| /* |
| * zsmalloc memory allocator |
| * |
| * Copyright (C) 2011 Nitin Gupta |
| * Copyright (C) 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the license that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| */ |
| |
| /* |
| * Following is how we use various fields and flags of underlying |
| * struct page(s) to form a zspage. |
| * |
| * Usage of struct page fields: |
| * page->private: points to zspage |
| * page->index: links together all component pages of a zspage |
| * For the huge page, this is always 0, so we use this field |
| * to store handle. |
| * page->page_type: first object offset in a subpage of zspage |
| * |
| * Usage of struct page flags: |
| * PG_private: identifies the first component page |
| * PG_owner_priv_1: identifies the huge component page |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| /* |
| * lock ordering: |
| * page_lock |
| * pool->lock |
| * zspage->lock |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/highmem.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu.h> |
| #include <linux/vmalloc.h> |
| #include <linux/preempt.h> |
| #include <linux/spinlock.h> |
| #include <linux/shrinker.h> |
| #include <linux/types.h> |
| #include <linux/debugfs.h> |
| #include <linux/zsmalloc.h> |
| #include <linux/zpool.h> |
| #include <linux/migrate.h> |
| #include <linux/wait.h> |
| #include <linux/pagemap.h> |
| #include <linux/fs.h> |
| #include <linux/local_lock.h> |
| |
| #define ZSPAGE_MAGIC 0x58 |
| |
| /* |
| * This must be power of 2 and greater than or equal to sizeof(link_free). |
| * These two conditions ensure that any 'struct link_free' itself doesn't |
| * span more than 1 page which avoids complex case of mapping 2 pages simply |
| * to restore link_free pointer values. |
| */ |
| #define ZS_ALIGN 8 |
| |
| #define ZS_HANDLE_SIZE (sizeof(unsigned long)) |
| |
| /* |
| * Object location (<PFN>, <obj_idx>) is encoded as |
| * a single (unsigned long) handle value. |
| * |
| * Note that object index <obj_idx> starts from 0. |
| * |
| * This is made more complicated by various memory models and PAE. |
| */ |
| |
| #ifndef MAX_POSSIBLE_PHYSMEM_BITS |
| #ifdef MAX_PHYSMEM_BITS |
| #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS |
| #else |
| /* |
| * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just |
| * be PAGE_SHIFT |
| */ |
| #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG |
| #endif |
| #endif |
| |
| #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) |
| |
| /* |
| * Head in allocated object should have OBJ_ALLOCATED_TAG |
| * to identify the object was allocated or not. |
| * It's okay to add the status bit in the least bit because |
| * header keeps handle which is 4byte-aligned address so we |
| * have room for two bit at least. |
| */ |
| #define OBJ_ALLOCATED_TAG 1 |
| |
| #define OBJ_TAG_BITS 1 |
| #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG |
| |
| #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) |
| #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) |
| |
| #define HUGE_BITS 1 |
| #define FULLNESS_BITS 4 |
| #define CLASS_BITS 8 |
| #define ISOLATED_BITS 5 |
| #define MAGIC_VAL_BITS 8 |
| |
| #define MAX(a, b) ((a) >= (b) ? (a) : (b)) |
| |
| #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) |
| |
| /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ |
| #define ZS_MIN_ALLOC_SIZE \ |
| MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) |
| /* each chunk includes extra space to keep handle */ |
| #define ZS_MAX_ALLOC_SIZE PAGE_SIZE |
| |
| /* |
| * On systems with 4K page size, this gives 255 size classes! There is a |
| * trader-off here: |
| * - Large number of size classes is potentially wasteful as free page are |
| * spread across these classes |
| * - Small number of size classes causes large internal fragmentation |
| * - Probably its better to use specific size classes (empirically |
| * determined). NOTE: all those class sizes must be set as multiple of |
| * ZS_ALIGN to make sure link_free itself never has to span 2 pages. |
| * |
| * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN |
| * (reason above) |
| */ |
| #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) |
| #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ |
| ZS_SIZE_CLASS_DELTA) + 1) |
| |
| /* |
| * Pages are distinguished by the ratio of used memory (that is the ratio |
| * of ->inuse objects to all objects that page can store). For example, |
| * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. |
| * |
| * The number of fullness groups is not random. It allows us to keep |
| * difference between the least busy page in the group (minimum permitted |
| * number of ->inuse objects) and the most busy page (maximum permitted |
| * number of ->inuse objects) at a reasonable value. |
| */ |
| enum fullness_group { |
| ZS_INUSE_RATIO_0, |
| ZS_INUSE_RATIO_10, |
| /* NOTE: 8 more fullness groups here */ |
| ZS_INUSE_RATIO_99 = 10, |
| ZS_INUSE_RATIO_100, |
| NR_FULLNESS_GROUPS, |
| }; |
| |
| enum class_stat_type { |
| /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ |
| ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, |
| ZS_OBJS_INUSE, |
| NR_CLASS_STAT_TYPES, |
| }; |
| |
| struct zs_size_stat { |
| unsigned long objs[NR_CLASS_STAT_TYPES]; |
| }; |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| static struct dentry *zs_stat_root; |
| #endif |
| |
| static size_t huge_class_size; |
| |
| struct size_class { |
| struct list_head fullness_list[NR_FULLNESS_GROUPS]; |
| /* |
| * Size of objects stored in this class. Must be multiple |
| * of ZS_ALIGN. |
| */ |
| int size; |
| int objs_per_zspage; |
| /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ |
| int pages_per_zspage; |
| |
| unsigned int index; |
| struct zs_size_stat stats; |
| }; |
| |
| /* |
| * Placed within free objects to form a singly linked list. |
| * For every zspage, zspage->freeobj gives head of this list. |
| * |
| * This must be power of 2 and less than or equal to ZS_ALIGN |
| */ |
| struct link_free { |
| union { |
| /* |
| * Free object index; |
| * It's valid for non-allocated object |
| */ |
| unsigned long next; |
| /* |
| * Handle of allocated object. |
| */ |
| unsigned long handle; |
| }; |
| }; |
| |
| struct zs_pool { |
| const char *name; |
| |
| struct size_class *size_class[ZS_SIZE_CLASSES]; |
| struct kmem_cache *handle_cachep; |
| struct kmem_cache *zspage_cachep; |
| |
| atomic_long_t pages_allocated; |
| |
| struct zs_pool_stats stats; |
| |
| /* Compact classes */ |
| struct shrinker shrinker; |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| struct dentry *stat_dentry; |
| #endif |
| #ifdef CONFIG_COMPACTION |
| struct work_struct free_work; |
| #endif |
| spinlock_t lock; |
| atomic_t compaction_in_progress; |
| }; |
| |
| struct zspage { |
| struct { |
| unsigned int huge:HUGE_BITS; |
| unsigned int fullness:FULLNESS_BITS; |
| unsigned int class:CLASS_BITS + 1; |
| unsigned int isolated:ISOLATED_BITS; |
| unsigned int magic:MAGIC_VAL_BITS; |
| }; |
| unsigned int inuse; |
| unsigned int freeobj; |
| struct page *first_page; |
| struct list_head list; /* fullness list */ |
| struct zs_pool *pool; |
| rwlock_t lock; |
| }; |
| |
| struct mapping_area { |
| local_lock_t lock; |
| char *vm_buf; /* copy buffer for objects that span pages */ |
| char *vm_addr; /* address of kmap_atomic()'ed pages */ |
| enum zs_mapmode vm_mm; /* mapping mode */ |
| }; |
| |
| /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ |
| static void SetZsHugePage(struct zspage *zspage) |
| { |
| zspage->huge = 1; |
| } |
| |
| static bool ZsHugePage(struct zspage *zspage) |
| { |
| return zspage->huge; |
| } |
| |
| static void migrate_lock_init(struct zspage *zspage); |
| static void migrate_read_lock(struct zspage *zspage); |
| static void migrate_read_unlock(struct zspage *zspage); |
| |
| #ifdef CONFIG_COMPACTION |
| static void migrate_write_lock(struct zspage *zspage); |
| static void migrate_write_lock_nested(struct zspage *zspage); |
| static void migrate_write_unlock(struct zspage *zspage); |
| static void kick_deferred_free(struct zs_pool *pool); |
| static void init_deferred_free(struct zs_pool *pool); |
| static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); |
| #else |
| static void migrate_write_lock(struct zspage *zspage) {} |
| static void migrate_write_lock_nested(struct zspage *zspage) {} |
| static void migrate_write_unlock(struct zspage *zspage) {} |
| static void kick_deferred_free(struct zs_pool *pool) {} |
| static void init_deferred_free(struct zs_pool *pool) {} |
| static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} |
| #endif |
| |
| static int create_cache(struct zs_pool *pool) |
| { |
| pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, |
| 0, 0, NULL); |
| if (!pool->handle_cachep) |
| return 1; |
| |
| pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), |
| 0, 0, NULL); |
| if (!pool->zspage_cachep) { |
| kmem_cache_destroy(pool->handle_cachep); |
| pool->handle_cachep = NULL; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void destroy_cache(struct zs_pool *pool) |
| { |
| kmem_cache_destroy(pool->handle_cachep); |
| kmem_cache_destroy(pool->zspage_cachep); |
| } |
| |
| static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) |
| { |
| return (unsigned long)kmem_cache_alloc(pool->handle_cachep, |
| gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); |
| } |
| |
| static void cache_free_handle(struct zs_pool *pool, unsigned long handle) |
| { |
| kmem_cache_free(pool->handle_cachep, (void *)handle); |
| } |
| |
| static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) |
| { |
| return kmem_cache_zalloc(pool->zspage_cachep, |
| flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); |
| } |
| |
| static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) |
| { |
| kmem_cache_free(pool->zspage_cachep, zspage); |
| } |
| |
| /* pool->lock(which owns the handle) synchronizes races */ |
| static void record_obj(unsigned long handle, unsigned long obj) |
| { |
| *(unsigned long *)handle = obj; |
| } |
| |
| /* zpool driver */ |
| |
| #ifdef CONFIG_ZPOOL |
| |
| static void *zs_zpool_create(const char *name, gfp_t gfp) |
| { |
| /* |
| * Ignore global gfp flags: zs_malloc() may be invoked from |
| * different contexts and its caller must provide a valid |
| * gfp mask. |
| */ |
| return zs_create_pool(name); |
| } |
| |
| static void zs_zpool_destroy(void *pool) |
| { |
| zs_destroy_pool(pool); |
| } |
| |
| static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, |
| unsigned long *handle) |
| { |
| *handle = zs_malloc(pool, size, gfp); |
| |
| if (IS_ERR_VALUE(*handle)) |
| return PTR_ERR((void *)*handle); |
| return 0; |
| } |
| static void zs_zpool_free(void *pool, unsigned long handle) |
| { |
| zs_free(pool, handle); |
| } |
| |
| static void *zs_zpool_map(void *pool, unsigned long handle, |
| enum zpool_mapmode mm) |
| { |
| enum zs_mapmode zs_mm; |
| |
| switch (mm) { |
| case ZPOOL_MM_RO: |
| zs_mm = ZS_MM_RO; |
| break; |
| case ZPOOL_MM_WO: |
| zs_mm = ZS_MM_WO; |
| break; |
| case ZPOOL_MM_RW: |
| default: |
| zs_mm = ZS_MM_RW; |
| break; |
| } |
| |
| return zs_map_object(pool, handle, zs_mm); |
| } |
| static void zs_zpool_unmap(void *pool, unsigned long handle) |
| { |
| zs_unmap_object(pool, handle); |
| } |
| |
| static u64 zs_zpool_total_size(void *pool) |
| { |
| return zs_get_total_pages(pool) << PAGE_SHIFT; |
| } |
| |
| static struct zpool_driver zs_zpool_driver = { |
| .type = "zsmalloc", |
| .owner = THIS_MODULE, |
| .create = zs_zpool_create, |
| .destroy = zs_zpool_destroy, |
| .malloc_support_movable = true, |
| .malloc = zs_zpool_malloc, |
| .free = zs_zpool_free, |
| .map = zs_zpool_map, |
| .unmap = zs_zpool_unmap, |
| .total_size = zs_zpool_total_size, |
| }; |
| |
| MODULE_ALIAS("zpool-zsmalloc"); |
| #endif /* CONFIG_ZPOOL */ |
| |
| /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ |
| static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { |
| .lock = INIT_LOCAL_LOCK(lock), |
| }; |
| |
| static __maybe_unused int is_first_page(struct page *page) |
| { |
| return PagePrivate(page); |
| } |
| |
| /* Protected by pool->lock */ |
| static inline int get_zspage_inuse(struct zspage *zspage) |
| { |
| return zspage->inuse; |
| } |
| |
| |
| static inline void mod_zspage_inuse(struct zspage *zspage, int val) |
| { |
| zspage->inuse += val; |
| } |
| |
| static inline struct page *get_first_page(struct zspage *zspage) |
| { |
| struct page *first_page = zspage->first_page; |
| |
| VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); |
| return first_page; |
| } |
| |
| static inline unsigned int get_first_obj_offset(struct page *page) |
| { |
| return page->page_type; |
| } |
| |
| static inline void set_first_obj_offset(struct page *page, unsigned int offset) |
| { |
| page->page_type = offset; |
| } |
| |
| static inline unsigned int get_freeobj(struct zspage *zspage) |
| { |
| return zspage->freeobj; |
| } |
| |
| static inline void set_freeobj(struct zspage *zspage, unsigned int obj) |
| { |
| zspage->freeobj = obj; |
| } |
| |
| static void get_zspage_mapping(struct zspage *zspage, |
| unsigned int *class_idx, |
| int *fullness) |
| { |
| BUG_ON(zspage->magic != ZSPAGE_MAGIC); |
| |
| *fullness = zspage->fullness; |
| *class_idx = zspage->class; |
| } |
| |
| static struct size_class *zspage_class(struct zs_pool *pool, |
| struct zspage *zspage) |
| { |
| return pool->size_class[zspage->class]; |
| } |
| |
| static void set_zspage_mapping(struct zspage *zspage, |
| unsigned int class_idx, |
| int fullness) |
| { |
| zspage->class = class_idx; |
| zspage->fullness = fullness; |
| } |
| |
| /* |
| * zsmalloc divides the pool into various size classes where each |
| * class maintains a list of zspages where each zspage is divided |
| * into equal sized chunks. Each allocation falls into one of these |
| * classes depending on its size. This function returns index of the |
| * size class which has chunk size big enough to hold the given size. |
| */ |
| static int get_size_class_index(int size) |
| { |
| int idx = 0; |
| |
| if (likely(size > ZS_MIN_ALLOC_SIZE)) |
| idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, |
| ZS_SIZE_CLASS_DELTA); |
| |
| return min_t(int, ZS_SIZE_CLASSES - 1, idx); |
| } |
| |
| static inline void class_stat_inc(struct size_class *class, |
| int type, unsigned long cnt) |
| { |
| class->stats.objs[type] += cnt; |
| } |
| |
| static inline void class_stat_dec(struct size_class *class, |
| int type, unsigned long cnt) |
| { |
| class->stats.objs[type] -= cnt; |
| } |
| |
| static inline unsigned long zs_stat_get(struct size_class *class, int type) |
| { |
| return class->stats.objs[type]; |
| } |
| |
| #ifdef CONFIG_ZSMALLOC_STAT |
| |
| static void __init zs_stat_init(void) |
| { |
| if (!debugfs_initialized()) { |
| pr_warn("debugfs not available, stat dir not created\n"); |
| return; |
| } |
| |
| zs_stat_root = debugfs_create_dir("zsmalloc", NULL); |
| } |
| |
| static void __exit zs_stat_exit(void) |
| { |
| debugfs_remove_recursive(zs_stat_root); |
| } |
| |
| static unsigned long zs_can_compact(struct size_class *class); |
| |
| static int zs_stats_size_show(struct seq_file *s, void *v) |
| { |
| int i, fg; |
| struct zs_pool *pool = s->private; |
| struct size_class *class; |
| int objs_per_zspage; |
| unsigned long obj_allocated, obj_used, pages_used, freeable; |
| unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; |
| unsigned long total_freeable = 0; |
| unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; |
| |
| seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", |
| "class", "size", "10%", "20%", "30%", "40%", |
| "50%", "60%", "70%", "80%", "90%", "99%", "100%", |
| "obj_allocated", "obj_used", "pages_used", |
| "pages_per_zspage", "freeable"); |
| |
| for (i = 0; i < ZS_SIZE_CLASSES; i++) { |
| |
| class = pool->size_class[i]; |
| |
| if (class->index != i) |
| continue; |
| |
| spin_lock(&pool->lock); |
| |
| seq_printf(s, " %5u %5u ", i, class->size); |
| for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { |
| inuse_totals[fg] += zs_stat_get(class, fg); |
| seq_printf(s, "%9lu ", zs_stat_get(class, fg)); |
| } |
| |
| obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); |
| obj_used = zs_stat_get(class, ZS_OBJS_INUSE); |
| freeable = zs_can_compact(class); |
| spin_unlock(&pool->lock); |
| |
| objs_per_zspage = class->objs_per_zspage; |
| pages_used = obj_allocated / objs_per_zspage * |
| class->pages_per_zspage; |
| |
| seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", |
| obj_allocated, obj_used, pages_used, |
| class->pages_per_zspage, freeable); |
| |
| total_objs += obj_allocated; |
| total_used_objs += obj_used; |
| total_pages += pages_used; |
| total_freeable += freeable; |
| } |
| |
| seq_puts(s, "\n"); |
| seq_printf(s, " %5s %5s ", "Total", ""); |
| |
| for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) |
| seq_printf(s, "%9lu ", inuse_totals[fg]); |
| |
| seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", |
| total_objs, total_used_objs, total_pages, "", |
| total_freeable); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(zs_stats_size); |
| |
| static void zs_pool_stat_create(struct zs_pool *pool, const char *name) |
| { |
| if (!zs_stat_root) { |
| pr_warn("no root stat dir, not creating <%s> stat dir\n", name); |
| return; |
| } |
| |
| pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); |
| |
| debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, |
| &zs_stats_size_fops); |
| } |
| |
| static void zs_pool_stat_destroy(struct zs_pool *pool) |
| { |
| debugfs_remove_recursive(pool->stat_dentry); |
| } |
| |
| #else /* CONFIG_ZSMALLOC_STAT */ |
| static void __init zs_stat_init(void) |
| { |
| } |
| |
| static void __exit zs_stat_exit(void) |
| { |
| } |
| |
| static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) |
| { |
| } |
| |
| static inline void zs_pool_stat_destroy(struct zs_pool *pool) |
| { |
| } |
| #endif |
| |
| |
| /* |
| * For each size class, zspages are divided into different groups |
| * depending on their usage ratio. This function returns fullness |
| * status of the given page. |
| */ |
| static int get_fullness_group(struct size_class *class, struct zspage *zspage) |
| { |
| int inuse, objs_per_zspage, ratio; |
| |
| inuse = get_zspage_inuse(zspage); |
| objs_per_zspage = class->objs_per_zspage; |
| |
| if (inuse == 0) |
| return ZS_INUSE_RATIO_0; |
| if (inuse == objs_per_zspage) |
| return ZS_INUSE_RATIO_100; |
| |
| ratio = 100 * inuse / objs_per_zspage; |
| /* |
| * Take integer division into consideration: a page with one inuse |
| * object out of 127 possible, will end up having 0 usage ratio, |
| * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. |
| */ |
| return ratio / 10 + 1; |
| } |
| |
| /* |
| * Each size class maintains various freelists and zspages are assigned |
| * to one of these freelists based on the number of live objects they |
| * have. This functions inserts the given zspage into the freelist |
| * identified by <class, fullness_group>. |
| */ |
| static void insert_zspage(struct size_class *class, |
| struct zspage *zspage, |
| int fullness) |
| { |
| class_stat_inc(class, fullness, 1); |
| list_add(&zspage->list, &class->fullness_list[fullness]); |
| } |
| |
| /* |
| * This function removes the given zspage from the freelist identified |
| * by <class, fullness_group>. |
| */ |
| static void remove_zspage(struct size_class *class, |
| struct zspage *zspage, |
| int fullness) |
| { |
| VM_BUG_ON(list_empty(&class->fullness_list[fullness])); |
| |
| list_del_init(&zspage->list); |
| class_stat_dec(class, fullness, 1); |
| } |
| |
| /* |
| * Each size class maintains zspages in different fullness groups depending |
| * on the number of live objects they contain. When allocating or freeing |
| * objects, the fullness status of the page can change, for instance, from |
| * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function |
| * checks if such a status change has occurred for the given page and |
| * accordingly moves the page from the list of the old fullness group to that |
| * of the new fullness group. |
| */ |
| static int fix_fullness_group(struct size_class *class, struct zspage *zspage) |
| { |
| int class_idx; |
| int currfg, newfg; |
| |
| get_zspage_mapping(zspage, &class_idx, &currfg); |
| newfg = get_fullness_group(class, zspage); |
| if (newfg == currfg) |
| goto out; |
| |
| remove_zspage(class, zspage, currfg); |
| insert_zspage(class, zspage, newfg); |
| set_zspage_mapping(zspage, class_idx, newfg); |
| out: |
| return newfg; |
| } |
| |
| static struct zspage *get_zspage(struct page *page) |
| { |
| struct zspage *zspage = (struct zspage *)page_private(page); |
| |
| BUG_ON(zspage->magic != ZSPAGE_MAGIC); |
| return zspage; |
| } |
| |
| static struct page *get_next_page(struct page *page) |
| { |
| struct zspage *zspage = get_zspage(page); |
| |
| if (unlikely(ZsHugePage(zspage))) |
| return NULL; |
| |
| return (struct page *)page->index; |
| } |
| |
| /** |
| * obj_to_location - get (<page>, <obj_idx>) from encoded object value |
| * @obj: the encoded object value |
| * @page: page object resides in zspage |
| * @obj_idx: object index |
| */ |
| static void obj_to_location(unsigned long obj, struct page **page, |
| unsigned int *obj_idx) |
| { |
| obj >>= OBJ_TAG_BITS; |
| *page = pfn_to_page(obj >> OBJ_INDEX_BITS); |
| *obj_idx = (obj & OBJ_INDEX_MASK); |
| } |
| |
| static void obj_to_page(unsigned long obj, struct page **page) |
| { |
| obj >>= OBJ_TAG_BITS; |
| *page = pfn_to_page(obj >> OBJ_INDEX_BITS); |
| } |
| |
| /** |
| * location_to_obj - get obj value encoded from (<page>, <obj_idx>) |
| * @page: page object resides in zspage |
| * @obj_idx: object index |
| */ |
| static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) |
| { |
| unsigned long obj; |
| |
| obj = page_to_pfn(page) << OBJ_INDEX_BITS; |
| obj |= obj_idx & OBJ_INDEX_MASK; |
| obj <<= OBJ_TAG_BITS; |
| |
| return obj; |
| } |
| |
| static unsigned long handle_to_obj(unsigned long handle) |
| { |
| return *(unsigned long *)handle; |
| } |
| |
| static inline bool obj_allocated(struct page *page, void *obj, |
| unsigned long *phandle) |
| { |
| unsigned long handle; |
| struct zspage *zspage = get_zspage(page); |
| |
| if (unlikely(ZsHugePage(zspage))) { |
| VM_BUG_ON_PAGE(!is_first_page(page), page); |
| handle = page->index; |
| } else |
| handle = *(unsigned long *)obj; |
| |
| if (!(handle & OBJ_ALLOCATED_TAG)) |
| return false; |
| |
| /* Clear all tags before returning the handle */ |
| *phandle = handle & ~OBJ_TAG_MASK; |
| return true; |
| } |
| |
| static void reset_page(struct page *page) |
| { |
| __ClearPageMovable(page); |
| ClearPagePrivate(page); |
| set_page_private(page, 0); |
| page_mapcount_reset(page); |
| page->index = 0; |
| } |
| |
| static int trylock_zspage(struct zspage *zspage) |
| { |
| struct page *cursor, *fail; |
| |
| for (cursor = get_first_page(zspage); cursor != NULL; cursor = |
| get_next_page(cursor)) { |
| if (!trylock_page(cursor)) { |
| fail = cursor; |
| goto unlock; |
| } |
| } |
| |
| return 1; |
| unlock: |
| for (cursor = get_first_page(zspage); cursor != fail; cursor = |
| get_next_page(cursor)) |
| unlock_page(cursor); |
| |
| return 0; |
| } |
| |
| static void __free_zspage(struct zs_pool *pool, struct size_class *class, |
| struct zspage *zspage) |
| { |
| struct page *page, *next; |
| int fg; |
| unsigned int class_idx; |
| |
| get_zspage_mapping(zspage, &class_idx, &fg); |
| |
| assert_spin_locked(&pool->lock); |
| |
| VM_BUG_ON(get_zspage_inuse(zspage)); |
| VM_BUG_ON(fg != ZS_INUSE_RATIO_0); |
| |
| next = page = get_first_page(zspage); |
| do { |
| VM_BUG_ON_PAGE(!PageLocked(page), page); |
| next = get_next_page(page); |
| reset_page(page); |
| unlock_page(page); |
| dec_zone_page_state(page, NR_ZSPAGES); |
| put_page(page); |
| page = next; |
| } while (page != NULL); |
| |
| cache_free_zspage(pool, zspage); |
| |
| class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); |
| atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); |
| } |
| |
| static void free_zspage(struct zs_pool *pool, struct size_class *class, |
| struct zspage *zspage) |
| { |
| VM_BUG_ON(get_zspage_inuse(zspage)); |
| VM_BUG_ON(list_empty(&zspage->list)); |
| |
| /* |
| * Since zs_free couldn't be sleepable, this function cannot call |
| * lock_page. The page locks trylock_zspage got will be released |
| * by __free_zspage. |
| */ |
| if (!trylock_zspage(zspage)) { |
| kick_deferred_free(pool); |
| return; |
| } |
| |
| remove_zspage(class, zspage, ZS_INUSE_RATIO_0); |
| __free_zspage(pool, class, zspage); |
| } |
| |
| /* Initialize a newly allocated zspage */ |
| static void init_zspage(struct size_class *class, struct zspage *zspage) |
| { |
| unsigned int freeobj = 1; |
| unsigned long off = 0; |
| struct page *page = get_first_page(zspage); |
| |
| while (page) { |
| struct page *next_page; |
| struct link_free *link; |
| void *vaddr; |
| |
| set_first_obj_offset(page, off); |
| |
| vaddr = kmap_atomic(page); |
| link = (struct link_free *)vaddr + off / sizeof(*link); |
| |
| while ((off += class->size) < PAGE_SIZE) { |
| link->next = freeobj++ << OBJ_TAG_BITS; |
| link += class->size / sizeof(*link); |
| } |
| |
| /* |
| * We now come to the last (full or partial) object on this |
| * page, which must point to the first object on the next |
| * page (if present) |
| */ |
| next_page = get_next_page(page); |
| if (next_page) { |
| link->next = freeobj++ << OBJ_TAG_BITS; |
| } else { |
| /* |
| * Reset OBJ_TAG_BITS bit to last link to tell |
| * whether it's allocated object or not. |
| */ |
| link->next = -1UL << OBJ_TAG_BITS; |
| } |
| kunmap_atomic(vaddr); |
| page = next_page; |
| off %= PAGE_SIZE; |
| } |
| |
| set_freeobj(zspage, 0); |
| } |
| |
| static void create_page_chain(struct size_class *class, struct zspage *zspage, |
| struct page *pages[]) |
| { |
| int i; |
| struct page *page; |
| struct page *prev_page = NULL; |
| int nr_pages = class->pages_per_zspage; |
| |
| /* |
| * Allocate individual pages and link them together as: |
| * 1. all pages are linked together using page->index |
| * 2. each sub-page point to zspage using page->private |
| * |
| * we set PG_private to identify the first page (i.e. no other sub-page |
| * has this flag set). |
| */ |
| for (i = 0; i < nr_pages; i++) { |
| page = pages[i]; |
| set_page_private(page, (unsigned long)zspage); |
| page->index = 0; |
| if (i == 0) { |
| zspage->first_page = page; |
| SetPagePrivate(page); |
| if (unlikely(class->objs_per_zspage == 1 && |
| class->pages_per_zspage == 1)) |
| SetZsHugePage(zspage); |
| } else { |
| prev_page->index = (unsigned long)page; |
| } |
| prev_page = page; |
| } |
| } |
| |
| /* |
| * Allocate a zspage for the given size class |
| */ |
| static struct zspage *alloc_zspage(struct zs_pool *pool, |
| struct size_class *class, |
| gfp_t gfp) |
| { |
| int i; |
| struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; |
| struct zspage *zspage = cache_alloc_zspage(pool, gfp); |
| |
| if (!zspage) |
| return NULL; |
| |
| zspage->magic = ZSPAGE_MAGIC; |
| migrate_lock_init(zspage); |
| |
| for (i = 0; i < class->pages_per_zspage; i++) { |
| struct page *page; |
| |
| page = alloc_page(gfp); |
| if (!page) { |
| while (--i >= 0) { |
| dec_zone_page_state(pages[i], NR_ZSPAGES); |
| __free_page(pages[i]); |
| } |
| cache_free_zspage(pool, zspage); |
| return NULL; |
| } |
| |
| inc_zone_page_state(page, NR_ZSPAGES); |
| pages[i] = page; |
| } |
| |
| create_page_chain(class, zspage, pages); |
| init_zspage(class, zspage); |
| zspage->pool = pool; |
| |
| return zspage; |
| } |
| |
| static struct zspage *find_get_zspage(struct size_class *class) |
| { |
| int i; |
| struct zspage *zspage; |
| |
| for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { |
| zspage = list_first_entry_or_null(&class->fullness_list[i], |
| struct zspage, list); |
| if (zspage) |
| break; |
| } |
| |
| return zspage; |
| } |
| |
| static inline int __zs_cpu_up(struct mapping_area *area) |
| { |
| /* |
| * Make sure we don't leak memory if a cpu UP notification |
| * and zs_init() race and both call zs_cpu_up() on the same cpu |
| */ |
| if (area->vm_buf) |
| return 0; |
| area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); |
| if (!area->vm_buf) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static inline void __zs_cpu_down(struct mapping_area *area) |
| { |
| kfree(area->vm_buf); |
| area->vm_buf = NULL; |
| } |
| |
| static void *__zs_map_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| int sizes[2]; |
| void *addr; |
| char *buf = area->vm_buf; |
| |
| /* disable page faults to match kmap_atomic() return conditions */ |
| pagefault_disable(); |
| |
| /* no read fastpath */ |
| if (area->vm_mm == ZS_MM_WO) |
| goto out; |
| |
| sizes[0] = PAGE_SIZE - off; |
| sizes[1] = size - sizes[0]; |
| |
| /* copy object to per-cpu buffer */ |
| addr = kmap_atomic(pages[0]); |
| memcpy(buf, addr + off, sizes[0]); |
| kunmap_atomic(addr); |
| addr = kmap_atomic(pages[1]); |
| memcpy(buf + sizes[0], addr, sizes[1]); |
| kunmap_atomic(addr); |
| out: |
| return area->vm_buf; |
| } |
| |
| static void __zs_unmap_object(struct mapping_area *area, |
| struct page *pages[2], int off, int size) |
| { |
| int sizes[2]; |
| void *addr; |
| char *buf; |
| |
| /* no write fastpath */ |
| if (area->vm_mm == ZS_MM_RO) |
| goto out; |
| |
| buf = area->vm_buf; |
| buf = buf + ZS_HANDLE_SIZE; |
| size -= ZS_HANDLE_SIZE; |
| off += ZS_HANDLE_SIZE; |
| |
| sizes[0] = PAGE_SIZE - off; |
| sizes[1] = size - sizes[0]; |
| |
| /* copy per-cpu buffer to object */ |
| addr = kmap_atomic(pages[0]); |
| memcpy(addr + off, buf, sizes[0]); |
| kunmap_atomic(addr); |
| addr = kmap_atomic(pages[1]); |
| memcpy(addr, buf + sizes[0], sizes[1]); |
| kunmap_atomic(addr); |
| |
| out: |
| /* enable page faults to match kunmap_atomic() return conditions */ |
| pagefault_enable(); |
| } |
| |
| static int zs_cpu_prepare(unsigned int cpu) |
| { |
| struct mapping_area *area; |
| |
| area = &per_cpu(zs_map_area, cpu); |
| return __zs_cpu_up(area); |
| } |
| |
| static int zs_cpu_dead(unsigned int cpu) |
| { |
| struct mapping_area *area; |
| |
| area = &per_cpu(zs_map_area, cpu); |
| __zs_cpu_down(area); |
| return 0; |
| } |
| |
| static bool can_merge(struct size_class *prev, int pages_per_zspage, |
| int objs_per_zspage) |
| { |
| if (prev->pages_per_zspage == pages_per_zspage && |
| prev->objs_per_zspage == objs_per_zspage) |
| return true; |
| |
| return false; |
| } |
| |
| static bool zspage_full(struct size_class *class, struct zspage *zspage) |
| { |
| return get_zspage_inuse(zspage) == class->objs_per_zspage; |
| } |
| |
| static bool zspage_empty(struct zspage *zspage) |
| { |
| return get_zspage_inuse(zspage) == 0; |
| } |
| |
| /** |
| * zs_lookup_class_index() - Returns index of the zsmalloc &size_class |
| * that hold objects of the provided size. |
| * @pool: zsmalloc pool to use |
| * @size: object size |
| * |
| * Context: Any context. |
| * |
| * Return: the index of the zsmalloc &size_class that hold objects of the |
| * provided size. |
| */ |
| unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) |
| { |
| struct size_class *class; |
| |
| class = pool->size_class[get_size_class_index(size)]; |
| |
| return class->index; |
| } |
| EXPORT_SYMBOL_GPL(zs_lookup_class_index); |
| |
| unsigned long zs_get_total_pages(struct zs_pool *pool) |
| { |
| return atomic_long_read(&pool->pages_allocated); |
| } |
| EXPORT_SYMBOL_GPL(zs_get_total_pages); |
| |
| /** |
| * zs_map_object - get address of allocated object from handle. |
| * @pool: pool from which the object was allocated |
| * @handle: handle returned from zs_malloc |
| * @mm: mapping mode to use |
| * |
| * Before using an object allocated from zs_malloc, it must be mapped using |
| * this function. When done with the object, it must be unmapped using |
| * zs_unmap_object. |
| * |
| * Only one object can be mapped per cpu at a time. There is no protection |
| * against nested mappings. |
| * |
| * This function returns with preemption and page faults disabled. |
| */ |
| void *zs_map_object(struct zs_pool *pool, unsigned long handle, |
| enum zs_mapmode mm) |
| { |
| struct zspage *zspage; |
| struct page *page; |
| unsigned long obj, off; |
| unsigned int obj_idx; |
| |
| struct size_class *class; |
| struct mapping_area *area; |
| struct page *pages[2]; |
| void *ret; |
| |
| /* |
| * Because we use per-cpu mapping areas shared among the |
| * pools/users, we can't allow mapping in interrupt context |
| * because it can corrupt another users mappings. |
| */ |
| BUG_ON(in_interrupt()); |
| |
| /* It guarantees it can get zspage from handle safely */ |
| spin_lock(&pool->lock); |
| obj = handle_to_obj(handle); |
| obj_to_location(obj, &page, &obj_idx); |
| zspage = get_zspage(page); |
| |
| /* |
| * migration cannot move any zpages in this zspage. Here, pool->lock |
| * is too heavy since callers would take some time until they calls |
| * zs_unmap_object API so delegate the locking from class to zspage |
| * which is smaller granularity. |
| */ |
| migrate_read_lock(zspage); |
| spin_unlock(&pool->lock); |
| |
| class = zspage_class(pool, zspage); |
| off = offset_in_page(class->size * obj_idx); |
| |
| local_lock(&zs_map_area.lock); |
| area = this_cpu_ptr(&zs_map_area); |
| area->vm_mm = mm; |
| if (off + class->size <= PAGE_SIZE) { |
| /* this object is contained entirely within a page */ |
| area->vm_addr = kmap_atomic(page); |
| ret = area->vm_addr + off; |
| goto out; |
| } |
| |
| /* this object spans two pages */ |
| pages[0] = page; |
| pages[1] = get_next_page(page); |
| BUG_ON(!pages[1]); |
| |
| ret = __zs_map_object(area, pages, off, class->size); |
| out: |
| if (likely(!ZsHugePage(zspage))) |
| ret += ZS_HANDLE_SIZE; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(zs_map_object); |
| |
| void zs_unmap_object(struct zs_pool *pool, unsigned long handle) |
| { |
| struct zspage *zspage; |
| struct page *page; |
| unsigned long obj, off; |
| unsigned int obj_idx; |
| |
| struct size_class *class; |
| struct mapping_area *area; |
| |
| obj = handle_to_obj(handle); |
| obj_to_location(obj, &page, &obj_idx); |
| zspage = get_zspage(page); |
| class = zspage_class(pool, zspage); |
| off = offset_in_page(class->size * obj_idx); |
| |
| area = this_cpu_ptr(&zs_map_area); |
| if (off + class->size <= PAGE_SIZE) |
| kunmap_atomic(area->vm_addr); |
| else { |
| struct page *pages[2]; |
| |
| pages[0] = page; |
| pages[1] = get_next_page(page); |
| BUG_ON(!pages[1]); |
| |
| __zs_unmap_object(area, pages, off, class->size); |
| } |
| local_unlock(&zs_map_area.lock); |
| |
| migrate_read_unlock(zspage); |
| } |
| EXPORT_SYMBOL_GPL(zs_unmap_object); |
| |
| /** |
| * zs_huge_class_size() - Returns the size (in bytes) of the first huge |
| * zsmalloc &size_class. |
| * @pool: zsmalloc pool to use |
| * |
| * The function returns the size of the first huge class - any object of equal |
| * or bigger size will be stored in zspage consisting of a single physical |
| * page. |
| * |
| * Context: Any context. |
| * |
| * Return: the size (in bytes) of the first huge zsmalloc &size_class. |
| */ |
| size_t zs_huge_class_size(struct zs_pool *pool) |
| { |
| return huge_class_size; |
| } |
| EXPORT_SYMBOL_GPL(zs_huge_class_size); |
| |
| static unsigned long obj_malloc(struct zs_pool *pool, |
| struct zspage *zspage, unsigned long handle) |
| { |
| int i, nr_page, offset; |
| unsigned long obj; |
| struct link_free *link; |
| struct size_class *class; |
| |
| struct page *m_page; |
| unsigned long m_offset; |
| void *vaddr; |
| |
| class = pool->size_class[zspage->class]; |
| handle |= OBJ_ALLOCATED_TAG; |
| obj = get_freeobj(zspage); |
| |
| offset = obj * class->size; |
| nr_page = offset >> PAGE_SHIFT; |
| m_offset = offset_in_page(offset); |
| m_page = get_first_page(zspage); |
| |
| for (i = 0; i < nr_page; i++) |
| m_page = get_next_page(m_page); |
| |
| vaddr = kmap_atomic(m_page); |
| link = (struct link_free *)vaddr + m_offset / sizeof(*link); |
| set_freeobj(zspage, link->next >> OBJ_TAG_BITS); |
| if (likely(!ZsHugePage(zspage))) |
| /* record handle in the header of allocated chunk */ |
| link->handle = handle; |
| else |
| /* record handle to page->index */ |
| zspage->first_page->index = handle; |
| |
| kunmap_atomic(vaddr); |
| mod_zspage_inuse(zspage, 1); |
| |
| obj = location_to_obj(m_page, obj); |
| |
| return obj; |
| } |
| |
| |
| /** |
| * zs_malloc - Allocate block of given size from pool. |
| * @pool: pool to allocate from |
| * @size: size of block to allocate |
| * @gfp: gfp flags when allocating object |
| * |
| * On success, handle to the allocated object is returned, |
| * otherwise an ERR_PTR(). |
| * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. |
| */ |
| unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) |
| { |
| unsigned long handle, obj; |
| struct size_class *class; |
| int newfg; |
| struct zspage *zspage; |
| |
| if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) |
| return (unsigned long)ERR_PTR(-EINVAL); |
| |
| handle = cache_alloc_handle(pool, gfp); |
| if (!handle) |
| return (unsigned long)ERR_PTR(-ENOMEM); |
| |
| /* extra space in chunk to keep the handle */ |
| size += ZS_HANDLE_SIZE; |
| class = pool->size_class[get_size_class_index(size)]; |
| |
| /* pool->lock effectively protects the zpage migration */ |
| spin_lock(&pool->lock); |
| zspage = find_get_zspage(class); |
| if (likely(zspage)) { |
| obj = obj_malloc(pool, zspage, handle); |
| /* Now move the zspage to another fullness group, if required */ |
| fix_fullness_group(class, zspage); |
| record_obj(handle, obj); |
| class_stat_inc(class, ZS_OBJS_INUSE, 1); |
| |
| goto out; |
| } |
| |
| spin_unlock(&pool->lock); |
| |
| zspage = alloc_zspage(pool, class, gfp); |
| if (!zspage) { |
| cache_free_handle(pool, handle); |
| return (unsigned long)ERR_PTR(-ENOMEM); |
| } |
| |
| spin_lock(&pool->lock); |
| obj = obj_malloc(pool, zspage, handle); |
| newfg = get_fullness_group(class, zspage); |
| insert_zspage(class, zspage, newfg); |
| set_zspage_mapping(zspage, class->index, newfg); |
| record_obj(handle, obj); |
| atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); |
| class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); |
| class_stat_inc(class, ZS_OBJS_INUSE, 1); |
| |
| /* We completely set up zspage so mark them as movable */ |
| SetZsPageMovable(pool, zspage); |
| out: |
| spin_unlock(&pool->lock); |
| |
| return handle; |
| } |
| EXPORT_SYMBOL_GPL(zs_malloc); |
| |
| static void obj_free(int class_size, unsigned long obj) |
| { |
| struct link_free *link; |
| struct zspage *zspage; |
| struct page *f_page; |
| unsigned long f_offset; |
| unsigned int f_objidx; |
| void *vaddr; |
| |
| obj_to_location(obj, &f_page, &f_objidx); |
| f_offset = offset_in_page(class_size * f_objidx); |
| zspage = get_zspage(f_page); |
| |
| vaddr = kmap_atomic(f_page); |
| link = (struct link_free *)(vaddr + f_offset); |
| |
| /* Insert this object in containing zspage's freelist */ |
| if (likely(!ZsHugePage(zspage))) |
| link->next = get_freeobj(zspage) << OBJ_TAG_BITS; |
| else |
| f_page->index = 0; |
| set_freeobj(zspage, f_objidx); |
| |
| kunmap_atomic(vaddr); |
| mod_zspage_inuse(zspage, -1); |
| } |
| |
| void zs_free(struct zs_pool *pool, unsigned long handle) |
| { |
| struct zspage *zspage; |
| struct page *f_page; |
| unsigned long obj; |
| struct size_class *class; |
| int fullness; |
| |
| if (IS_ERR_OR_NULL((void *)handle)) |
| return; |
| |
| /* |
| * The pool->lock protects the race with zpage's migration |
| * so it's safe to get the page from handle. |
| */ |
| spin_lock(&pool->lock); |
| obj = handle_to_obj(handle); |
| obj_to_page(obj, &f_page); |
| zspage = get_zspage(f_page); |
| class = zspage_class(pool, zspage); |
| |
| class_stat_dec(class, ZS_OBJS_INUSE, 1); |
| obj_free(class->size, obj); |
| |
| fullness = fix_fullness_group(class, zspage); |
| if (fullness == ZS_INUSE_RATIO_0) |
| free_zspage(pool, class, zspage); |
| |
| spin_unlock(&pool->lock); |
| cache_free_handle(pool, handle); |
| } |
| EXPORT_SYMBOL_GPL(zs_free); |
| |
| static void zs_object_copy(struct size_class *class, unsigned long dst, |
| unsigned long src) |
| { |
| struct page *s_page, *d_page; |
| unsigned int s_objidx, d_objidx; |
| unsigned long s_off, d_off; |
| void *s_addr, *d_addr; |
| int s_size, d_size, size; |
| int written = 0; |
| |
| s_size = d_size = class->size; |
| |
| obj_to_location(src, &s_page, &s_objidx); |
| obj_to_location(dst, &d_page, &d_objidx); |
| |
| s_off = offset_in_page(class->size * s_objidx); |
| d_off = offset_in_page(class->size * d_objidx); |
| |
| if (s_off + class->size > PAGE_SIZE) |
| s_size = PAGE_SIZE - s_off; |
| |
| if (d_off + class->size > PAGE_SIZE) |
| d_size = PAGE_SIZE - d_off; |
| |
| s_addr = kmap_atomic(s_page); |
| d_addr = kmap_atomic(d_page); |
| |
| while (1) { |
| size = min(s_size, d_size); |
| memcpy(d_addr + d_off, s_addr + s_off, size); |
| written += size; |
| |
| if (written == class->size) |
| break; |
| |
| s_off += size; |
| s_size -= size; |
| d_off += size; |
| d_size -= size; |
| |
| /* |
| * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() |
| * calls must occurs in reverse order of calls to kmap_atomic(). |
| * So, to call kunmap_atomic(s_addr) we should first call |
| * kunmap_atomic(d_addr). For more details see |
| * Documentation/mm/highmem.rst. |
| */ |
| if (s_off >= PAGE_SIZE) { |
| kunmap_atomic(d_addr); |
| kunmap_atomic(s_addr); |
| s_page = get_next_page(s_page); |
| s_addr = kmap_atomic(s_page); |
| d_addr = kmap_atomic(d_page); |
| s_size = class->size - written; |
| s_off = 0; |
| } |
| |
| if (d_off >= PAGE_SIZE) { |
| kunmap_atomic(d_addr); |
| d_page = get_next_page(d_page); |
| d_addr = kmap_atomic(d_page); |
| d_size = class->size - written; |
| d_off = 0; |
| } |
| } |
| |
| kunmap_atomic(d_addr); |
| kunmap_atomic(s_addr); |
| } |
| |
| /* |
| * Find alloced object in zspage from index object and |
| * return handle. |
| */ |
| static unsigned long find_alloced_obj(struct size_class *class, |
| struct page *page, int *obj_idx) |
| { |
| unsigned int offset; |
| int index = *obj_idx; |
| unsigned long handle = 0; |
| void *addr = kmap_atomic(page); |
| |
| offset = get_first_obj_offset(page); |
| offset += class->size * index; |
| |
| while (offset < PAGE_SIZE) { |
| if (obj_allocated(page, addr + offset, &handle)) |
| break; |
| |
| offset += class->size; |
| index++; |
| } |
| |
| kunmap_atomic(addr); |
| |
| *obj_idx = index; |
| |
| return handle; |
| } |
| |
| static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, |
| struct zspage *dst_zspage) |
| { |
| unsigned long used_obj, free_obj; |
| unsigned long handle; |
| int obj_idx = 0; |
| struct page *s_page = get_first_page(src_zspage); |
| struct size_class *class = pool->size_class[src_zspage->class]; |
| |
| while (1) { |
| handle = find_alloced_obj(class, s_page, &obj_idx); |
| if (!handle) { |
| s_page = get_next_page(s_page); |
| if (!s_page) |
| break; |
| obj_idx = 0; |
| continue; |
| } |
| |
| used_obj = handle_to_obj(handle); |
| free_obj = obj_malloc(pool, dst_zspage, handle); |
| zs_object_copy(class, free_obj, used_obj); |
| obj_idx++; |
| record_obj(handle, free_obj); |
| obj_free(class->size, used_obj); |
| |
| /* Stop if there is no more space */ |
| if (zspage_full(class, dst_zspage)) |
| break; |
| |
| /* Stop if there are no more objects to migrate */ |
| if (zspage_empty(src_zspage)) |
| break; |
| } |
| } |
| |
| static struct zspage *isolate_src_zspage(struct size_class *class) |
| { |
| struct zspage *zspage; |
| int fg; |
| |
| for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { |
| zspage = list_first_entry_or_null(&class->fullness_list[fg], |
| struct zspage, list); |
| if (zspage) { |
| remove_zspage(class, zspage, fg); |
| return zspage; |
| } |
| } |
| |
| return zspage; |
| } |
| |
| static struct zspage *isolate_dst_zspage(struct size_class *class) |
| { |
| struct zspage *zspage; |
| int fg; |
| |
| for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { |
| zspage = list_first_entry_or_null(&class->fullness_list[fg], |
| struct zspage, list); |
| if (zspage) { |
| remove_zspage(class, zspage, fg); |
| return zspage; |
| } |
| } |
| |
| return zspage; |
| } |
| |
| /* |
| * putback_zspage - add @zspage into right class's fullness list |
| * @class: destination class |
| * @zspage: target page |
| * |
| * Return @zspage's fullness status |
| */ |
| static int putback_zspage(struct size_class *class, struct zspage *zspage) |
| { |
| int fullness; |
| |
| fullness = get_fullness_group(class, zspage); |
| insert_zspage(class, zspage, fullness); |
| set_zspage_mapping(zspage, class->index, fullness); |
| |
| return fullness; |
| } |
| |
| #ifdef CONFIG_COMPACTION |
| /* |
| * To prevent zspage destroy during migration, zspage freeing should |
| * hold locks of all pages in the zspage. |
| */ |
| static void lock_zspage(struct zspage *zspage) |
| { |
| struct page *curr_page, *page; |
| |
| /* |
| * Pages we haven't locked yet can be migrated off the list while we're |
| * trying to lock them, so we need to be careful and only attempt to |
| * lock each page under migrate_read_lock(). Otherwise, the page we lock |
| * may no longer belong to the zspage. This means that we may wait for |
| * the wrong page to unlock, so we must take a reference to the page |
| * prior to waiting for it to unlock outside migrate_read_lock(). |
| */ |
| while (1) { |
| migrate_read_lock(zspage); |
| page = get_first_page(zspage); |
| if (trylock_page(page)) |
| break; |
| get_page(page); |
| migrate_read_unlock(zspage); |
| wait_on_page_locked(page); |
| put_page(page); |
| } |
| |
| curr_page = page; |
| while ((page = get_next_page(curr_page))) { |
| if (trylock_page(page)) { |
| curr_page = page; |
| } else { |
| get_page(page); |
| migrate_read_unlock(zspage); |
| wait_on_page_locked(page); |
| put_page(page); |
| migrate_read_lock(zspage); |
| } |
| } |
| migrate_read_unlock(zspage); |
| } |
| #endif /* CONFIG_COMPACTION */ |
| |
| static void migrate_lock_init(struct zspage *zspage) |
| { |
| rwlock_init(&zspage->lock); |
| } |
| |
| static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) |
| { |
| read_lock(&zspage->lock); |
| } |
| |
| static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) |
| { |
| read_unlock(&zspage->lock); |
| } |
| |
| #ifdef CONFIG_COMPACTION |
| static void migrate_write_lock(struct zspage *zspage) |
| { |
| write_lock(&zspage->lock); |
| } |
| |
| static void migrate_write_lock_nested(struct zspage *zspage) |
| { |
| write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); |
| } |
| |
| static void migrate_write_unlock(struct zspage *zspage) |
| { |
| write_unlock(&zspage->lock); |
| } |
| |
| /* Number of isolated subpage for *page migration* in this zspage */ |
| static void inc_zspage_isolation(struct zspage *zspage) |
| { |
| zspage->isolated++; |
| } |
| |
| static void dec_zspage_isolation(struct zspage *zspage) |
| { |
| VM_BUG_ON(zspage->isolated == 0); |
| zspage->isolated--; |
| } |
| |
| static const struct movable_operations zsmalloc_mops; |
| |
| static void replace_sub_page(struct size_class *class, struct zspage *zspage, |
| struct page *newpage, struct page *oldpage) |
| { |
| struct page *page; |
| struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; |
| int idx = 0; |
| |
| page = get_first_page(zspage); |
| do { |
| if (page == oldpage) |
| pages[idx] = newpage; |
| else |
| pages[idx] = page; |
| idx++; |
| } while ((page = get_next_page(page)) != NULL); |
| |
| create_page_chain(class, zspage, pages); |
| set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); |
| if (unlikely(ZsHugePage(zspage))) |
| newpage->index = oldpage->index; |
| __SetPageMovable(newpage, &zsmalloc_mops); |
| } |
| |
| static bool zs_page_isolate(struct page *page, isolate_mode_t mode) |
| { |
| struct zs_pool *pool; |
| struct zspage *zspage; |
| |
| /* |
| * Page is locked so zspage couldn't be destroyed. For detail, look at |
| * lock_zspage in free_zspage. |
| */ |
| VM_BUG_ON_PAGE(PageIsolated(page), page); |
| |
| zspage = get_zspage(page); |
| pool = zspage->pool; |
| spin_lock(&pool->lock); |
| inc_zspage_isolation(zspage); |
| spin_unlock(&pool->lock); |
| |
| return true; |
| } |
| |
| static int zs_page_migrate(struct page *newpage, struct page *page, |
| enum migrate_mode mode) |
| { |
| struct zs_pool *pool; |
| struct size_class *class; |
| struct zspage *zspage; |
| struct page *dummy; |
| void *s_addr, *d_addr, *addr; |
| unsigned int offset; |
| unsigned long handle; |
| unsigned long old_obj, new_obj; |
| unsigned int obj_idx; |
| |
| /* |
| * We cannot support the _NO_COPY case here, because copy needs to |
| * happen under the zs lock, which does not work with |
| * MIGRATE_SYNC_NO_COPY workflow. |
| */ |
| if (mode == MIGRATE_SYNC_NO_COPY) |
| return -EINVAL; |
| |
| VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| |
| /* The page is locked, so this pointer must remain valid */ |
| zspage = get_zspage(page); |
| pool = zspage->pool; |
| |
| /* |
| * The pool's lock protects the race between zpage migration |
| * and zs_free. |
| */ |
| spin_lock(&pool->lock); |
| class = zspage_class(pool, zspage); |
| |
| /* the migrate_write_lock protects zpage access via zs_map_object */ |
| migrate_write_lock(zspage); |
| |
| offset = get_first_obj_offset(page); |
| s_addr = kmap_atomic(page); |
| |
| /* |
| * Here, any user cannot access all objects in the zspage so let's move. |
| */ |
| d_addr = kmap_atomic(newpage); |
| memcpy(d_addr, s_addr, PAGE_SIZE); |
| kunmap_atomic(d_addr); |
| |
| for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; |
| addr += class->size) { |
| if (obj_allocated(page, addr, &handle)) { |
| |
| old_obj = handle_to_obj(handle); |
| obj_to_location(old_obj, &dummy, &obj_idx); |
| new_obj = (unsigned long)location_to_obj(newpage, |
| obj_idx); |
| record_obj(handle, new_obj); |
| } |
| } |
| kunmap_atomic(s_addr); |
| |
| replace_sub_page(class, zspage, newpage, page); |
| dec_zspage_isolation(zspage); |
| /* |
| * Since we complete the data copy and set up new zspage structure, |
| * it's okay to release the pool's lock. |
| */ |
| spin_unlock(&pool->lock); |
| migrate_write_unlock(zspage); |
| |
| get_page(newpage); |
| if (page_zone(newpage) != page_zone(page)) { |
| dec_zone_page_state(page, NR_ZSPAGES); |
| inc_zone_page_state(newpage, NR_ZSPAGES); |
| } |
| |
| reset_page(page); |
| put_page(page); |
| |
| return MIGRATEPAGE_SUCCESS; |
| } |
| |
| static void zs_page_putback(struct page *page) |
| { |
| struct zs_pool *pool; |
| struct zspage *zspage; |
| |
| VM_BUG_ON_PAGE(!PageIsolated(page), page); |
| |
| zspage = get_zspage(page); |
| pool = zspage->pool; |
| spin_lock(&pool->lock); |
| dec_zspage_isolation(zspage); |
| spin_unlock(&pool->lock); |
| } |
| |
| static const struct movable_operations zsmalloc_mops = { |
| .isolate_page = zs_page_isolate, |
| .migrate_page = zs_page_migrate, |
| .putback_page = zs_page_putback, |
| }; |
| |
| /* |
| * Caller should hold page_lock of all pages in the zspage |
| * In here, we cannot use zspage meta data. |
| */ |
| static void async_free_zspage(struct work_struct *work) |
| { |
| int i; |
| struct size_class *class; |
| unsigned int class_idx; |
| int fullness; |
| struct zspage *zspage, *tmp; |
| LIST_HEAD(free_pages); |
| struct zs_pool *pool = container_of(work, struct zs_pool, |
| free_work); |
| |
| for (i = 0; i < ZS_SIZE_CLASSES; i++) { |
| class = pool->size_class[i]; |
| if (class->index != i) |
| continue; |
| |
| spin_lock(&pool->lock); |
| list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], |
| &free_pages); |
| spin_unlock(&pool->lock); |
| } |
| |
| list_for_each_entry_safe(zspage, tmp, &free_pages, list) { |
| list_del(&zspage->list); |
| lock_zspage(zspage); |
| |
| get_zspage_mapping(zspage, &class_idx, &fullness); |
| VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); |
| class = pool->size_class[class_idx]; |
| spin_lock(&pool->lock); |
| __free_zspage(pool, class, zspage); |
| spin_unlock(&pool->lock); |
| } |
| }; |
| |
| static void kick_deferred_free(struct zs_pool *pool) |
| { |
| schedule_work(&pool->free_work); |
| } |
| |
| static void zs_flush_migration(struct zs_pool *pool) |
| { |
| flush_work(&pool->free_work); |
| } |
| |
| static void init_deferred_free(struct zs_pool *pool) |
| { |
| INIT_WORK(&pool->free_work, async_free_zspage); |
| } |
| |
| static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) |
| { |
| struct page *page = get_first_page(zspage); |
| |
| do { |
| WARN_ON(!trylock_page(page)); |
| __SetPageMovable(page, &zsmalloc_mops); |
| unlock_page(page); |
| } while ((page = get_next_page(page)) != NULL); |
| } |
| #else |
| static inline void zs_flush_migration(struct zs_pool *pool) { } |
| #endif |
| |
| /* |
| * |
| * Based on the number of unused allocated objects calculate |
| * and return the number of pages that we can free. |
| */ |
| static unsigned long zs_can_compact(struct size_class *class) |
| { |
| unsigned long obj_wasted; |
| unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); |
| unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); |
| |
| if (obj_allocated <= obj_used) |
| return 0; |
| |
| obj_wasted = obj_allocated - obj_used; |
| obj_wasted /= class->objs_per_zspage; |
| |
| return obj_wasted * class->pages_per_zspage; |
| } |
| |
| static unsigned long __zs_compact(struct zs_pool *pool, |
| struct size_class *class) |
| { |
| struct zspage *src_zspage = NULL; |
| struct zspage *dst_zspage = NULL; |
| unsigned long pages_freed = 0; |
| |
| /* |
| * protect the race between zpage migration and zs_free |
| * as well as zpage allocation/free |
| */ |
| spin_lock(&pool->lock); |
| while (zs_can_compact(class)) { |
| int fg; |
| |
| if (!dst_zspage) { |
| dst_zspage = isolate_dst_zspage(class); |
| if (!dst_zspage) |
| break; |
| migrate_write_lock(dst_zspage); |
| } |
| |
| src_zspage = isolate_src_zspage(class); |
| if (!src_zspage) |
| break; |
| |
| migrate_write_lock_nested(src_zspage); |
| |
| migrate_zspage(pool, src_zspage, dst_zspage); |
| fg = putback_zspage(class, src_zspage); |
| migrate_write_unlock(src_zspage); |
| |
| if (fg == ZS_INUSE_RATIO_0) { |
| free_zspage(pool, class, src_zspage); |
| pages_freed += class->pages_per_zspage; |
| } |
| src_zspage = NULL; |
| |
| if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 |
| || spin_is_contended(&pool->lock)) { |
| putback_zspage(class, dst_zspage); |
| migrate_write_unlock(dst_zspage); |
| dst_zspage = NULL; |
| |
| spin_unlock(&pool->lock); |
| cond_resched(); |
| spin_lock(&pool->lock); |
| } |
| } |
| |
| if (src_zspage) { |
| putback_zspage(class, src_zspage); |
| migrate_write_unlock(src_zspage); |
| } |
| |
| if (dst_zspage) { |
| putback_zspage(class, dst_zspage); |
| migrate_write_unlock(dst_zspage); |
| } |
| spin_unlock(&pool->lock); |
| |
| return pages_freed; |
| } |
| |
| unsigned long zs_compact(struct zs_pool *pool) |
| { |
| int i; |
| struct size_class *class; |
| unsigned long pages_freed = 0; |
| |
| /* |
| * Pool compaction is performed under pool->lock so it is basically |
| * single-threaded. Having more than one thread in __zs_compact() |
| * will increase pool->lock contention, which will impact other |
| * zsmalloc operations that need pool->lock. |
| */ |
| if (atomic_xchg(&pool->compaction_in_progress, 1)) |
| return 0; |
| |
| for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { |
| class = pool->size_class[i]; |
| if (class->index != i) |
| continue; |
| pages_freed += __zs_compact(pool, class); |
| } |
| atomic_long_add(pages_freed, &pool->stats.pages_compacted); |
| atomic_set(&pool->compaction_in_progress, 0); |
| |
| return pages_freed; |
| } |
| EXPORT_SYMBOL_GPL(zs_compact); |
| |
| void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) |
| { |
| memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); |
| } |
| EXPORT_SYMBOL_GPL(zs_pool_stats); |
| |
| static unsigned long zs_shrinker_scan(struct shrinker *shrinker, |
| struct shrink_control *sc) |
| { |
| unsigned long pages_freed; |
| struct zs_pool *pool = container_of(shrinker, struct zs_pool, |
| shrinker); |
| |
| /* |
| * Compact classes and calculate compaction delta. |
| * Can run concurrently with a manually triggered |
| * (by user) compaction. |
| */ |
| pages_freed = zs_compact(pool); |
| |
| return pages_freed ? pages_freed : SHRINK_STOP; |
| } |
| |
| static unsigned long zs_shrinker_count(struct shrinker *shrinker, |
| struct shrink_control *sc) |
| { |
| int i; |
| struct size_class *class; |
| unsigned long pages_to_free = 0; |
| struct zs_pool *pool = container_of(shrinker, struct zs_pool, |
| shrinker); |
| |
| for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { |
| class = pool->size_class[i]; |
| if (class->index != i) |
| continue; |
| |
| pages_to_free += zs_can_compact(class); |
| } |
| |
| return pages_to_free; |
| } |
| |
| static void zs_unregister_shrinker(struct zs_pool *pool) |
| { |
| unregister_shrinker(&pool->shrinker); |
| } |
| |
| static int zs_register_shrinker(struct zs_pool *pool) |
| { |
| pool->shrinker.scan_objects = zs_shrinker_scan; |
| pool->shrinker.count_objects = zs_shrinker_count; |
| pool->shrinker.batch = 0; |
| pool->shrinker.seeks = DEFAULT_SEEKS; |
| |
| return register_shrinker(&pool->shrinker, "mm-zspool:%s", |
| pool->name); |
| } |
| |
| static int calculate_zspage_chain_size(int class_size) |
| { |
| int i, min_waste = INT_MAX; |
| int chain_size = 1; |
| |
| if (is_power_of_2(class_size)) |
| return chain_size; |
| |
| for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { |
| int waste; |
| |
| waste = (i * PAGE_SIZE) % class_size; |
| if (waste < min_waste) { |
| min_waste = waste; |
| chain_size = i; |
| } |
| } |
| |
| return chain_size; |
| } |
| |
| /** |
| * zs_create_pool - Creates an allocation pool to work from. |
| * @name: pool name to be created |
| * |
| * This function must be called before anything when using |
| * the zsmalloc allocator. |
| * |
| * On success, a pointer to the newly created pool is returned, |
| * otherwise NULL. |
| */ |
| struct zs_pool *zs_create_pool(const char *name) |
| { |
| int i; |
| struct zs_pool *pool; |
| struct size_class *prev_class = NULL; |
| |
| pool = kzalloc(sizeof(*pool), GFP_KERNEL); |
| if (!pool) |
| return NULL; |
| |
| init_deferred_free(pool); |
| spin_lock_init(&pool->lock); |
| atomic_set(&pool->compaction_in_progress, 0); |
| |
| pool->name = kstrdup(name, GFP_KERNEL); |
| if (!pool->name) |
| goto err; |
| |
| if (create_cache(pool)) |
| goto err; |
| |
| /* |
| * Iterate reversely, because, size of size_class that we want to use |
| * for merging should be larger or equal to current size. |
| */ |
| for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { |
| int size; |
| int pages_per_zspage; |
| int objs_per_zspage; |
| struct size_class *class; |
| int fullness; |
| |
| size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; |
| if (size > ZS_MAX_ALLOC_SIZE) |
| size = ZS_MAX_ALLOC_SIZE; |
| pages_per_zspage = calculate_zspage_chain_size(size); |
| objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; |
| |
| /* |
| * We iterate from biggest down to smallest classes, |
| * so huge_class_size holds the size of the first huge |
| * class. Any object bigger than or equal to that will |
| * endup in the huge class. |
| */ |
| if (pages_per_zspage != 1 && objs_per_zspage != 1 && |
| !huge_class_size) { |
| huge_class_size = size; |
| /* |
| * The object uses ZS_HANDLE_SIZE bytes to store the |
| * handle. We need to subtract it, because zs_malloc() |
| * unconditionally adds handle size before it performs |
| * size class search - so object may be smaller than |
| * huge class size, yet it still can end up in the huge |
| * class because it grows by ZS_HANDLE_SIZE extra bytes |
| * right before class lookup. |
| */ |
| huge_class_size -= (ZS_HANDLE_SIZE - 1); |
| } |
| |
| /* |
| * size_class is used for normal zsmalloc operation such |
| * as alloc/free for that size. Although it is natural that we |
| * have one size_class for each size, there is a chance that we |
| * can get more memory utilization if we use one size_class for |
| * many different sizes whose size_class have same |
| * characteristics. So, we makes size_class point to |
| * previous size_class if possible. |
| */ |
| if (prev_class) { |
| if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { |
| pool->size_class[i] = prev_class; |
| continue; |
| } |
| } |
| |
| class = kzalloc(sizeof(struct size_class), GFP_KERNEL); |
| if (!class) |
| goto err; |
| |
| class->size = size; |
| class->index = i; |
| class->pages_per_zspage = pages_per_zspage; |
| class->objs_per_zspage = objs_per_zspage; |
| pool->size_class[i] = class; |
| |
| fullness = ZS_INUSE_RATIO_0; |
| while (fullness < NR_FULLNESS_GROUPS) { |
| INIT_LIST_HEAD(&class->fullness_list[fullness]); |
| fullness++; |
| } |
| |
| prev_class = class; |
| } |
| |
| /* debug only, don't abort if it fails */ |
| zs_pool_stat_create(pool, name); |
| |
| /* |
| * Not critical since shrinker is only used to trigger internal |
| * defragmentation of the pool which is pretty optional thing. If |
| * registration fails we still can use the pool normally and user can |
| * trigger compaction manually. Thus, ignore return code. |
| */ |
| zs_register_shrinker(pool); |
| |
| return pool; |
| |
| err: |
| zs_destroy_pool(pool); |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(zs_create_pool); |
| |
| void zs_destroy_pool(struct zs_pool *pool) |
| { |
| int i; |
| |
| zs_unregister_shrinker(pool); |
| zs_flush_migration(pool); |
| zs_pool_stat_destroy(pool); |
| |
| for (i = 0; i < ZS_SIZE_CLASSES; i++) { |
| int fg; |
| struct size_class *class = pool->size_class[i]; |
| |
| if (!class) |
| continue; |
| |
| if (class->index != i) |
| continue; |
| |
| for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { |
| if (list_empty(&class->fullness_list[fg])) |
| continue; |
| |
| pr_err("Class-%d fullness group %d is not empty\n", |
| class->size, fg); |
| } |
| kfree(class); |
| } |
| |
| destroy_cache(pool); |
| kfree(pool->name); |
| kfree(pool); |
| } |
| EXPORT_SYMBOL_GPL(zs_destroy_pool); |
| |
| static int __init zs_init(void) |
| { |
| int ret; |
| |
| ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", |
| zs_cpu_prepare, zs_cpu_dead); |
| if (ret) |
| goto out; |
| |
| #ifdef CONFIG_ZPOOL |
| zpool_register_driver(&zs_zpool_driver); |
| #endif |
| |
| zs_stat_init(); |
| |
| return 0; |
| |
| out: |
| return ret; |
| } |
| |
| static void __exit zs_exit(void) |
| { |
| #ifdef CONFIG_ZPOOL |
| zpool_unregister_driver(&zs_zpool_driver); |
| #endif |
| cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); |
| |
| zs_stat_exit(); |
| } |
| |
| module_init(zs_init); |
| module_exit(zs_exit); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |