blob: b9ec2c70017a3124f2663af38922fec7cdb47393 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2021 Google LLC
* Author: Fuad Tabba <tabba@google.com>
*/
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_host.h>
#include <asm/kvm_mmu.h>
#include <asm/memory.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_psci.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>
#include <nvhe/pkvm.h>
#include <nvhe/trap_handler.h>
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
/*
* Set trap register values based on features in ID_AA64PFR0.
*/
static void pvm_init_traps_aa64pfr0(struct kvm_vcpu *vcpu)
{
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR0_EL1);
u64 hcr_set = HCR_RW;
u64 hcr_clear = 0;
u64 cptr_set = 0;
/* Protected KVM does not support AArch32 guests. */
BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL0),
PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_ELx_64BIT_ONLY);
BUILD_BUG_ON(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1),
PVM_ID_AA64PFR0_RESTRICT_UNSIGNED) != ID_AA64PFR0_ELx_64BIT_ONLY);
/*
* Linux guests assume support for floating-point and Advanced SIMD. Do
* not change the trapping behavior for these from the KVM default.
*/
BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_FP),
PVM_ID_AA64PFR0_ALLOW));
BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_ASIMD),
PVM_ID_AA64PFR0_ALLOW));
/* Trap RAS unless all current versions are supported */
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_RAS), feature_ids) <
ID_AA64PFR0_RAS_V1P1) {
hcr_set |= HCR_TERR | HCR_TEA;
hcr_clear |= HCR_FIEN;
}
/* Trap AMU */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_AMU), feature_ids)) {
hcr_clear |= HCR_AMVOFFEN;
cptr_set |= CPTR_EL2_TAM;
}
/* Trap SVE */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_SVE), feature_ids))
cptr_set |= CPTR_EL2_TZ;
vcpu->arch.hcr_el2 |= hcr_set;
vcpu->arch.hcr_el2 &= ~hcr_clear;
vcpu->arch.cptr_el2 |= cptr_set;
}
/*
* Set trap register values based on features in ID_AA64PFR1.
*/
static void pvm_init_traps_aa64pfr1(struct kvm_vcpu *vcpu)
{
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64PFR1_EL1);
u64 hcr_set = 0;
u64 hcr_clear = 0;
/* Memory Tagging: Trap and Treat as Untagged if not supported. */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_MTE), feature_ids)) {
hcr_set |= HCR_TID5;
hcr_clear |= HCR_DCT | HCR_ATA;
}
vcpu->arch.hcr_el2 |= hcr_set;
vcpu->arch.hcr_el2 &= ~hcr_clear;
}
/*
* Set trap register values based on features in ID_AA64DFR0.
*/
static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu)
{
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64DFR0_EL1);
u64 mdcr_set = 0;
u64 mdcr_clear = 0;
u64 cptr_set = 0;
/* Trap/constrain PMU */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_PMUVER), feature_ids)) {
mdcr_set |= MDCR_EL2_TPM | MDCR_EL2_TPMCR;
mdcr_clear |= MDCR_EL2_HPME | MDCR_EL2_MTPME |
MDCR_EL2_HPMN_MASK;
}
/* Trap Debug */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), feature_ids))
mdcr_set |= MDCR_EL2_TDRA | MDCR_EL2_TDA;
/* Trap OS Double Lock */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_DOUBLELOCK), feature_ids))
mdcr_set |= MDCR_EL2_TDOSA;
/* Trap SPE */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER), feature_ids)) {
mdcr_set |= MDCR_EL2_TPMS;
mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
}
/* Trap Trace Filter */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_TRACE_FILT), feature_ids))
mdcr_set |= MDCR_EL2_TTRF;
/* Trap Trace */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_TRACEVER), feature_ids))
cptr_set |= CPTR_EL2_TTA;
vcpu->arch.mdcr_el2 |= mdcr_set;
vcpu->arch.mdcr_el2 &= ~mdcr_clear;
vcpu->arch.cptr_el2 |= cptr_set;
}
/*
* Set trap register values based on features in ID_AA64MMFR0.
*/
static void pvm_init_traps_aa64mmfr0(struct kvm_vcpu *vcpu)
{
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR0_EL1);
u64 mdcr_set = 0;
/* Trap Debug Communications Channel registers */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_FGT), feature_ids))
mdcr_set |= MDCR_EL2_TDCC;
vcpu->arch.mdcr_el2 |= mdcr_set;
}
/*
* Set trap register values based on features in ID_AA64MMFR1.
*/
static void pvm_init_traps_aa64mmfr1(struct kvm_vcpu *vcpu)
{
const u64 feature_ids = pvm_read_id_reg(vcpu, SYS_ID_AA64MMFR1_EL1);
u64 hcr_set = 0;
/* Trap LOR */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_LOR), feature_ids))
hcr_set |= HCR_TLOR;
vcpu->arch.hcr_el2 |= hcr_set;
}
/*
* Set baseline trap register values.
*/
static void pvm_init_trap_regs(struct kvm_vcpu *vcpu)
{
vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
vcpu->arch.mdcr_el2 = 0;
/*
* Always trap:
* - Feature id registers: to control features exposed to guests
* - Implementation-defined features
*/
vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS |
HCR_TID3 | HCR_TACR | HCR_TIDCP | HCR_TID1;
if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) {
/* route synchronous external abort exceptions to EL2 */
vcpu->arch.hcr_el2 |= HCR_TEA;
/* trap error record accesses */
vcpu->arch.hcr_el2 |= HCR_TERR;
}
if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
vcpu->arch.hcr_el2 |= HCR_FWB;
if (cpus_have_const_cap(ARM64_MISMATCHED_CACHE_TYPE))
vcpu->arch.hcr_el2 |= HCR_TID2;
}
/*
* Initialize trap register values for protected VMs.
*/
static void pkvm_vcpu_init_traps(struct kvm_vcpu *vcpu)
{
pvm_init_trap_regs(vcpu);
pvm_init_traps_aa64pfr0(vcpu);
pvm_init_traps_aa64pfr1(vcpu);
pvm_init_traps_aa64dfr0(vcpu);
pvm_init_traps_aa64mmfr0(vcpu);
pvm_init_traps_aa64mmfr1(vcpu);
}
/*
* Start the shadow table handle at the offset defined instead of at 0.
* Mainly for sanity checking and debugging.
*/
#define HANDLE_OFFSET 0x1000
static int shadow_handle_to_index(int shadow_handle)
{
return shadow_handle - HANDLE_OFFSET;
}
static int index_to_shadow_handle(int index)
{
return index + HANDLE_OFFSET;
}
extern unsigned long hyp_nr_cpus;
/*
* Spinlock for protecting the shadow table related state.
* Protects writes to shadow_table, num_shadow_entries, and next_shadow_alloc,
* as well as reads and writes to last_shadow_vcpu_lookup.
*/
DEFINE_HYP_SPINLOCK(shadow_lock);
/*
* The table of shadow entries for protected VMs in hyp.
* Allocated at hyp initialization and setup.
*/
struct kvm_shadow_vm **shadow_table;
/* Current number of vms in the shadow table. */
int num_shadow_entries;
/* The next entry index to try to allocate from. */
int next_shadow_alloc;
/*
* Return the shadow vm corresponding to the handle.
*/
static struct kvm_shadow_vm *find_shadow_by_handle(int shadow_handle)
{
int shadow_index = shadow_handle_to_index(shadow_handle);
if (unlikely(shadow_index < 0 || shadow_index >= KVM_MAX_PVMS))
return NULL;
return shadow_table[shadow_index];
}
struct kvm_vcpu *get_shadow_vcpu(int shadow_handle, int vcpu_idx)
{
struct kvm_vcpu *vcpu = NULL;
struct kvm_shadow_vm *vm;
hyp_spin_lock(&shadow_lock);
vm = find_shadow_by_handle(shadow_handle);
if (!vm || vcpu_idx < 0 || vm->created_vcpus <= vcpu_idx)
goto unlock;
vcpu = &vm->shadow_vcpus[vcpu_idx].vcpu;
/* Ensure vcpu isn't loaded on more than one cpu simultaneously. */
if (unlikely(vcpu->arch.pkvm.loaded_on_cpu)) {
vcpu = NULL;
goto unlock;
}
vcpu->arch.pkvm.loaded_on_cpu = true;
hyp_page_ref_inc(hyp_virt_to_page(vm));
unlock:
hyp_spin_unlock(&shadow_lock);
return vcpu;
}
void put_shadow_vcpu(struct kvm_vcpu *vcpu)
{
struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm;
hyp_spin_lock(&shadow_lock);
vcpu->arch.pkvm.loaded_on_cpu = false;
hyp_page_ref_dec(hyp_virt_to_page(vm));
hyp_spin_unlock(&shadow_lock);
}
/* Check and copy the supported features for the vcpu from the host. */
static int copy_features(struct kvm_vcpu *shadow_vcpu, struct kvm_vcpu *host_vcpu)
{
DECLARE_BITMAP(allowed_features, KVM_VCPU_MAX_FEATURES);
bitmap_zero(allowed_features, KVM_VCPU_MAX_FEATURES);
/*
* Always allowed:
* - CPU starting in poweroff state
* - PSCI v0.2
*/
set_bit(KVM_ARM_VCPU_POWER_OFF, allowed_features);
set_bit(KVM_ARM_VCPU_PSCI_0_2, allowed_features);
/*
* Check if remaining features are allowed:
* - Performance Monitoring
* - Scalable Vectors
* - Pointer Authentication
*/
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_PMUVER), PVM_ID_AA64DFR0_ALLOW))
set_bit(KVM_ARM_VCPU_PMU_V3, allowed_features);
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_SVE), PVM_ID_AA64PFR0_ALLOW))
set_bit(KVM_ARM_VCPU_SVE, allowed_features);
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_API), PVM_ID_AA64ISAR1_ALLOW) &&
FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA), PVM_ID_AA64ISAR1_ALLOW))
set_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, allowed_features);
if (FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI), PVM_ID_AA64ISAR1_ALLOW) &&
FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA), PVM_ID_AA64ISAR1_ALLOW))
set_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, allowed_features);
bitmap_and(shadow_vcpu->arch.features, host_vcpu->arch.features,
allowed_features, KVM_VCPU_MAX_FEATURES);
/*
* Check for system support for address/generic pointer authentication
* features if either are enabled.
*/
if ((test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, shadow_vcpu->arch.features) ||
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, shadow_vcpu->arch.features)) &&
!system_has_full_ptr_auth())
return -EINVAL;
return 0;
}
static void unpin_host_vcpus(struct kvm_shadow_vm *vm)
{
int i;
for (i = 0; i < vm->created_vcpus; i++) {
struct kvm_vcpu *vcpu = vm->vcpus[i]->arch.pkvm.host_vcpu;
hyp_unpin_shared_mem(vcpu, vcpu + 1);
}
}
static int init_shadow_structs(struct kvm *kvm, struct kvm_shadow_vm *vm, int nr_vcpus)
{
int i;
int ret;
vm->host_kvm = kvm;
vm->created_vcpus = 0;
vm->arch.pkvm.pvmfw_load_addr = kvm->arch.pkvm.pvmfw_load_addr;
for (i = 0; i < nr_vcpus; i++) {
struct kvm_vcpu *host_vcpu = kern_hyp_va(kvm->vcpus[i]);
struct shadow_vcpu_state *shadow_state = &vm->shadow_vcpus[i];
struct kvm_vcpu *shadow_vcpu = &shadow_state->vcpu;
ret = hyp_pin_shared_mem(host_vcpu, host_vcpu + 1);
if (ret)
return -EBUSY;
vm->created_vcpus++;
shadow_vcpu->kvm = kvm;
shadow_vcpu->vcpu_id = host_vcpu->vcpu_id;
shadow_vcpu->vcpu_idx = i;
ret = copy_features(shadow_vcpu, host_vcpu);
if (ret)
return ret;
pkvm_vcpu_init_traps(shadow_vcpu);
kvm_reset_pvm_sys_regs(shadow_vcpu);
vm->vcpus[i] = shadow_vcpu;
shadow_state->vm = vm;
shadow_vcpu->arch.hw_mmu = &vm->arch.mmu;
shadow_vcpu->arch.pkvm.shadow_handle = vm->shadow_handle;
shadow_vcpu->arch.pkvm.host_vcpu = host_vcpu;
shadow_vcpu->arch.pkvm.shadow_vm = vm;
shadow_vcpu->arch.power_off = true;
if (test_bit(KVM_ARM_VCPU_POWER_OFF, shadow_vcpu->arch.features)) {
shadow_vcpu->arch.pkvm.power_state = PSCI_0_2_AFFINITY_LEVEL_OFF;
} else if (pvm_has_pvmfw(vm)) {
if (vm->pvmfw_entry_vcpu)
return -EINVAL;
vm->pvmfw_entry_vcpu = shadow_vcpu;
shadow_vcpu->arch.reset_state.reset = true;
shadow_vcpu->arch.pkvm.power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
} else {
struct vcpu_reset_state *reset_state = &shadow_vcpu->arch.reset_state;
reset_state->pc = *vcpu_pc(host_vcpu);
reset_state->r0 = vcpu_get_reg(host_vcpu, 0);
reset_state->reset = true;
shadow_vcpu->arch.pkvm.power_state = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
}
}
return 0;
}
static bool exists_shadow(struct kvm *host_kvm)
{
int i;
int num_checked = 0;
for (i = 0; i < KVM_MAX_PVMS && num_checked < num_shadow_entries; i++) {
if (!shadow_table[i])
continue;
if (unlikely(shadow_table[i]->host_kvm == host_kvm))
return true;
num_checked++;
}
return false;
}
/*
* Allocate a shadow table entry and insert a pointer to the shadow vm.
*
* Return a unique handle to the protected VM on success,
* negative error code on failure.
*/
static int __insert_shadow_table(struct kvm *kvm, struct kvm_shadow_vm *vm,
size_t shadow_size)
{
struct kvm_s2_mmu *mmu = &vm->arch.mmu;
int shadow_handle;
int vmid;
if (unlikely(num_shadow_entries >= KVM_MAX_PVMS))
return -ENOMEM;
/*
* Initializing protected state might have failed, yet a malicious host
* could trigger this function. Thus, ensure that shadow_table exists.
*/
if (unlikely(!shadow_table))
return -EINVAL;
/* Check that a shadow hasn't been created before for this host KVM. */
if (unlikely(exists_shadow(kvm)))
return -EEXIST;
/* Find the next free entry in the shadow table. */
while (shadow_table[next_shadow_alloc])
next_shadow_alloc = (next_shadow_alloc + 1) % KVM_MAX_PVMS;
shadow_handle = index_to_shadow_handle(next_shadow_alloc);
vm->shadow_handle = shadow_handle;
vm->shadow_area_size = shadow_size;
/* VMID 0 is reserved for the host */
vmid = next_shadow_alloc + 1;
if (vmid > 0xff)
return -ENOMEM;
mmu->vmid.vmid = vmid;
mmu->vmid.vmid_gen = 0;
mmu->arch = &vm->arch;
mmu->pgt = &vm->pgt;
shadow_table[next_shadow_alloc] = vm;
next_shadow_alloc = (next_shadow_alloc + 1) % KVM_MAX_PVMS;
num_shadow_entries++;
return shadow_handle;
}
static int insert_shadow_table(struct kvm *kvm, struct kvm_shadow_vm *vm,
size_t shadow_size)
{
int ret;
hyp_spin_lock(&shadow_lock);
ret = __insert_shadow_table(kvm, vm, shadow_size);
hyp_spin_unlock(&shadow_lock);
return ret;
}
/*
* Deallocate and remove the shadow table entry corresponding to the handle.
*/
static void __remove_shadow_table(int shadow_handle)
{
shadow_table[shadow_handle_to_index(shadow_handle)] = NULL;
num_shadow_entries--;
}
static void remove_shadow_table(int shadow_handle)
{
hyp_spin_lock(&shadow_lock);
__remove_shadow_table(shadow_handle);
hyp_spin_unlock(&shadow_lock);
}
static size_t pkvm_get_shadow_size(int num_vcpus)
{
/* Shadow space for the vm struct and all of its vcpu states. */
return sizeof(struct kvm_shadow_vm) +
sizeof(struct shadow_vcpu_state) * num_vcpus;
}
/*
* Check whether the size of the area donated by the host is sufficient for
* the shadow structues required for nr_vcpus as well as the shadow vm.
*/
static int check_shadow_size(int nr_vcpus, size_t shadow_size)
{
if (nr_vcpus < 1 || nr_vcpus > KVM_MAX_VCPUS)
return -EINVAL;
/*
* Shadow size is rounded up when allocated and donated by the host,
* so it's likely to be larger than the sum of the struct sizes.
*/
if (shadow_size < pkvm_get_shadow_size(nr_vcpus))
return -EINVAL;
return 0;
}
/*
* Initialize the shadow copy of the protected VM state using the memory
* donated by the host.
*
* Unmaps the donated memory from the host at stage 2.
*
* Return a unique handle to the protected VM on success,
* negative error code on failure.
*/
int __pkvm_init_shadow(struct kvm *kvm,
void *shadow_va,
size_t shadow_size,
void *pgd)
{
struct kvm_shadow_vm *vm = kern_hyp_va(shadow_va);
phys_addr_t shadow_pa = hyp_virt_to_phys(vm);
u64 pfn = hyp_phys_to_pfn(shadow_pa);
u64 nr_pages = shadow_size >> PAGE_SHIFT;
int nr_vcpus = 0;
int ret = 0;
kvm = kern_hyp_va(kvm);
ret = hyp_pin_shared_mem(kvm, kvm + 1);
if (ret)
return ret;
/* Ensure the host has donated enough memory for the shadow structs. */
nr_vcpus = kvm->created_vcpus;
ret = check_shadow_size(nr_vcpus, shadow_size);
if (ret)
goto err;
ret = __pkvm_host_donate_hyp(pfn, nr_pages);
if (ret)
goto err;
/* Ensure we're working with a clean slate. */
memset(vm, 0, shadow_size);
/* Add the entry to the shadow table. */
ret = insert_shadow_table(kvm, vm, shadow_size);
if (ret < 0)
goto err_remove_mappings;
ret = init_shadow_structs(kvm, vm, nr_vcpus);
if (ret < 0)
goto err_remove_shadow_table;
pgd = kern_hyp_va(pgd);
ret = kvm_guest_prepare_stage2(vm, pgd);
if (ret)
goto err_remove_shadow_table;
return vm->shadow_handle;
err_remove_shadow_table:
remove_shadow_table(vm->shadow_handle);
err_remove_mappings:
unpin_host_vcpus(vm);
/* Clear the donated shadow memory on failure to avoid data leaks. */
memset(vm, 0, shadow_size);
WARN_ON(__pkvm_hyp_donate_host(hyp_phys_to_pfn(shadow_pa),
shadow_size >> PAGE_SHIFT));
err:
hyp_unpin_shared_mem(kvm, kvm + 1);
return ret;
}
void __pkvm_teardown_shadow(struct kvm *kvm)
{
struct kvm_hyp_memcache *mc;
struct kvm_shadow_vm *vm;
struct kvm *host_kvm;
size_t shadow_size;
int shadow_handle;
u64 pfn;
u64 nr_pages;
void *addr;
kvm = kern_hyp_va(kvm);
shadow_handle = kvm->arch.pkvm.shadow_handle;
/* Lookup then remove entry from the shadow table. */
hyp_spin_lock(&shadow_lock);
vm = find_shadow_by_handle(shadow_handle);
if (WARN_ON(!vm || hyp_page_count(vm))) {
hyp_spin_unlock(&shadow_lock);
return;
}
__remove_shadow_table(shadow_handle);
hyp_spin_unlock(&shadow_lock);
/* Reclaim guest pages, and page-table pages */
mc = &vm->host_kvm->arch.pkvm.teardown_mc;
reclaim_guest_pages(vm, mc);
remove_shadow_table(shadow_handle);
unpin_host_vcpus(vm);
/* Push the metadata pages to the teardown memcache */
shadow_size = vm->shadow_area_size;
host_kvm = vm->host_kvm;
memset(vm, 0, shadow_size);
for (addr = vm; addr < ((void *)vm + shadow_size); addr += PAGE_SIZE)
push_hyp_memcache(mc, addr, hyp_virt_to_phys);
hyp_unpin_shared_mem(host_kvm, host_kvm + 1);
pfn = hyp_phys_to_pfn(__hyp_pa(vm));
nr_pages = shadow_size >> PAGE_SHIFT;
WARN_ON(__pkvm_hyp_donate_host(pfn, nr_pages));
}
int pkvm_load_pvmfw_pages(struct kvm_shadow_vm *vm, u64 ipa, phys_addr_t phys,
u64 size)
{
struct kvm_protected_vm *pkvm = &vm->arch.pkvm;
u64 npages, offset = ipa - pkvm->pvmfw_load_addr;
void *src = hyp_phys_to_virt(pvmfw_base) + offset;
if (offset >= pvmfw_size)
return -EINVAL;
size = min(size, pvmfw_size - offset);
if (!PAGE_ALIGNED(size) || !PAGE_ALIGNED(src))
return -EINVAL;
npages = size >> PAGE_SHIFT;
while (npages--) {
void *dst;
dst = hyp_fixmap_map(phys);
if (!dst)
return -EINVAL;
/*
* No need for cache maintenance here, as the pgtable code will
* take care of this when installing the pte in the guest's
* stage-2 page table.
*/
memcpy(dst, src, PAGE_SIZE);
hyp_fixmap_unmap();
src += PAGE_SIZE;
phys += PAGE_SIZE;
}
return 0;
}
/*
* This function sets the registers on the vcpu to their architecturally defined
* reset values.
*
* Note: Can only be called by the vcpu on itself, after it has been turned on.
*/
void pkvm_reset_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_reset_state *reset_state = &vcpu->arch.reset_state;
struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm;
WARN_ON(!reset_state->reset);
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
/*
* This call should not fail since we've already checked for
* feature support on initialization.
*/
WARN_ON(kvm_vcpu_enable_ptrauth(vcpu));
}
/* Reset core registers */
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
vcpu_gp_regs(vcpu)->pstate = VCPU_RESET_PSTATE_EL1;
/* Reset system registers */
kvm_reset_pvm_sys_regs(vcpu);
/* Propagate initiator's endianness, after kvm_reset_pvm_sys_regs. */
if (reset_state->be)
kvm_vcpu_set_be(vcpu);
if (vm->pvmfw_entry_vcpu == vcpu) {
struct kvm_vcpu *host_vcpu = vcpu->arch.pkvm.host_vcpu;
u64 entry = vm->arch.pkvm.pvmfw_load_addr;
int i;
/* X0 - X14 provided by the VMM (preserved) */
for (i = 0; i <= 14; ++i)
vcpu_set_reg(vcpu, i, vcpu_get_reg(host_vcpu, i));
/* X15: Boot protocol version */
vcpu_set_reg(vcpu, 15, 0);
/* PC: IPA of pvmfw base */
*vcpu_pc(vcpu) = entry;
vm->pvmfw_entry_vcpu = NULL;
} else {
*vcpu_pc(vcpu) = reset_state->pc;
vcpu_set_reg(vcpu, 0, reset_state->r0);
}
reset_state->reset = false;
vcpu->arch.pkvm.exit_code = 0;
WARN_ON(vcpu->arch.pkvm.power_state != PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
WRITE_ONCE(vcpu->arch.power_off, false);
WRITE_ONCE(vcpu->arch.pkvm.power_state, PSCI_0_2_AFFINITY_LEVEL_ON);
}
struct kvm_vcpu *pvm_mpidr_to_vcpu(struct kvm_shadow_vm *vm, unsigned long mpidr)
{
struct kvm_vcpu *vcpu;
int i;
mpidr &= MPIDR_HWID_BITMASK;
for (i = 0; i < vm->created_vcpus; i++) {
vcpu = vm->vcpus[i];
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
return vcpu;
}
return NULL;
}
/*
* Returns true if the hypervisor handled PSCI call, and control should go back
* to the guest, or false if the host needs to do some additional work (i.e.,
* wake up the vcpu).
*/
static bool pvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
{
struct kvm_shadow_vm *vm = source_vcpu->arch.pkvm.shadow_vm;
struct kvm_vcpu *vcpu;
struct vcpu_reset_state *reset_state;
unsigned long cpu_id;
unsigned long hvc_ret_val;
int power_state;
cpu_id = smccc_get_arg1(source_vcpu);
if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) {
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
goto error;
}
vcpu = pvm_mpidr_to_vcpu(vm, cpu_id);
/* Make sure the caller requested a valid vcpu. */
if (!vcpu) {
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
goto error;
}
/*
* Make sure the requested vcpu is not on to begin with.
* Atomic to avoid race between vcpus trying to power on the same vcpu.
*/
power_state = cmpxchg(&vcpu->arch.pkvm.power_state,
PSCI_0_2_AFFINITY_LEVEL_OFF,
PSCI_0_2_AFFINITY_LEVEL_ON_PENDING);
switch (power_state) {
case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
hvc_ret_val = PSCI_RET_ON_PENDING;
goto error;
case PSCI_0_2_AFFINITY_LEVEL_ON:
hvc_ret_val = PSCI_RET_ALREADY_ON;
goto error;
case PSCI_0_2_AFFINITY_LEVEL_OFF:
break;
default:
hvc_ret_val = PSCI_RET_INTERNAL_FAILURE;
goto error;
}
reset_state = &vcpu->arch.reset_state;
reset_state->pc = smccc_get_arg2(source_vcpu);
reset_state->r0 = smccc_get_arg3(source_vcpu);
/* Propagate caller endianness */
reset_state->be = kvm_vcpu_is_be(source_vcpu);
reset_state->reset = true;
/*
* Return to the host, which should make the KVM_REQ_VCPU_RESET request
* as well as kvm_vcpu_wake_up() to schedule the vcpu.
*/
return false;
error:
/* If there's an error go back straight to the guest. */
smccc_set_retval(source_vcpu, hvc_ret_val, 0, 0, 0);
return true;
}
static bool pvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
{
int i, matching_cpus = 0;
unsigned long mpidr;
unsigned long target_affinity;
unsigned long target_affinity_mask;
unsigned long lowest_affinity_level;
struct kvm_shadow_vm *vm = vcpu->arch.pkvm.shadow_vm;
struct kvm_vcpu *tmp;
unsigned long hvc_ret_val;
target_affinity = smccc_get_arg1(vcpu);
lowest_affinity_level = smccc_get_arg2(vcpu);
if (!kvm_psci_valid_affinity(vcpu, target_affinity)) {
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
goto done;
}
/* Determine target affinity mask */
target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
if (!target_affinity_mask) {
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
goto done;
}
/* Ignore other bits of target affinity */
target_affinity &= target_affinity_mask;
hvc_ret_val = PSCI_0_2_AFFINITY_LEVEL_OFF;
/*
* If at least one vcpu matching target affinity is ON then return ON,
* then if at least one is PENDING_ON then return PENDING_ON.
* Otherwise, return OFF.
*/
for (i = 0; i < vm->created_vcpus; i++) {
tmp = vm->vcpus[i];
mpidr = kvm_vcpu_get_mpidr_aff(tmp);
if ((mpidr & target_affinity_mask) == target_affinity) {
int power_state;
matching_cpus++;
power_state = READ_ONCE(tmp->arch.pkvm.power_state);
switch (power_state) {
case PSCI_0_2_AFFINITY_LEVEL_ON_PENDING:
hvc_ret_val = PSCI_0_2_AFFINITY_LEVEL_ON_PENDING;
break;
case PSCI_0_2_AFFINITY_LEVEL_ON:
hvc_ret_val = PSCI_0_2_AFFINITY_LEVEL_ON;
goto done;
case PSCI_0_2_AFFINITY_LEVEL_OFF:
break;
default:
hvc_ret_val = PSCI_RET_INTERNAL_FAILURE;
goto done;
}
}
}
if (!matching_cpus)
hvc_ret_val = PSCI_RET_INVALID_PARAMS;
done:
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(vcpu, hvc_ret_val, 0, 0, 0);
return true;
}
/*
* Returns true if the hypervisor has handled the PSCI call, and control should
* go back to the guest, or false if the host needs to do some additional work
* (e.g., turn off and update vcpu scheduling status).
*/
static bool pvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
{
WARN_ON(vcpu->arch.power_off);
WARN_ON(vcpu->arch.pkvm.power_state != PSCI_0_2_AFFINITY_LEVEL_ON);
WRITE_ONCE(vcpu->arch.power_off, true);
WRITE_ONCE(vcpu->arch.pkvm.power_state, PSCI_0_2_AFFINITY_LEVEL_OFF);
/* Return to the host so that it can finish powering off the vcpu. */
return false;
}
static bool pvm_psci_version(struct kvm_vcpu *vcpu)
{
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(vcpu, KVM_ARM_PSCI_1_0, 0, 0, 0);
return true;
}
static bool pvm_psci_not_supported(struct kvm_vcpu *vcpu)
{
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(vcpu, PSCI_RET_NOT_SUPPORTED, 0, 0, 0);
return true;
}
static bool pvm_psci_features(struct kvm_vcpu *vcpu)
{
u32 feature = smccc_get_arg1(vcpu);
unsigned long val;
switch (feature) {
case PSCI_0_2_FN_PSCI_VERSION:
case PSCI_0_2_FN_CPU_SUSPEND:
case PSCI_0_2_FN64_CPU_SUSPEND:
case PSCI_0_2_FN_CPU_OFF:
case PSCI_0_2_FN_CPU_ON:
case PSCI_0_2_FN64_CPU_ON:
case PSCI_0_2_FN_AFFINITY_INFO:
case PSCI_0_2_FN64_AFFINITY_INFO:
case PSCI_0_2_FN_SYSTEM_OFF:
case PSCI_0_2_FN_SYSTEM_RESET:
case PSCI_1_0_FN_PSCI_FEATURES:
case ARM_SMCCC_VERSION_FUNC_ID:
val = PSCI_RET_SUCCESS;
break;
default:
val = PSCI_RET_NOT_SUPPORTED;
break;
}
/* Nothing to be handled by the host. Go back to the guest. */
smccc_set_retval(vcpu, val, 0, 0, 0);
return true;
}
static bool pkvm_handle_psci(struct kvm_vcpu *vcpu)
{
u32 psci_fn = smccc_get_function(vcpu);
switch (psci_fn) {
case PSCI_0_2_FN_CPU_ON:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_0_2_FN64_CPU_ON:
return pvm_psci_vcpu_on(vcpu);
case PSCI_0_2_FN_CPU_OFF:
return pvm_psci_vcpu_off(vcpu);
case PSCI_0_2_FN_AFFINITY_INFO:
kvm_psci_narrow_to_32bit(vcpu);
fallthrough;
case PSCI_0_2_FN64_AFFINITY_INFO:
return pvm_psci_vcpu_affinity_info(vcpu);
case PSCI_0_2_FN_PSCI_VERSION:
return pvm_psci_version(vcpu);
case PSCI_1_0_FN_PSCI_FEATURES:
return pvm_psci_features(vcpu);
case PSCI_0_2_FN_SYSTEM_RESET:
/*
* NOTE: Until we add proper support for reset for protected
* VMs, repaint reset requests as system off because some VMMs
* use reset when tearing down a VM.
*/
vcpu_set_reg(vcpu, 0, PSCI_0_2_FN_SYSTEM_OFF);
fallthrough;
case PSCI_0_2_FN_CPU_SUSPEND:
case PSCI_0_2_FN64_CPU_SUSPEND:
case PSCI_0_2_FN_SYSTEM_OFF:
return false; /* Handled by the host. */
default:
break;
}
return pvm_psci_not_supported(vcpu);
}
static u64 __pkvm_memshare_page_req(struct kvm_vcpu *vcpu, u64 ipa)
{
u64 elr;
/* Fake up a data abort (Level 3 translation fault on write) */
vcpu->arch.fault.esr_el2 = (u32)ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT |
ESR_ELx_WNR | ESR_ELx_FSC_FAULT |
FIELD_PREP(ESR_ELx_FSC_LEVEL, 3);
/* Shuffle the IPA around into the HPFAR */
vcpu->arch.fault.hpfar_el2 = (ipa >> 8) & HPFAR_MASK;
/* This is a virtual address. 0's good. Let's go with 0. */
vcpu->arch.fault.far_el2 = 0;
/* Rewind the ELR so we return to the HVC once the IPA is mapped */
elr = read_sysreg(elr_el2);
elr -=4;
write_sysreg(elr, elr_el2);
return ARM_EXCEPTION_TRAP;
}
static bool pkvm_memshare_call(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u64 ipa = smccc_get_arg1(vcpu);
u64 arg2 = smccc_get_arg2(vcpu);
u64 arg3 = smccc_get_arg3(vcpu);
int err;
if (arg2 || arg3)
goto out_guest_err;
err = __pkvm_guest_share_host(vcpu, ipa);
switch (err) {
case 0:
/* Success! Now tell the host. */
goto out_host;
case -EFAULT:
/*
* Convert the exception into a data abort so that the page
* being shared is mapped into the guest next time.
*/
*exit_code = __pkvm_memshare_page_req(vcpu, ipa);
goto out_host;
}
out_guest_err:
smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
return true;
out_host:
return false;
}
static bool pkvm_memunshare_call(struct kvm_vcpu *vcpu)
{
u64 ipa = smccc_get_arg1(vcpu);
u64 arg2 = smccc_get_arg2(vcpu);
u64 arg3 = smccc_get_arg3(vcpu);
int err;
if (arg2 || arg3)
goto out_guest_err;
err = __pkvm_guest_unshare_host(vcpu, ipa);
if (err)
goto out_guest_err;
return false;
out_guest_err:
smccc_set_retval(vcpu, SMCCC_RET_INVALID_PARAMETER, 0, 0, 0);
return true;
}
/*
* Handler for protected VM HVC calls.
*
* Returns true if the hypervisor has handled the exit, and control should go
* back to the guest, or false if it hasn't.
*/
bool kvm_handle_pvm_hvc64(struct kvm_vcpu *vcpu, u64 *exit_code)
{
u32 fn = smccc_get_function(vcpu);
u64 val[4] = { SMCCC_RET_NOT_SUPPORTED };
switch (fn) {
case ARM_SMCCC_VERSION_FUNC_ID:
/* Nothing to be handled by the host. Go back to the guest. */
val[0] = ARM_SMCCC_VERSION_1_1;
break;
case ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID:
val[0] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_0;
val[1] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_1;
val[2] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_2;
val[3] = ARM_SMCCC_VENDOR_HYP_UID_KVM_REG_3;
break;
case ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID:
val[0] = BIT(ARM_SMCCC_KVM_FUNC_FEATURES);
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_HYP_MEMINFO);
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_SHARE);
val[0] |= BIT(ARM_SMCCC_KVM_FUNC_MEM_UNSHARE);
break;
case ARM_SMCCC_VENDOR_HYP_KVM_HYP_MEMINFO_FUNC_ID:
if (smccc_get_arg1(vcpu) ||
smccc_get_arg2(vcpu) ||
smccc_get_arg3(vcpu)) {
val[0] = SMCCC_RET_INVALID_PARAMETER;
} else {
val[0] = PAGE_SIZE;
}
break;
case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID:
return pkvm_memshare_call(vcpu, exit_code);
case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID:
return pkvm_memunshare_call(vcpu);
default:
return pkvm_handle_psci(vcpu);
}
smccc_set_retval(vcpu, val[0], val[1], val[2], val[3]);
return true;
}