| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. |
| * No bombay mix was harmed in the writing of this file. |
| * |
| * Copyright (C) 2020 Google LLC |
| * Author: Will Deacon <will@kernel.org> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <asm/kvm_pgtable.h> |
| #include <asm/stage2_pgtable.h> |
| |
| |
| #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ |
| KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ |
| KVM_PTE_LEAF_ATTR_HI_S2_XN) |
| |
| struct kvm_pgtable_walk_data { |
| struct kvm_pgtable *pgt; |
| struct kvm_pgtable_walker *walker; |
| |
| u64 addr; |
| u64 end; |
| }; |
| |
| static bool kvm_phys_is_valid(u64 phys) |
| { |
| return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX)); |
| } |
| |
| static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level) |
| { |
| u64 granule = kvm_granule_size(level); |
| |
| if (!kvm_level_supports_block_mapping(level)) |
| return false; |
| |
| if (granule > (end - addr)) |
| return false; |
| |
| if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) |
| return false; |
| |
| return IS_ALIGNED(addr, granule); |
| } |
| |
| static bool kvm_pte_contiguous(kvm_pte_t pte, u32 level) |
| { |
| if (kvm_pte_table(pte, level)) |
| return false; |
| |
| return kvm_pte_valid(pte) && (pte & KVM_PTE_LEAF_ATTR_HI_S2_CONT); |
| } |
| |
| static u64 kvm_contiguous_pte_alignment(u32 level) |
| { |
| switch (PAGE_SIZE) { |
| case SZ_4K: |
| /* |
| * We only support 52-bit PA with 64K pages, so we can |
| * have contiguous level 0 mappings. |
| */ |
| return SZ_128; |
| case SZ_16K: |
| switch (level) { |
| case 2: |
| return SZ_256; |
| case 3: |
| return SZ_1K; |
| } |
| break; |
| case SZ_64K: |
| /* Level 1 support depends on !FEAT_LPA, so just skip it. */ |
| if (level > 1) |
| return SZ_256; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) |
| { |
| u64 shift = kvm_granule_shift(level); |
| u64 mask = BIT(PAGE_SHIFT - 3) - 1; |
| |
| return (data->addr >> shift) & mask; |
| } |
| |
| static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) |
| { |
| u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ |
| u64 mask = BIT(pgt->ia_bits) - 1; |
| |
| return (addr & mask) >> shift; |
| } |
| |
| static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data) |
| { |
| return __kvm_pgd_page_idx(data->pgt, data->addr); |
| } |
| |
| static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) |
| { |
| struct kvm_pgtable pgt = { |
| .ia_bits = ia_bits, |
| .start_level = start_level, |
| }; |
| |
| return __kvm_pgd_page_idx(&pgt, -1ULL) + 1; |
| } |
| |
| static void kvm_clear_pte(kvm_pte_t *ptep) |
| { |
| WRITE_ONCE(*ptep, 0); |
| } |
| |
| static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp, |
| struct kvm_pgtable_mm_ops *mm_ops) |
| { |
| kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); |
| |
| pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); |
| pte |= KVM_PTE_VALID; |
| |
| WARN_ON(kvm_pte_valid(old)); |
| smp_store_release(ptep, pte); |
| } |
| |
| static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level) |
| { |
| kvm_pte_t pte = kvm_phys_to_pte(pa); |
| u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : |
| KVM_PTE_TYPE_BLOCK; |
| |
| pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); |
| pte &= ~KVM_PTE_LEAF_ATTR_HI_S2_CONT; |
| pte |= FIELD_PREP(KVM_PTE_TYPE, type); |
| pte |= KVM_PTE_VALID; |
| |
| return pte; |
| } |
| |
| static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr, |
| u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag) |
| { |
| struct kvm_pgtable_walker *walker = data->walker; |
| return walker->cb(addr, data->end, level, ptep, flag, walker->arg); |
| } |
| |
| static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, |
| kvm_pte_t *pgtable, u32 level); |
| |
| static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, |
| kvm_pte_t *ptep, u32 level) |
| { |
| int ret = 0; |
| u64 addr = data->addr; |
| kvm_pte_t *childp, pte = *ptep; |
| bool table = kvm_pte_table(pte, level); |
| enum kvm_pgtable_walk_flags flags = data->walker->flags; |
| |
| if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) { |
| ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| KVM_PGTABLE_WALK_TABLE_PRE); |
| } |
| |
| if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) { |
| ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| KVM_PGTABLE_WALK_LEAF); |
| pte = *ptep; |
| table = kvm_pte_table(pte, level); |
| } |
| |
| if (ret) |
| goto out; |
| |
| if (!table) { |
| data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); |
| data->addr += kvm_granule_size(level); |
| goto out; |
| } |
| |
| childp = kvm_pte_follow(pte, data->pgt->mm_ops); |
| ret = __kvm_pgtable_walk(data, childp, level + 1); |
| if (ret) |
| goto out; |
| |
| if (flags & KVM_PGTABLE_WALK_TABLE_POST) { |
| ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, |
| KVM_PGTABLE_WALK_TABLE_POST); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, |
| kvm_pte_t *pgtable, u32 level) |
| { |
| u32 idx; |
| int ret = 0; |
| |
| if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) |
| return -EINVAL; |
| |
| for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { |
| kvm_pte_t *ptep = &pgtable[idx]; |
| |
| if (data->addr >= data->end) |
| break; |
| |
| ret = __kvm_pgtable_visit(data, ptep, level); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data) |
| { |
| u32 idx; |
| int ret = 0; |
| struct kvm_pgtable *pgt = data->pgt; |
| u64 limit = BIT(pgt->ia_bits); |
| |
| if (data->addr > limit || data->end > limit) |
| return -ERANGE; |
| |
| if (!pgt->pgd) |
| return -EINVAL; |
| |
| for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) { |
| kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE]; |
| |
| ret = __kvm_pgtable_walk(data, ptep, pgt->start_level); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| struct kvm_pgtable_walker *walker) |
| { |
| struct kvm_pgtable_walk_data walk_data = { |
| .pgt = pgt, |
| .addr = ALIGN_DOWN(addr, PAGE_SIZE), |
| .end = PAGE_ALIGN(walk_data.addr + size), |
| .walker = walker, |
| }; |
| |
| return _kvm_pgtable_walk(&walk_data); |
| } |
| |
| struct leaf_walk_data { |
| kvm_pte_t pte; |
| u32 level; |
| }; |
| |
| static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| struct leaf_walk_data *data = arg; |
| |
| data->pte = *ptep; |
| data->level = level; |
| |
| return 0; |
| } |
| |
| int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, |
| kvm_pte_t *ptep, u32 *level) |
| { |
| struct leaf_walk_data data; |
| struct kvm_pgtable_walker walker = { |
| .cb = leaf_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| .arg = &data, |
| }; |
| int ret; |
| |
| ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), |
| PAGE_SIZE, &walker); |
| if (!ret) { |
| if (ptep) |
| *ptep = data.pte; |
| if (level) |
| *level = data.level; |
| } |
| |
| return ret; |
| } |
| |
| struct hyp_map_data { |
| u64 phys; |
| kvm_pte_t attr; |
| struct kvm_pgtable_mm_ops *mm_ops; |
| }; |
| |
| static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) |
| { |
| u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : |
| KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; |
| bool device = prot & KVM_PGTABLE_PROT_DEVICE; |
| u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; |
| bool nc = prot & KVM_PGTABLE_PROT_NC; |
| kvm_pte_t attr; |
| u32 mtype; |
| |
| if (!(prot & KVM_PGTABLE_PROT_R) || (device && nc) || |
| (prot & (KVM_PGTABLE_PROT_PXN | KVM_PGTABLE_PROT_UXN))) |
| return -EINVAL; |
| |
| if (device) |
| mtype = MT_DEVICE_nGnRnE; |
| else if (nc) |
| mtype = MT_NORMAL_NC; |
| else |
| mtype = MT_NORMAL; |
| |
| attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); |
| |
| if (prot & KVM_PGTABLE_PROT_X) { |
| if (prot & KVM_PGTABLE_PROT_W) |
| return -EINVAL; |
| |
| if (device) |
| return -EINVAL; |
| } else { |
| attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; |
| } |
| |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); |
| attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; |
| attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; |
| *ptep = attr; |
| |
| return 0; |
| } |
| |
| enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) |
| { |
| enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; |
| u32 ap; |
| |
| if (!kvm_pte_valid(pte)) |
| return prot; |
| |
| if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) |
| prot |= KVM_PGTABLE_PROT_X; |
| |
| ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); |
| if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) |
| prot |= KVM_PGTABLE_PROT_R; |
| else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) |
| prot |= KVM_PGTABLE_PROT_RW; |
| |
| return prot; |
| } |
| |
| static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, struct hyp_map_data *data) |
| { |
| kvm_pte_t new, old = *ptep; |
| u64 granule = kvm_granule_size(level), phys = data->phys; |
| |
| if (!kvm_block_mapping_supported(addr, end, phys, level)) |
| return false; |
| |
| data->phys += granule; |
| new = kvm_init_valid_leaf_pte(phys, data->attr, level); |
| if (old == new) |
| return true; |
| if (!kvm_pte_valid(old)) |
| data->mm_ops->get_page(ptep); |
| else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) |
| return false; |
| |
| smp_store_release(ptep, new); |
| return true; |
| } |
| |
| static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| kvm_pte_t *childp; |
| struct hyp_map_data *data = arg; |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| |
| if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg)) |
| return 0; |
| |
| if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| return -EINVAL; |
| |
| childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); |
| if (!childp) |
| return -ENOMEM; |
| |
| kvm_set_table_pte(ptep, childp, mm_ops); |
| mm_ops->get_page(ptep); |
| return 0; |
| } |
| |
| int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, |
| enum kvm_pgtable_prot prot) |
| { |
| int ret; |
| struct hyp_map_data map_data = { |
| .phys = ALIGN_DOWN(phys, PAGE_SIZE), |
| .mm_ops = pgt->mm_ops, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = hyp_map_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| .arg = &map_data, |
| }; |
| |
| ret = hyp_set_prot_attr(prot, &map_data.attr); |
| if (ret) |
| return ret; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| dsb(ishst); |
| isb(); |
| return ret; |
| } |
| |
| struct hyp_unmap_data { |
| u64 unmapped; |
| struct kvm_pgtable_mm_ops *mm_ops; |
| }; |
| |
| static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| kvm_pte_t pte = *ptep, *childp = NULL; |
| u64 granule = kvm_granule_size(level); |
| struct hyp_unmap_data *data = arg; |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| |
| if (!kvm_pte_valid(pte)) |
| return -EINVAL; |
| |
| if (kvm_pte_table(pte, level)) { |
| childp = kvm_pte_follow(pte, mm_ops); |
| |
| if (mm_ops->page_count(childp) != 1) |
| return 0; |
| |
| kvm_clear_pte(ptep); |
| dsb(ishst); |
| __tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level); |
| } else { |
| if (end - addr < granule) |
| return -EINVAL; |
| |
| kvm_clear_pte(ptep); |
| dsb(ishst); |
| __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level); |
| data->unmapped += granule; |
| } |
| |
| dsb(ish); |
| isb(); |
| mm_ops->put_page(ptep); |
| |
| if (childp) |
| mm_ops->put_page(childp); |
| |
| return 0; |
| } |
| |
| u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| struct hyp_unmap_data unmap_data = { |
| .mm_ops = pgt->mm_ops, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = hyp_unmap_walker, |
| .arg = &unmap_data, |
| .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, |
| }; |
| |
| if (!pgt->mm_ops->page_count) |
| return 0; |
| |
| kvm_pgtable_walk(pgt, addr, size, &walker); |
| return unmap_data.unmapped; |
| } |
| |
| int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, |
| struct kvm_pgtable_mm_ops *mm_ops) |
| { |
| u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); |
| |
| pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL); |
| if (!pgt->pgd) |
| return -ENOMEM; |
| |
| pgt->ia_bits = va_bits; |
| pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; |
| pgt->mm_ops = mm_ops; |
| pgt->mmu = NULL; |
| pgt->pte_ops = NULL; |
| |
| return 0; |
| } |
| |
| static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| struct kvm_pgtable_mm_ops *mm_ops = arg; |
| kvm_pte_t pte = *ptep; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| mm_ops->put_page(ptep); |
| |
| if (kvm_pte_table(pte, level)) |
| mm_ops->put_page(kvm_pte_follow(pte, mm_ops)); |
| |
| return 0; |
| } |
| |
| void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = hyp_free_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, |
| .arg = pgt->mm_ops, |
| }; |
| |
| WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); |
| pgt->mm_ops->put_page(pgt->pgd); |
| pgt->pgd = NULL; |
| } |
| |
| struct stage2_map_data { |
| u64 phys; |
| kvm_pte_t attr; |
| u64 annotation; |
| |
| kvm_pte_t *anchor; |
| kvm_pte_t *childp; |
| |
| struct kvm_s2_mmu *mmu; |
| void *memcache; |
| |
| struct kvm_pgtable_mm_ops *mm_ops; |
| |
| /* Force mappings to page granularity */ |
| bool force_pte; |
| }; |
| |
| u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) |
| { |
| u64 vtcr = VTCR_EL2_FLAGS; |
| u8 lvls; |
| |
| vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; |
| vtcr |= VTCR_EL2_T0SZ(phys_shift); |
| /* |
| * Use a minimum 2 level page table to prevent splitting |
| * host PMD huge pages at stage2. |
| */ |
| lvls = stage2_pgtable_levels(phys_shift); |
| if (lvls < 2) |
| lvls = 2; |
| vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); |
| |
| /* |
| * Enable the Hardware Access Flag management, unconditionally |
| * on all CPUs. The features is RES0 on CPUs without the support |
| * and must be ignored by the CPUs. |
| */ |
| vtcr |= VTCR_EL2_HA; |
| |
| /* Set the vmid bits */ |
| vtcr |= (get_vmid_bits(mmfr1) == 16) ? |
| VTCR_EL2_VS_16BIT : |
| VTCR_EL2_VS_8BIT; |
| |
| return vtcr; |
| } |
| |
| static bool stage2_has_fwb(struct kvm_pgtable *pgt) |
| { |
| if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| return false; |
| |
| return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); |
| } |
| |
| #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) |
| |
| static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, |
| kvm_pte_t *ptep) |
| { |
| u64 exec_type = KVM_PTE_LEAF_ATTR_HI_S2_XN_XN; |
| bool device = prot & KVM_PGTABLE_PROT_DEVICE; |
| u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; |
| bool nc = prot & KVM_PGTABLE_PROT_NC; |
| enum kvm_pgtable_prot exec_prot; |
| kvm_pte_t attr; |
| |
| if (device) |
| attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE); |
| else if (nc) |
| attr = KVM_S2_MEMATTR(pgt, NORMAL_NC); |
| else |
| attr = KVM_S2_MEMATTR(pgt, NORMAL); |
| |
| exec_prot = prot & (KVM_PGTABLE_PROT_X | KVM_PGTABLE_PROT_PXN | KVM_PGTABLE_PROT_UXN); |
| switch(exec_prot) { |
| case KVM_PGTABLE_PROT_X: |
| goto set_ap; |
| case KVM_PGTABLE_PROT_PXN: |
| exec_type = KVM_PTE_LEAF_ATTR_HI_S2_XN_PXN; |
| break; |
| case KVM_PGTABLE_PROT_UXN: |
| exec_type = KVM_PTE_LEAF_ATTR_HI_S2_XN_UXN; |
| break; |
| default: |
| if (exec_prot) |
| return -EINVAL; |
| } |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_HI_S2_XN, exec_type); |
| |
| set_ap: |
| if (prot & KVM_PGTABLE_PROT_R) |
| attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; |
| |
| if (prot & KVM_PGTABLE_PROT_W) |
| attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; |
| |
| attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); |
| attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; |
| attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; |
| *ptep = attr; |
| |
| return 0; |
| } |
| |
| enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) |
| { |
| enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; |
| |
| if (!kvm_pte_valid(pte)) |
| return prot; |
| |
| if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) |
| prot |= KVM_PGTABLE_PROT_R; |
| if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) |
| prot |= KVM_PGTABLE_PROT_W; |
| switch(FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte)) { |
| case 0: |
| prot |= KVM_PGTABLE_PROT_X; |
| break; |
| case KVM_PTE_LEAF_ATTR_HI_S2_XN_PXN: |
| prot |= KVM_PGTABLE_PROT_PXN; |
| break; |
| case KVM_PTE_LEAF_ATTR_HI_S2_XN_UXN: |
| prot |= KVM_PGTABLE_PROT_UXN; |
| break; |
| case KVM_PTE_LEAF_ATTR_HI_S2_XN_XN: |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| return prot; |
| } |
| |
| static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) |
| { |
| if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) |
| return true; |
| |
| return ((old ^ new) & (~(KVM_PTE_LEAF_ATTR_S2_PERMS | |
| KVM_PTE_LEAF_ATTR_HI_S2_CONT))); |
| } |
| |
| static void __stage2_clear_one_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, |
| u64 addr, u32 level) |
| { |
| if (!kvm_pte_valid(*ptep)) |
| return; |
| |
| kvm_clear_pte(ptep); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level, false); |
| } |
| |
| static void __stage2_clear_contiguous_pte(kvm_pte_t *ptep, |
| struct kvm_s2_mmu *mmu, u64 addr, |
| u32 level) |
| { |
| kvm_pte_t *start, *end, *curr; |
| u64 align; |
| |
| /* Determine the ptes at the limits of the contiguous range */ |
| align = kvm_contiguous_pte_alignment(level); |
| start = (void *)ALIGN_DOWN((u64)ptep, align); |
| end = (void *)start + align; |
| |
| /* Make the entire range invalid and non-contiguous, clearing our entry */ |
| addr -= ((ptep - start) * kvm_granule_size(level)); |
| for (curr = start; curr < end; ++curr) { |
| const u64 mask = ~(KVM_PTE_LEAF_ATTR_HI_S2_CONT | KVM_PTE_VALID); |
| bool last = (curr == end - 1); |
| kvm_pte_t pte = 0; |
| |
| if (curr != ptep) |
| pte = *curr & mask; |
| |
| WRITE_ONCE(*curr, pte); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level, !last); |
| addr += kvm_granule_size(level); |
| } |
| |
| /* Finally, make the rest of the range valid again */ |
| for (curr = start; curr < end; ++curr) { |
| if (curr == ptep) |
| continue; |
| |
| *curr |= KVM_PTE_VALID; |
| } |
| } |
| |
| static void stage2_clear_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr, |
| u32 level) |
| { |
| if (kvm_pte_contiguous(*ptep, level)) |
| __stage2_clear_contiguous_pte(ptep, mmu, addr, level); |
| else |
| __stage2_clear_one_pte(ptep, mmu, addr, level); |
| } |
| |
| static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr, |
| u32 level, struct kvm_pgtable_mm_ops *mm_ops) |
| { |
| /* |
| * Clear the existing PTE, and perform break-before-make with |
| * TLB maintenance if it was valid. |
| */ |
| stage2_clear_pte(ptep, mmu, addr, level); |
| mm_ops->put_page(ptep); |
| } |
| |
| static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) |
| { |
| u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; |
| return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL); |
| } |
| |
| static bool stage2_pte_executable(kvm_pte_t pte) |
| { |
| kvm_pte_t xn = FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte); |
| |
| return kvm_pte_valid(pte) && xn != KVM_PTE_LEAF_ATTR_HI_S2_XN_XN; |
| } |
| |
| static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level, |
| struct stage2_map_data *data) |
| { |
| if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1))) |
| return false; |
| |
| return kvm_block_mapping_supported(addr, end, data->phys, level); |
| } |
| |
| static void stage2_make_contiguous(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, |
| u64 addr, u32 level, u64 remaining) |
| { |
| kvm_pte_t *start, *end, *curr; |
| u64 align; |
| |
| /* Don't bother if we're not identity mapped */ |
| if (!(mmu->pgt->flags & KVM_PGTABLE_S2_IDMAP)) |
| return; |
| |
| /* Nothing to do if the bit is already set... */ |
| if (*ptep & KVM_PTE_LEAF_ATTR_HI_S2_CONT) |
| return; |
| |
| /* Determine the ptes at the limits of the contiguous range */ |
| align = kvm_contiguous_pte_alignment(level); |
| start = (void *)ALIGN_DOWN((u64)ptep, align); |
| end = (void *)start + align; |
| |
| /* If contiguous mappings are not supported, don't even try */ |
| if (!align) |
| return; |
| |
| /* |
| * We'll come back shortly, so defer the scan until we reach the |
| * last pte in the contiguous range. |
| */ |
| if (remaining > kvm_granule_size(level) && ptep < (end - 1)) |
| return; |
| |
| /* Scan range to determine if the non-address bits match too */ |
| for (curr = start; curr < end; ++curr) { |
| const u64 mask = ~(KVM_PTE_LEAF_ATTR_HI_SW | KVM_PTE_ADDR_MASK); |
| |
| if ((*curr & mask) != (*ptep & mask)) |
| return; |
| } |
| |
| /* We're on! Make ptes invalid and contiguous */ |
| addr -= (ptep - start) * kvm_granule_size(level); |
| for (curr = start; curr < end; ++curr) { |
| bool last = (curr == end - 1); |
| kvm_pte_t pte = *curr; |
| |
| pte &= ~KVM_PTE_VALID; |
| pte |= KVM_PTE_LEAF_ATTR_HI_S2_CONT; |
| |
| WRITE_ONCE(*curr, pte); |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level, !last); |
| addr += kvm_granule_size(level); |
| } |
| |
| /* Now we can make them all valid */ |
| for (curr = start; curr < end; ++curr) |
| *curr |= KVM_PTE_VALID; |
| } |
| |
| static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| kvm_pte_t new, old = *ptep; |
| u64 granule = kvm_granule_size(level), phys = data->phys; |
| struct kvm_pgtable *pgt = data->mmu->pgt; |
| struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops; |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| |
| if (!stage2_leaf_mapping_allowed(addr, end, level, data)) |
| return -E2BIG; |
| |
| if (kvm_phys_is_valid(phys)) |
| new = kvm_init_valid_leaf_pte(phys, data->attr, level); |
| else |
| new = data->annotation; |
| |
| /* |
| * Skip updating the PTE if we are trying to recreate the exact |
| * same mapping or only change the access permissions. Instead, |
| * the vCPU will exit one more time from guest if still needed |
| * and then go through the path of relaxing permissions. |
| */ |
| if (!stage2_pte_needs_update(old, new)) |
| return -EAGAIN; |
| |
| if (pte_ops->pte_is_counted_cb(old, level)) |
| mm_ops->put_page(ptep); |
| |
| /* |
| * If we're only changing software bits, then we don't need to |
| * do anything else, but we must preserve the contiguous bit of |
| * the existing (old) entry. |
| */ |
| if (!((old ^ new) & ~(KVM_PTE_LEAF_ATTR_HI_SW | KVM_PTE_LEAF_ATTR_HI_S2_CONT))) { |
| if (kvm_pte_contiguous(old, level)) |
| new |= KVM_PTE_LEAF_ATTR_HI_S2_CONT; |
| goto out_set_pte; |
| } |
| |
| stage2_clear_pte(ptep, data->mmu, addr, level); |
| |
| /* Perform CMOs before installation of the guest stage-2 PTE */ |
| if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new)) |
| mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), |
| granule); |
| if (mm_ops->icache_inval_pou && stage2_pte_executable(new)) |
| mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); |
| |
| out_set_pte: |
| if (pte_ops->pte_is_counted_cb(new, level)) |
| mm_ops->get_page(ptep); |
| |
| smp_store_release(ptep, new); |
| if (kvm_phys_is_valid(phys)) { |
| stage2_make_contiguous(ptep, data->mmu, addr, level, end - addr); |
| data->phys += granule; |
| } |
| return 0; |
| } |
| |
| static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| if (data->anchor) |
| return 0; |
| |
| if (!stage2_leaf_mapping_allowed(addr, end, level, data)) |
| return 0; |
| |
| data->childp = kvm_pte_follow(*ptep, data->mm_ops); |
| kvm_clear_pte(ptep); |
| |
| /* |
| * Invalidate the whole stage-2, as we may have numerous leaf |
| * entries below us which would otherwise need invalidating |
| * individually. |
| */ |
| kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu); |
| data->anchor = ptep; |
| return 0; |
| } |
| |
| static void stage2_map_prefault_idmap(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, kvm_pte_t attr) |
| { |
| u64 addr_align, pte_align = kvm_contiguous_pte_alignment(level); |
| u64 curr = ALIGN_DOWN(addr, kvm_granule_size(level - 1)); |
| u64 granule = kvm_granule_size(level); |
| int i; |
| |
| if (!kvm_pte_valid(attr)) |
| return; |
| |
| addr_align = pte_align / sizeof(kvm_pte_t) * granule; |
| |
| for (i = 0; i < PTRS_PER_PTE; ++i, ++ptep, curr += granule) { |
| kvm_pte_t pte = kvm_init_valid_leaf_pte(curr, attr, level); |
| |
| if (curr >= addr && curr < end) |
| continue; |
| |
| if (addr_align && |
| (curr < ALIGN_DOWN(addr, addr_align) || |
| curr >= round_up(end, addr_align))) { |
| pte |= KVM_PTE_LEAF_ATTR_HI_S2_CONT; |
| } |
| |
| WRITE_ONCE(*ptep, pte); |
| } |
| |
| } |
| |
| static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| struct kvm_pgtable *pgt = data->mmu->pgt; |
| struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops; |
| kvm_pte_t *childp, pte = *ptep; |
| int ret; |
| |
| if (data->anchor) { |
| if (pte_ops->pte_is_counted_cb(pte, level)) |
| mm_ops->put_page(ptep); |
| |
| return 0; |
| } |
| |
| ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data); |
| if (ret != -E2BIG) |
| return ret; |
| |
| if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) |
| return -EINVAL; |
| |
| if (!data->memcache) |
| return -ENOMEM; |
| |
| childp = mm_ops->zalloc_page(data->memcache); |
| if (!childp) |
| return -ENOMEM; |
| |
| /* |
| * If we've run into an existing block mapping then replace it with |
| * a table. Accesses beyond 'end' that fall within the new table |
| * will be mapped lazily. |
| */ |
| if (pte_ops->pte_is_counted_cb(pte, level)) { |
| stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); |
| } else { |
| /* |
| * On non-refcounted PTEs we just clear them out without |
| * dropping the refcount. |
| */ |
| stage2_clear_pte(ptep, data->mmu, addr, level); |
| } |
| |
| kvm_set_table_pte(ptep, childp, mm_ops); |
| mm_ops->get_page(ptep); |
| |
| if (pgt->flags & KVM_PGTABLE_S2_IDMAP) |
| stage2_map_prefault_idmap(addr, end, level + 1, childp, pte); |
| |
| return 0; |
| } |
| |
| static void stage2_coalesce_walk_table_post(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| kvm_pte_t *childp = kvm_pte_follow(*ptep, mm_ops); |
| |
| /* |
| * Decrement the refcount only on the set ownership path to avoid a |
| * loop situation when the following happens: |
| * 1. We take a host stage2 fault and we create a small mapping which |
| * has default attributes (is not refcounted). |
| * 2. On the way back we execute the post handler and we zap the |
| * table that holds our mapping. |
| */ |
| if (kvm_phys_is_valid(data->phys) || |
| !kvm_level_supports_block_mapping(level)) |
| return; |
| |
| /* |
| * Free a page that is not referenced anymore and drop the reference |
| * of the page table page. |
| */ |
| if (mm_ops->page_count(childp) == 1) { |
| stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); |
| mm_ops->put_page(childp); |
| } |
| } |
| |
| static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, |
| kvm_pte_t *ptep, |
| struct stage2_map_data *data) |
| { |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| kvm_pte_t *childp; |
| int ret = 0; |
| |
| if (!data->anchor) { |
| stage2_coalesce_walk_table_post(addr, end, level, ptep, |
| data); |
| return 0; |
| } |
| |
| if (data->anchor == ptep) { |
| childp = data->childp; |
| data->anchor = NULL; |
| data->childp = NULL; |
| ret = stage2_map_walk_leaf(addr, end, level, ptep, data); |
| } else { |
| childp = kvm_pte_follow(*ptep, mm_ops); |
| } |
| |
| mm_ops->put_page(childp); |
| mm_ops->put_page(ptep); |
| |
| return ret; |
| } |
| |
| /* |
| * This is a little fiddly, as we use all three of the walk flags. The idea |
| * is that the TABLE_PRE callback runs for table entries on the way down, |
| * looking for table entries which we could conceivably replace with a |
| * block entry for this mapping. If it finds one, then it sets the 'anchor' |
| * field in 'struct stage2_map_data' to point at the table entry, before |
| * clearing the entry to zero and descending into the now detached table. |
| * |
| * The behaviour of the LEAF callback then depends on whether or not the |
| * anchor has been set. If not, then we're not using a block mapping higher |
| * up the table and we perform the mapping at the existing leaves instead. |
| * If, on the other hand, the anchor _is_ set, then we drop references to |
| * all valid leaves so that the pages beneath the anchor can be freed. |
| * |
| * Finally, the TABLE_POST callback does nothing if the anchor has not |
| * been set, but otherwise frees the page-table pages while walking back up |
| * the page-table, installing the block entry when it revisits the anchor |
| * pointer and clearing the anchor to NULL. |
| */ |
| static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| struct stage2_map_data *data = arg; |
| |
| switch (flag) { |
| case KVM_PGTABLE_WALK_TABLE_PRE: |
| return stage2_map_walk_table_pre(addr, end, level, ptep, data); |
| case KVM_PGTABLE_WALK_LEAF: |
| return stage2_map_walk_leaf(addr, end, level, ptep, data); |
| case KVM_PGTABLE_WALK_TABLE_POST: |
| return stage2_map_walk_table_post(addr, end, level, ptep, data); |
| } |
| |
| return -EINVAL; |
| } |
| |
| int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| u64 phys, enum kvm_pgtable_prot prot, |
| void *mc) |
| { |
| int ret; |
| struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops; |
| struct stage2_map_data map_data = { |
| .phys = ALIGN_DOWN(phys, PAGE_SIZE), |
| .mmu = pgt->mmu, |
| .memcache = mc, |
| .mm_ops = pgt->mm_ops, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_map_walker, |
| .flags = KVM_PGTABLE_WALK_TABLE_PRE | |
| KVM_PGTABLE_WALK_LEAF | |
| KVM_PGTABLE_WALK_TABLE_POST, |
| .arg = &map_data, |
| }; |
| |
| if (pte_ops->force_pte_cb) |
| map_data.force_pte = pte_ops->force_pte_cb(addr, addr + size, prot); |
| |
| if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) |
| return -EINVAL; |
| |
| ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); |
| if (ret) |
| return ret; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| dsb(ishst); |
| return ret; |
| } |
| |
| int kvm_pgtable_stage2_annotate(struct kvm_pgtable *pgt, u64 addr, u64 size, |
| void *mc, kvm_pte_t annotation) |
| { |
| int ret; |
| struct stage2_map_data map_data = { |
| .phys = KVM_PHYS_INVALID, |
| .mmu = pgt->mmu, |
| .memcache = mc, |
| .mm_ops = pgt->mm_ops, |
| .force_pte = true, |
| .annotation = annotation, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_map_walker, |
| .flags = KVM_PGTABLE_WALK_TABLE_PRE | |
| KVM_PGTABLE_WALK_LEAF | |
| KVM_PGTABLE_WALK_TABLE_POST, |
| .arg = &map_data, |
| }; |
| |
| if (annotation & PTE_VALID) |
| return -EINVAL; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| return ret; |
| } |
| |
| static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| struct kvm_pgtable *pgt = arg; |
| struct kvm_s2_mmu *mmu = pgt->mmu; |
| struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; |
| struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops; |
| kvm_pte_t pte = *ptep, *childp = NULL; |
| bool need_flush = false; |
| |
| if (!kvm_pte_valid(pte)) { |
| if (pte_ops->pte_is_counted_cb(pte, level)) { |
| kvm_clear_pte(ptep); |
| mm_ops->put_page(ptep); |
| } |
| return 0; |
| } |
| |
| if (kvm_pte_table(pte, level)) { |
| childp = kvm_pte_follow(pte, mm_ops); |
| |
| if (mm_ops->page_count(childp) != 1) |
| return 0; |
| } else if (stage2_pte_cacheable(pgt, pte)) { |
| need_flush = !stage2_has_fwb(pgt); |
| } |
| |
| /* |
| * This is similar to the map() path in that we unmap the entire |
| * block entry and rely on the remaining portions being faulted |
| * back lazily. |
| */ |
| if (pte_ops->pte_is_counted_cb(pte, level)) |
| stage2_put_pte(ptep, mmu, addr, level, mm_ops); |
| else |
| stage2_clear_pte(ptep, mmu, addr, level); |
| |
| if (need_flush && mm_ops->dcache_clean_inval_poc) |
| mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops), |
| kvm_granule_size(level)); |
| |
| if (childp) |
| mm_ops->put_page(childp); |
| |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_unmap_walker, |
| .arg = pgt, |
| .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, |
| }; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| static int stage2_reclaim_leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, void * const arg) |
| { |
| stage2_coalesce_walk_table_post(addr, end, level, ptep, arg); |
| |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_reclaim_leaves(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| struct stage2_map_data map_data = { |
| .phys = KVM_PHYS_INVALID, |
| .mmu = pgt->mmu, |
| .mm_ops = pgt->mm_ops, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_reclaim_leaf_walker, |
| .arg = &map_data, |
| .flags = KVM_PGTABLE_WALK_TABLE_POST, |
| }; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| struct stage2_attr_data { |
| kvm_pte_t attr_set; |
| kvm_pte_t attr_clr; |
| kvm_pte_t pte; |
| u32 level; |
| struct kvm_pgtable_mm_ops *mm_ops; |
| }; |
| |
| static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| kvm_pte_t pte = *ptep; |
| struct stage2_attr_data *data = arg; |
| struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; |
| |
| if (!kvm_pte_valid(pte)) |
| return 0; |
| |
| data->level = level; |
| data->pte = pte; |
| pte &= ~data->attr_clr; |
| pte |= data->attr_set; |
| |
| /* |
| * We may race with the CPU trying to set the access flag here, |
| * but worst-case the access flag update gets lost and will be |
| * set on the next access instead. |
| */ |
| if (data->pte != pte) { |
| /* |
| * Invalidate instruction cache before updating the guest |
| * stage-2 PTE if we are going to add executable permission. |
| */ |
| if (mm_ops->icache_inval_pou && |
| stage2_pte_executable(pte) && !stage2_pte_executable(*ptep)) |
| mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), |
| kvm_granule_size(level)); |
| WRITE_ONCE(*ptep, pte); |
| } |
| |
| return 0; |
| } |
| |
| static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, |
| u64 size, kvm_pte_t attr_set, |
| kvm_pte_t attr_clr, kvm_pte_t *orig_pte, |
| u32 *level) |
| { |
| int ret; |
| kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; |
| struct stage2_attr_data data = { |
| .attr_set = attr_set & attr_mask, |
| .attr_clr = attr_clr & attr_mask, |
| .mm_ops = pgt->mm_ops, |
| }; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_attr_walker, |
| .arg = &data, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| }; |
| |
| ret = kvm_pgtable_walk(pgt, addr, size, &walker); |
| if (ret) |
| return ret; |
| |
| if (orig_pte) |
| *orig_pte = data.pte; |
| |
| if (level) |
| *level = data.level; |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| return stage2_update_leaf_attrs(pgt, addr, size, 0, |
| KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, |
| NULL, NULL); |
| } |
| |
| kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) |
| { |
| kvm_pte_t pte = 0; |
| stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, |
| &pte, NULL); |
| dsb(ishst); |
| return pte; |
| } |
| |
| kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) |
| { |
| kvm_pte_t pte = 0; |
| stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, |
| &pte, NULL); |
| /* |
| * "But where's the TLBI?!", you scream. |
| * "Over in the core code", I sigh. |
| * |
| * See the '->clear_flush_young()' callback on the KVM mmu notifier. |
| */ |
| return pte; |
| } |
| |
| bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) |
| { |
| kvm_pte_t pte = 0; |
| stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL); |
| return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; |
| } |
| |
| int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, |
| enum kvm_pgtable_prot prot) |
| { |
| int ret; |
| u32 level; |
| kvm_pte_t set = 0, clr = 0; |
| |
| /* We don't yet handle the contiguous bit without BBM */ |
| if (pgt->flags & KVM_PGTABLE_S2_IDMAP) |
| return -EOPNOTSUPP; |
| |
| if (prot & !KVM_PGTABLE_PROT_RWX) |
| return -EINVAL; |
| |
| if (prot & KVM_PGTABLE_PROT_R) |
| set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; |
| |
| if (prot & KVM_PGTABLE_PROT_W) |
| set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; |
| |
| if (prot & KVM_PGTABLE_PROT_X) |
| clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; |
| |
| ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level); |
| if (!ret) |
| kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level, false); |
| return ret; |
| } |
| |
| static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| struct kvm_pgtable *pgt = arg; |
| struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; |
| kvm_pte_t pte = *ptep; |
| |
| if (!stage2_pte_cacheable(pgt, pte)) |
| return 0; |
| |
| if (mm_ops->dcache_clean_inval_poc) |
| mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops), |
| kvm_granule_size(level)); |
| return 0; |
| } |
| |
| int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_flush_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| .arg = pgt, |
| }; |
| |
| if (stage2_has_fwb(pgt)) |
| return 0; |
| |
| return kvm_pgtable_walk(pgt, addr, size, &walker); |
| } |
| |
| |
| int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, |
| struct kvm_pgtable_mm_ops *mm_ops, |
| enum kvm_pgtable_stage2_flags flags, |
| struct kvm_pgtable_pte_ops *pte_ops) |
| { |
| size_t pgd_sz; |
| u64 vtcr = mmu->arch->vtcr; |
| u32 ia_bits = VTCR_EL2_IPA(vtcr); |
| u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); |
| u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; |
| |
| pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; |
| pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz); |
| if (!pgt->pgd) |
| return -ENOMEM; |
| |
| pgt->ia_bits = ia_bits; |
| pgt->start_level = start_level; |
| pgt->mm_ops = mm_ops; |
| pgt->mmu = mmu; |
| pgt->flags = flags; |
| pgt->pte_ops = pte_ops; |
| |
| /* Ensure zeroed PGD pages are visible to the hardware walker */ |
| dsb(ishst); |
| return 0; |
| } |
| |
| size_t kvm_pgtable_stage2_pgd_size(u64 vtcr) |
| { |
| u32 ia_bits = VTCR_EL2_IPA(vtcr); |
| u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); |
| u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; |
| |
| return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; |
| } |
| |
| static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, |
| enum kvm_pgtable_walk_flags flag, |
| void * const arg) |
| { |
| struct kvm_pgtable *pgt = arg; |
| struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; |
| struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops; |
| kvm_pte_t pte = *ptep; |
| |
| if (!pte_ops->pte_is_counted_cb(pte, level)) |
| return 0; |
| |
| mm_ops->put_page(ptep); |
| |
| if (kvm_pte_table(pte, level)) |
| mm_ops->put_page(kvm_pte_follow(pte, mm_ops)); |
| |
| return 0; |
| } |
| |
| void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) |
| { |
| size_t pgd_sz; |
| struct kvm_pgtable_walker walker = { |
| .cb = stage2_free_walker, |
| .flags = KVM_PGTABLE_WALK_LEAF | |
| KVM_PGTABLE_WALK_TABLE_POST, |
| .arg = pgt, |
| }; |
| |
| WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); |
| pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; |
| pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz); |
| pgt->pgd = NULL; |
| } |