUST be read now and should contain 0xAC */ |
| while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { |
| timeout--; |
| if (timeout == 0) { |
| ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " |
| "write (bank: %d, sensor: %d)\n", |
| (int)bank_addr, (int)sensor_addr); |
| return -EIO; |
| } |
| msleep(0); |
| } |
| |
| /* Last put the chip back in ready state */ |
| abituguru_ready(data); |
| |
| return i; |
| } |
| |
| /* |
| * Detect sensor type. Temp and Volt sensors are enabled with |
| * different masks and will ignore enable masks not meant for them. |
| * This enables us to test what kind of sensor we're dealing with. |
| * By setting the alarm thresholds so that we will always get an |
| * alarm for sensor type X and then enabling the sensor as sensor type |
| * X, if we then get an alarm it is a sensor of type X. |
| */ |
| static int |
| abituguru_detect_bank1_sensor_type(struct abituguru_data *data, |
| u8 sensor_addr) |
| { |
| u8 val, test_flag, buf[3]; |
| int i, ret = -ENODEV; /* error is the most common used retval :| */ |
| |
| /* If overriden by the user return the user selected type */ |
| if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && |
| bank1_types[sensor_addr] <= ABIT_UGURU_NC) { |
| ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " |
| "%d because of \"bank1_types\" module param\n", |
| bank1_types[sensor_addr], (int)sensor_addr); |
| return bank1_types[sensor_addr]; |
| } |
| |
| /* First read the sensor and the current settings */ |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, |
| 1, ABIT_UGURU_MAX_RETRIES) != 1) |
| return -ENODEV; |
| |
| /* Test val is sane / usable for sensor type detection. */ |
| if ((val < 10u) || (val > 250u)) { |
| pr_warn("bank1-sensor: %d reading (%d) too close to limits, " |
| "unable to determine sensor type, skipping sensor\n", |
| (int)sensor_addr, (int)val); |
| /* |
| * assume no sensor is there for sensors for which we can't |
| * determine the sensor type because their reading is too close |
| * to their limits, this usually means no sensor is there. |
| */ |
| return ABIT_UGURU_NC; |
| } |
| |
| ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); |
| /* |
| * Volt sensor test, enable volt low alarm, set min value ridiculously |
| * high, or vica versa if the reading is very high. If its a volt |
| * sensor this should always give us an alarm. |
| */ |
| if (val <= 240u) { |
| buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; |
| buf[1] = 245; |
| buf[2] = 250; |
| test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; |
| } else { |
| buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; |
| buf[1] = 5; |
| buf[2] = 10; |
| test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; |
| } |
| |
| if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, |
| buf, 3) != 3) |
| goto abituguru_detect_bank1_sensor_type_exit; |
| /* |
| * Now we need 20 ms to give the uguru time to read the sensors |
| * and raise a voltage alarm |
| */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(HZ/50); |
| /* Check for alarm and check the alarm is a volt low alarm. */ |
| if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, |
| ABIT_UGURU_MAX_RETRIES) != 3) |
| goto abituguru_detect_bank1_sensor_type_exit; |
| if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, |
| sensor_addr, buf, 3, |
| ABIT_UGURU_MAX_RETRIES) != 3) |
| goto abituguru_detect_bank1_sensor_type_exit; |
| if (buf[0] & test_flag) { |
| ABIT_UGURU_DEBUG(2, " found volt sensor\n"); |
| ret = ABIT_UGURU_IN_SENSOR; |
| goto abituguru_detect_bank1_sensor_type_exit; |
| } else |
| ABIT_UGURU_DEBUG(2, " alarm raised during volt " |
| "sensor test, but volt range flag not set\n"); |
| } else |
| ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " |
| "test\n"); |
| |
| /* |
| * Temp sensor test, enable sensor as a temp sensor, set beep value |
| * ridiculously low (but not too low, otherwise uguru ignores it). |
| * If its a temp sensor this should always give us an alarm. |
| */ |
| buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; |
| buf[1] = 5; |
| buf[2] = 10; |
| if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, |
| buf, 3) != 3) |
| goto abituguru_detect_bank1_sensor_type_exit; |
| /* |
| * Now we need 50 ms to give the uguru time to read the sensors |
| * and raise a temp alarm |
| */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(HZ/20); |
| /* Check for alarm and check the alarm is a temp high alarm. */ |
| if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, |
| ABIT_UGURU_MAX_RETRIES) != 3) |
| goto abituguru_detect_bank1_sensor_type_exit; |
| if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, |
| sensor_addr, buf, 3, |
| ABIT_UGURU_MAX_RETRIES) != 3) |
| goto abituguru_detect_bank1_sensor_type_exit; |
| if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { |
| ABIT_UGURU_DEBUG(2, " found temp sensor\n"); |
| ret = ABIT_UGURU_TEMP_SENSOR; |
| goto abituguru_detect_bank1_sensor_type_exit; |
| } else |
| ABIT_UGURU_DEBUG(2, " alarm raised during temp " |
| "sensor test, but temp high flag not set\n"); |
| } else |
| ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " |
| "test\n"); |
| |
| ret = ABIT_UGURU_NC; |
| abituguru_detect_bank1_sensor_type_exit: |
| /* |
| * Restore original settings, failing here is really BAD, it has been |
| * reported that some BIOS-es hang when entering the uGuru menu with |
| * invalid settings present in the uGuru, so we try this 3 times. |
| */ |
| for (i = 0; i < 3; i++) |
| if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, |
| sensor_addr, data->bank1_settings[sensor_addr], |
| 3) == 3) |
| break; |
| if (i == 3) { |
| pr_err("Fatal error could not restore original settings. %s %s\n", |
| never_happen, report_this); |
| return -ENODEV; |
| } |
| return ret; |
| } |
| |
| /* |
| * These functions try to find out how many sensors there are in bank2 and how |
| * many pwms there are. The purpose of this is to make sure that we don't give |
| * the user the possibility to change settings for non-existent sensors / pwm. |
| * The uGuru will happily read / write whatever memory happens to be after the |
| * memory storing the PWM settings when reading/writing to a PWM which is not |
| * there. Notice even if we detect a PWM which doesn't exist we normally won't |
| * write to it, unless the user tries to change the settings. |
| * |
| * Although the uGuru allows reading (settings) from non existing bank2 |
| * sensors, my version of the uGuru does seem to stop writing to them, the |
| * write function above aborts in this case with: |
| * "CMD reg does not hold 0xAC after write" |
| * |
| * Notice these 2 tests are non destructive iow read-only tests, otherwise |
| * they would defeat their purpose. Although for the bank2_sensors detection a |
| * read/write test would be feasible because of the reaction above, I've |
| * however opted to stay on the safe side. |
| */ |
| static void |
| abituguru_detect_no_bank2_sensors(struct abituguru_data *data) |
| { |
| int i; |
| |
| if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { |
| data->bank2_sensors = fan_sensors; |
| ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " |
| "\"fan_sensors\" module param\n", |
| (int)data->bank2_sensors); |
| return; |
| } |
| |
| ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); |
| for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { |
| /* |
| * 0x89 are the known used bits: |
| * -0x80 enable shutdown |
| * -0x08 enable beep |
| * -0x01 enable alarm |
| * All other bits should be 0, but on some motherboards |
| * 0x40 (bit 6) is also high for some of the fans?? |
| */ |
| if (data->bank2_settings[i][0] & ~0xC9) { |
| ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " |
| "to be a fan sensor: settings[0] = %02X\n", |
| i, (unsigned int)data->bank2_settings[i][0]); |
| break; |
| } |
| |
| /* check if the threshold is within the allowed range */ |
| if (data->bank2_settings[i][1] < |
| abituguru_bank2_min_threshold) { |
| ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " |
| "to be a fan sensor: the threshold (%d) is " |
| "below the minimum (%d)\n", i, |
| (int)data->bank2_settings[i][1], |
| (int)abituguru_bank2_min_threshold); |
| break; |
| } |
| if (data->bank2_settings[i][1] > |
| abituguru_bank2_max_threshold) { |
| ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " |
| "to be a fan sensor: the threshold (%d) is " |
| "above the maximum (%d)\n", i, |
| (int)data->bank2_settings[i][1], |
| (int)abituguru_bank2_max_threshold); |
| break; |
| } |
| } |
| |
| data->bank2_sensors = i; |
| ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", |
| (int)data->bank2_sensors); |
| } |
| |
| static void |
| abituguru_detect_no_pwms(struct abituguru_data *data) |
| { |
| int i, j; |
| |
| if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { |
| data->pwms = pwms; |
| ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " |
| "\"pwms\" module param\n", (int)data->pwms); |
| return; |
| } |
| |
| ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); |
| for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { |
| /* |
| * 0x80 is the enable bit and the low |
| * nibble is which temp sensor to use, |
| * the other bits should be 0 |
| */ |
| if (data->pwm_settings[i][0] & ~0x8F) { |
| ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " |
| "to be a pwm channel: settings[0] = %02X\n", |
| i, (unsigned int)data->pwm_settings[i][0]); |
| break; |
| } |
| |
| /* |
| * the low nibble must correspond to one of the temp sensors |
| * we've found |
| */ |
| for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; |
| j++) { |
| if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == |
| (data->pwm_settings[i][0] & 0x0F)) |
| break; |
| } |
| if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { |
| ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " |
| "to be a pwm channel: %d is not a valid temp " |
| "sensor address\n", i, |
| data->pwm_settings[i][0] & 0x0F); |
| break; |
| } |
| |
| /* check if all other settings are within the allowed range */ |
| for (j = 1; j < 5; j++) { |
| u8 min; |
| /* special case pwm1 min pwm% */ |
| if ((i == 0) && ((j == 1) || (j == 2))) |
| min = 77; |
| else |
| min = abituguru_pwm_min[j]; |
| if (data->pwm_settings[i][j] < min) { |
| ABIT_UGURU_DEBUG(2, " pwm channel %d does " |
| "not seem to be a pwm channel: " |
| "setting %d (%d) is below the minimum " |
| "value (%d)\n", i, j, |
| (int)data->pwm_settings[i][j], |
| (int)min); |
| goto abituguru_detect_no_pwms_exit; |
| } |
| if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { |
| ABIT_UGURU_DEBUG(2, " pwm channel %d does " |
| "not seem to be a pwm channel: " |
| "setting %d (%d) is above the maximum " |
| "value (%d)\n", i, j, |
| (int)data->pwm_settings[i][j], |
| (int)abituguru_pwm_max[j]); |
| goto abituguru_detect_no_pwms_exit; |
| } |
| } |
| |
| /* check that min temp < max temp and min pwm < max pwm */ |
| if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { |
| ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " |
| "to be a pwm channel: min pwm (%d) >= " |
| "max pwm (%d)\n", i, |
| (int)data->pwm_settings[i][1], |
| (int)data->pwm_settings[i][2]); |
| break; |
| } |
| if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { |
| ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " |
| "to be a pwm channel: min temp (%d) >= " |
| "max temp (%d)\n", i, |
| (int)data->pwm_settings[i][3], |
| (int)data->pwm_settings[i][4]); |
| break; |
| } |
| } |
| |
| abituguru_detect_no_pwms_exit: |
| data->pwms = i; |
| ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); |
| } |
| |
| /* |
| * Following are the sysfs callback functions. These functions expect: |
| * sensor_device_attribute_2->index: sensor address/offset in the bank |
| * sensor_device_attribute_2->nr: register offset, bitmask or NA. |
| */ |
| static struct abituguru_data *abituguru_update_device(struct device *dev); |
| |
| static ssize_t show_bank1_value(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = abituguru_update_device(dev); |
| if (!data) |
| return -EIO; |
| return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * |
| data->bank1_max_value[attr->index] + 128) / 255); |
| } |
| |
| static ssize_t show_bank1_setting(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| return sprintf(buf, "%d\n", |
| (data->bank1_settings[attr->index][attr->nr] * |
| data->bank1_max_value[attr->index] + 128) / 255); |
| } |
| |
| static ssize_t show_bank2_value(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = abituguru_update_device(dev); |
| if (!data) |
| return -EIO; |
| return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * |
| ABIT_UGURU_FAN_MAX + 128) / 255); |
| } |
| |
| static ssize_t show_bank2_setting(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| return sprintf(buf, "%d\n", |
| (data->bank2_settings[attr->index][attr->nr] * |
| ABIT_UGURU_FAN_MAX + 128) / 255); |
| } |
| |
| static ssize_t store_bank1_setting(struct device *dev, struct device_attribute |
| *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| unsigned long val; |
| ssize_t ret; |
| |
| ret = kstrtoul(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| ret = count; |
| val = (val * 255 + data->bank1_max_value[attr->index] / 2) / |
| data->bank1_max_value[attr->index]; |
| if (val > 255) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| if (data->bank1_settings[attr->index][attr->nr] != val) { |
| u8 orig_val = data->bank1_settings[attr->index][attr->nr]; |
| data->bank1_settings[attr->index][attr->nr] = val; |
| if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, |
| attr->index, data->bank1_settings[attr->index], |
| 3) <= attr->nr) { |
| data->bank1_settings[attr->index][attr->nr] = orig_val; |
| ret = -EIO; |
| } |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static ssize_t store_bank2_setting(struct device *dev, struct device_attribute |
| *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| unsigned long val; |
| ssize_t ret; |
| |
| ret = kstrtoul(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| ret = count; |
| val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; |
| |
| /* this check can be done before taking the lock */ |
| if (val < abituguru_bank2_min_threshold || |
| val > abituguru_bank2_max_threshold) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| if (data->bank2_settings[attr->index][attr->nr] != val) { |
| u8 orig_val = data->bank2_settings[attr->index][attr->nr]; |
| data->bank2_settings[attr->index][attr->nr] = val; |
| if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, |
| attr->index, data->bank2_settings[attr->index], |
| 2) <= attr->nr) { |
| data->bank2_settings[attr->index][attr->nr] = orig_val; |
| ret = -EIO; |
| } |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static ssize_t show_bank1_alarm(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = abituguru_update_device(dev); |
| if (!data) |
| return -EIO; |
| /* |
| * See if the alarm bit for this sensor is set, and if the |
| * alarm matches the type of alarm we're looking for (for volt |
| * it can be either low or high). The type is stored in a few |
| * readonly bits in the settings part of the relevant sensor. |
| * The bitmask of the type is passed to us in attr->nr. |
| */ |
| if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && |
| (data->bank1_settings[attr->index][0] & attr->nr)) |
| return sprintf(buf, "1\n"); |
| else |
| return sprintf(buf, "0\n"); |
| } |
| |
| static ssize_t show_bank2_alarm(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = abituguru_update_device(dev); |
| if (!data) |
| return -EIO; |
| if (data->alarms[2] & (0x01 << attr->index)) |
| return sprintf(buf, "1\n"); |
| else |
| return sprintf(buf, "0\n"); |
| } |
| |
| static ssize_t show_bank1_mask(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| if (data->bank1_settings[attr->index][0] & attr->nr) |
| return sprintf(buf, "1\n"); |
| else |
| return sprintf(buf, "0\n"); |
| } |
| |
| static ssize_t show_bank2_mask(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| if (data->bank2_settings[attr->index][0] & attr->nr) |
| return sprintf(buf, "1\n"); |
| else |
| return sprintf(buf, "0\n"); |
| } |
| |
| static ssize_t store_bank1_mask(struct device *dev, |
| struct device_attribute *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| ssize_t ret; |
| u8 orig_val; |
| unsigned long mask; |
| |
| ret = kstrtoul(buf, 10, &mask); |
| if (ret) |
| return ret; |
| |
| ret = count; |
| mutex_lock(&data->update_lock); |
| orig_val = data->bank1_settings[attr->index][0]; |
| |
| if (mask) |
| data->bank1_settings[attr->index][0] |= attr->nr; |
| else |
| data->bank1_settings[attr->index][0] &= ~attr->nr; |
| |
| if ((data->bank1_settings[attr->index][0] != orig_val) && |
| (abituguru_write(data, |
| ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, |
| data->bank1_settings[attr->index], 3) < 1)) { |
| data->bank1_settings[attr->index][0] = orig_val; |
| ret = -EIO; |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static ssize_t store_bank2_mask(struct device *dev, |
| struct device_attribute *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| ssize_t ret; |
| u8 orig_val; |
| unsigned long mask; |
| |
| ret = kstrtoul(buf, 10, &mask); |
| if (ret) |
| return ret; |
| |
| ret = count; |
| mutex_lock(&data->update_lock); |
| orig_val = data->bank2_settings[attr->index][0]; |
| |
| if (mask) |
| data->bank2_settings[attr->index][0] |= attr->nr; |
| else |
| data->bank2_settings[attr->index][0] &= ~attr->nr; |
| |
| if ((data->bank2_settings[attr->index][0] != orig_val) && |
| (abituguru_write(data, |
| ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, |
| data->bank2_settings[attr->index], 2) < 1)) { |
| data->bank2_settings[attr->index][0] = orig_val; |
| ret = -EIO; |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| /* Fan PWM (speed control) */ |
| static ssize_t show_pwm_setting(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * |
| abituguru_pwm_settings_multiplier[attr->nr]); |
| } |
| |
| static ssize_t store_pwm_setting(struct device *dev, struct device_attribute |
| *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| u8 min; |
| unsigned long val; |
| ssize_t ret; |
| |
| ret = kstrtoul(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| ret = count; |
| val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / |
| abituguru_pwm_settings_multiplier[attr->nr]; |
| |
| /* special case pwm1 min pwm% */ |
| if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) |
| min = 77; |
| else |
| min = abituguru_pwm_min[attr->nr]; |
| |
| /* this check can be done before taking the lock */ |
| if (val < min || val > abituguru_pwm_max[attr->nr]) |
| return -EINVAL; |
| |
| mutex_lock(&data->update_lock); |
| /* this check needs to be done after taking the lock */ |
| if ((attr->nr & 1) && |
| (val >= data->pwm_settings[attr->index][attr->nr + 1])) |
| ret = -EINVAL; |
| else if (!(attr->nr & 1) && |
| (val <= data->pwm_settings[attr->index][attr->nr - 1])) |
| ret = -EINVAL; |
| else if (data->pwm_settings[attr->index][attr->nr] != val) { |
| u8 orig_val = data->pwm_settings[attr->index][attr->nr]; |
| data->pwm_settings[attr->index][attr->nr] = val; |
| if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, |
| attr->index, data->pwm_settings[attr->index], |
| 5) <= attr->nr) { |
| data->pwm_settings[attr->index][attr->nr] = |
| orig_val; |
| ret = -EIO; |
| } |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static ssize_t show_pwm_sensor(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| int i; |
| /* |
| * We need to walk to the temp sensor addresses to find what |
| * the userspace id of the configured temp sensor is. |
| */ |
| for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) |
| if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == |
| (data->pwm_settings[attr->index][0] & 0x0F)) |
| return sprintf(buf, "%d\n", i+1); |
| |
| return -ENXIO; |
| } |
| |
| static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute |
| *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| ssize_t ret; |
| unsigned long val; |
| u8 orig_val; |
| u8 address; |
| |
| ret = kstrtoul(buf, 10, &val); |
| if (ret) |
| return ret; |
| |
| if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) |
| return -EINVAL; |
| |
| val -= 1; |
| ret = count; |
| mutex_lock(&data->update_lock); |
| orig_val = data->pwm_settings[attr->index][0]; |
| address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; |
| data->pwm_settings[attr->index][0] &= 0xF0; |
| data->pwm_settings[attr->index][0] |= address; |
| if (data->pwm_settings[attr->index][0] != orig_val) { |
| if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, |
| data->pwm_settings[attr->index], 5) < 1) { |
| data->pwm_settings[attr->index][0] = orig_val; |
| ret = -EIO; |
| } |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static ssize_t show_pwm_enable(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| int res = 0; |
| if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) |
| res = 2; |
| return sprintf(buf, "%d\n", res); |
| } |
| |
| static ssize_t store_pwm_enable(struct device *dev, struct device_attribute |
| *devattr, const char *buf, size_t count) |
| { |
| struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| u8 orig_val; |
| ssize_t ret; |
| unsigned long user_val; |
| |
| ret = kstrtoul(buf, 10, &user_val); |
| if (ret) |
| return ret; |
| |
| ret = count; |
| mutex_lock(&data->update_lock); |
| orig_val = data->pwm_settings[attr->index][0]; |
| switch (user_val) { |
| case 0: |
| data->pwm_settings[attr->index][0] &= |
| ~ABIT_UGURU_FAN_PWM_ENABLE; |
| break; |
| case 2: |
| data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| if ((data->pwm_settings[attr->index][0] != orig_val) && |
| (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, |
| attr->index, data->pwm_settings[attr->index], |
| 5) < 1)) { |
| data->pwm_settings[attr->index][0] = orig_val; |
| ret = -EIO; |
| } |
| mutex_unlock(&data->update_lock); |
| return ret; |
| } |
| |
| static ssize_t show_name(struct device *dev, |
| struct device_attribute *devattr, char *buf) |
| { |
| return sprintf(buf, "%s\n", ABIT_UGURU_NAME); |
| } |
| |
| /* Sysfs attr templates, the real entries are generated automatically. */ |
| static const |
| struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { |
| { |
| SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), |
| SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, |
| store_bank1_setting, 1, 0), |
| SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, |
| ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), |
| SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, |
| store_bank1_setting, 2, 0), |
| SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, |
| ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), |
| SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), |
| SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), |
| SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), |
| SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), |
| }, { |
| SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), |
| SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, |
| ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), |
| SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, |
| store_bank1_setting, 1, 0), |
| SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, |
| store_bank1_setting, 2, 0), |
| SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), |
| SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), |
| SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, |
| store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), |
| } |
| }; |
| |
| static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { |
| SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), |
| SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), |
| SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, |
| store_bank2_setting, 1, 0), |
| SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, |
| store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), |
| SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, |
| store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), |
| SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, |
| store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), |
| }; |
| |
| static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { |
| SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, |
| store_pwm_enable, 0, 0), |
| SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, |
| store_pwm_sensor, 0, 0), |
| SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, |
| store_pwm_setting, 1, 0), |
| SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, |
| store_pwm_setting, 2, 0), |
| SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, |
| store_pwm_setting, 3, 0), |
| SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, |
| store_pwm_setting, 4, 0), |
| }; |
| |
| static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { |
| SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), |
| }; |
| |
| static int abituguru_probe(struct platform_device *pdev) |
| { |
| struct abituguru_data *data; |
| int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; |
| char *sysfs_filename; |
| |
| /* |
| * El weirdo probe order, to keep the sysfs order identical to the |
| * BIOS and window-appliction listing order. |
| */ |
| static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { |
| 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, |
| 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; |
| |
| data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data), |
| GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; |
| mutex_init(&data->update_lock); |
| platform_set_drvdata(pdev, data); |
| |
| /* See if the uGuru is ready */ |
| if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) |
| data->uguru_ready = 1; |
| |
| /* |
| * Completely read the uGuru this has 2 purposes: |
| * - testread / see if one really is there. |
| * - make an in memory copy of all the uguru settings for future use. |
| */ |
| if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, |
| data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) |
| goto abituguru_probe_error; |
| |
| for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, |
| &data->bank1_value[i], 1, |
| ABIT_UGURU_MAX_RETRIES) != 1) |
| goto abituguru_probe_error; |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, |
| data->bank1_settings[i], 3, |
| ABIT_UGURU_MAX_RETRIES) != 3) |
| goto abituguru_probe_error; |
| } |
| /* |
| * Note: We don't know how many bank2 sensors / pwms there really are, |
| * but in order to "detect" this we need to read the maximum amount |
| * anyways. If we read sensors/pwms not there we'll just read crap |
| * this can't hurt. We need the detection because we don't want |
| * unwanted writes, which will hurt! |
| */ |
| for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, |
| &data->bank2_value[i], 1, |
| ABIT_UGURU_MAX_RETRIES) != 1) |
| goto abituguru_probe_error; |
| if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, |
| data->bank2_settings[i], 2, |
| ABIT_UGURU_MAX_RETRIES) != 2) |
| goto abituguru_probe_error; |
| } |
| for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { |
| if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, |
| data->pwm_settings[i], 5, |
| ABIT_UGURU_MAX_RETRIES) != 5) |
| goto abituguru_probe_error; |
| } |
| data->last_updated = jiffies; |
| |
| /* Detect sensor types and fill the sysfs attr for bank1 */ |
| sysfs_attr_i = 0; |
| sysfs_filename = data->sysfs_names; |
| sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; |
| for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { |
| res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); |
| if (res < 0) |
| goto abituguru_probe_error; |
| if (res == ABIT_UGURU_NC) |
| continue; |
| |
| /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ |
| for (j = 0; j < (res ? 7 : 9); j++) { |
| used = snprintf(sysfs_filename, sysfs_names_free, |
| abituguru_sysfs_bank1_templ[res][j].dev_attr. |
| attr.name, data->bank1_sensors[res] + res) |
| + 1; |
| data->sysfs_attr[sysfs_attr_i] = |
| abituguru_sysfs_bank1_templ[res][j]; |
| data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = |
| sysfs_filename; |
| data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; |
| sysfs_filename += used; |
| sysfs_names_free -= used; |
| sysfs_attr_i++; |
| } |
| data->bank1_max_value[probe_order[i]] = |
| abituguru_bank1_max_value[res]; |
| data->bank1_address[res][data->bank1_sensors[res]] = |
| probe_order[i]; |
| data->bank1_sensors[res]++; |
| } |
| /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ |
| abituguru_detect_no_bank2_sensors(data); |
| for (i = 0; i < data->bank2_sensors; i++) { |
| for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { |
| used = snprintf(sysfs_filename, sysfs_names_free, |
| abituguru_sysfs_fan_templ[j].dev_attr.attr.name, |
| i + 1) + 1; |
| data->sysfs_attr[sysfs_attr_i] = |
| abituguru_sysfs_fan_templ[j]; |
| data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = |
| sysfs_filename; |
| data->sysfs_attr[sysfs_attr_i].index = i; |
| sysfs_filename += used; |
| sysfs_names_free -= used; |
| sysfs_attr_i++; |
| } |
| } |
| /* Detect number of sensors and fill the sysfs attr for pwms */ |
| abituguru_detect_no_pwms(data); |
| for (i = 0; i < data->pwms; i++) { |
| for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { |
| used = snprintf(sysfs_filename, sysfs_names_free, |
| abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, |
| i + 1) + 1; |
| data->sysfs_attr[sysfs_attr_i] = |
| abituguru_sysfs_pwm_templ[j]; |
| data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = |
| sysfs_filename; |
| data->sysfs_attr[sysfs_attr_i].index = i; |
| sysfs_filename += used; |
| sysfs_names_free -= used; |
| sysfs_attr_i++; |
| } |
| } |
| /* Fail safe check, this should never happen! */ |
| if (sysfs_names_free < 0) { |
| pr_err("Fatal error ran out of space for sysfs attr names. %s %s", |
| never_happen, report_this); |
| res = -ENAMETOOLONG; |
| goto abituguru_probe_error; |
| } |
| pr_info("found Abit uGuru\n"); |
| |
| /* Register sysfs hooks */ |
| for (i = 0; i < sysfs_attr_i; i++) { |
| res = device_create_file(&pdev->dev, |
| &data->sysfs_attr[i].dev_attr); |
| if (res) |
| goto abituguru_probe_error; |
| } |
| for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { |
| res = device_create_file(&pdev->dev, |
| &abituguru_sysfs_attr[i].dev_attr); |
| if (res) |
| goto abituguru_probe_error; |
| } |
| |
| data->hwmon_dev = hwmon_device_register(&pdev->dev); |
| if (!IS_ERR(data->hwmon_dev)) |
| return 0; /* success */ |
| |
| res = PTR_ERR(data->hwmon_dev); |
| abituguru_probe_error: |
| for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) |
| device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); |
| for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) |
| device_remove_file(&pdev->dev, |
| &abituguru_sysfs_attr[i].dev_attr); |
| return res; |
| } |
| |
| static int abituguru_remove(struct platform_device *pdev) |
| { |
| int i; |
| struct abituguru_data *data = platform_get_drvdata(pdev); |
| |
| hwmon_device_unregister(data->hwmon_dev); |
| for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) |
| device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); |
| for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) |
| device_remove_file(&pdev->dev, |
| &abituguru_sysfs_attr[i].dev_attr); |
| |
| return 0; |
| } |
| |
| static struct abituguru_data *abituguru_update_device(struct device *dev) |
| { |
| int i, err; |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| /* fake a complete successful read if no update necessary. */ |
| char success = 1; |
| |
| mutex_lock(&data->update_lock); |
| if (time_after(jiffies, data->last_updated + HZ)) { |
| success = 0; |
| err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, |
| data->alarms, 3, 0); |
| if (err != 3) |
| goto LEAVE_UPDATE; |
| for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { |
| err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, |
| i, &data->bank1_value[i], 1, 0); |
| if (err != 1) |
| goto LEAVE_UPDATE; |
| err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, |
| i, data->bank1_settings[i], 3, 0); |
| if (err != 3) |
| goto LEAVE_UPDATE; |
| } |
| for (i = 0; i < data->bank2_sensors; i++) { |
| err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, |
| &data->bank2_value[i], 1, 0); |
| if (err != 1) |
| goto LEAVE_UPDATE; |
| } |
| /* success! */ |
| success = 1; |
| data->update_timeouts = 0; |
| LEAVE_UPDATE: |
| /* handle timeout condition */ |
| if (!success && (err == -EBUSY || err >= 0)) { |
| /* No overflow please */ |
| if (data->update_timeouts < 255u) |
| data->update_timeouts++; |
| if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { |
| ABIT_UGURU_DEBUG(3, "timeout exceeded, will " |
| "try again next update\n"); |
| /* Just a timeout, fake a successful read */ |
| success = 1; |
| } else |
| ABIT_UGURU_DEBUG(1, "timeout exceeded %d " |
| "times waiting for more input state\n", |
| (int)data->update_timeouts); |
| } |
| /* On success set last_updated */ |
| if (success) |
| data->last_updated = jiffies; |
| } |
| mutex_unlock(&data->update_lock); |
| |
| if (success) |
| return data; |
| else |
| return NULL; |
| } |
| |
| static int abituguru_suspend(struct device *dev) |
| { |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| /* |
| * make sure all communications with the uguru are done and no new |
| * ones are started |
| */ |
| mutex_lock(&data->update_lock); |
| return 0; |
| } |
| |
| static int abituguru_resume(struct device *dev) |
| { |
| struct abituguru_data *data = dev_get_drvdata(dev); |
| /* See if the uGuru is still ready */ |
| if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) |
| data->uguru_ready = 0; |
| mutex_unlock(&data->update_lock); |
| return 0; |
| } |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume); |
| |
| static struct platform_driver abituguru_driver = { |
| .driver = { |
| .name = ABIT_UGURU_NAME, |
| .pm = pm_sleep_ptr(&abituguru_pm), |
| }, |
| .probe = abituguru_probe, |
| .remove = abituguru_remove, |
| }; |
| |
| static int __init abituguru_detect(void) |
| { |
| /* |
| * See if there is an uguru there. After a reboot uGuru will hold 0x00 |
| * at DATA and 0xAC, when this driver has already been loaded once |
| * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either |
| * scenario but some will hold 0x00. |
| * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 |
| * after reading CMD first, so CMD must be read first! |
| */ |
| u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); |
| u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); |
| if (((data_val == 0x00) || (data_val == 0x08)) && |
| ((cmd_val == 0x00) || (cmd_val == 0xAC))) |
| return ABIT_UGURU_BASE; |
| |
| ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " |
| "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); |
| |
| if (force) { |
| pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); |
| return ABIT_UGURU_BASE; |
| } |
| |
| /* No uGuru found */ |
| return -ENODEV; |
| } |
| |
| static struct platform_device *abituguru_pdev; |
| |
| static int __init abituguru_init(void) |
| { |
| int address, err; |
| struct resource res = { .flags = IORESOURCE_IO }; |
| const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); |
| |
| /* safety check, refuse to load on non Abit motherboards */ |
| if (!force && (!board_vendor || |
| strcmp(board_vendor, "http://www.abit.com.tw/"))) |
| return -ENODEV; |
| |
| address = abituguru_detect(); |
| if (address < 0) |
| return address; |
| |
| err = platform_driver_register(&abituguru_driver); |
| if (err) |
| goto exit; |
| |
| abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); |
| if (!abituguru_pdev) { |
| pr_err("Device allocation failed\n"); |
| err = -ENOMEM; |
| goto exit_driver_unregister; |
| } |
| |
| res.start = address; |
| res.end = address + ABIT_UGURU_REGION_LENGTH - 1; |
| res.name = ABIT_UGURU_NAME; |
| |
| err = platform_device_add_resources(abituguru_pdev, &res, 1); |
| if (err) { |
| pr_err("Device resource addition failed (%d)\n", err); |
| goto exit_device_put; |
| } |
| |
| err = platform_device_add(abituguru_pdev); |
| if (err) { |
| pr_err("Device addition failed (%d)\n", err); |
| goto exit_device_put; |
| } |
| |
| return 0; |
| |
| exit_device_put: |
| platform_device_put(abituguru_pdev); |
| exit_driver_unregister: |
| platform_driver_unregister(&abituguru_driver); |
| exit: |
| return err; |
| } |
| |
| static void __exit abituguru_exit(void) |
| { |
| platform_device_unregister(abituguru_pdev); |
| platform_driver_unregister(&abituguru_driver); |
| } |
| |
| MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); |
| MODULE_DESCRIPTION("Abit uGuru Sensor device"); |
| MODULE_LICENSE("GPL"); |
| |
| module_init(abituguru_init); |
| module_exit(abituguru_exit); |