blob: 58af9102441277bfc61b79e8b8db218857cfcf86 [file] [log] [blame]
// TR1 functional header -*- C++ -*-
// Copyright (C) 2004-2014 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file tr1/functional
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_FUNCTIONAL
#define _GLIBCXX_TR1_FUNCTIONAL 1
#pragma GCC system_header
#include <bits/c++config.h>
#include <bits/stl_function.h>
#include <typeinfo>
#include <new>
#include <tr1/tuple>
#include <tr1/type_traits>
#include <bits/stringfwd.h>
#include <tr1/functional_hash.h>
#include <ext/type_traits.h>
#include <bits/move.h> // for std::__addressof
#if __cplusplus >= 201103L
# include <type_traits> // for integral_constant, true_type, false_type
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<int> struct _Placeholder;
template<typename> class _Bind;
template<typename, typename> class _Bind_result;
_GLIBCXX_END_NAMESPACE_VERSION
#endif
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename _MemberPointer>
class _Mem_fn;
template<typename _Tp, typename _Class>
_Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::*);
/**
* Actual implementation of _Has_result_type, which uses SFINAE to
* determine if the type _Tp has a publicly-accessible member type
* result_type.
*/
template<typename _Tp>
class _Has_result_type_helper : __sfinae_types
{
template<typename _Up>
struct _Wrap_type
{ };
template<typename _Up>
static __one __test(_Wrap_type<typename _Up::result_type>*);
template<typename _Up>
static __two __test(...);
public:
static const bool value = sizeof(__test<_Tp>(0)) == 1;
};
template<typename _Tp>
struct _Has_result_type
: integral_constant<bool,
_Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
{ };
/**
*
*/
/// If we have found a result_type, extract it.
template<bool _Has_result_type, typename _Functor>
struct _Maybe_get_result_type
{ };
template<typename _Functor>
struct _Maybe_get_result_type<true, _Functor>
{
typedef typename _Functor::result_type result_type;
};
/**
* Base class for any function object that has a weak result type, as
* defined in 3.3/3 of TR1.
*/
template<typename _Functor>
struct _Weak_result_type_impl
: _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
{
};
/// Retrieve the result type for a function type.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve the result type for a function reference.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve the result type for a function pointer.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve result type for a member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
{
typedef _Res result_type;
};
/// Retrieve result type for a const member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
{
typedef _Res result_type;
};
/// Retrieve result type for a volatile member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
{
typedef _Res result_type;
};
/// Retrieve result type for a const volatile member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
{
typedef _Res result_type;
};
/**
* Strip top-level cv-qualifiers from the function object and let
* _Weak_result_type_impl perform the real work.
*/
template<typename _Functor>
struct _Weak_result_type
: _Weak_result_type_impl<typename remove_cv<_Functor>::type>
{
};
template<typename _Signature>
class result_of;
/**
* Actual implementation of result_of. When _Has_result_type is
* true, gets its result from _Weak_result_type. Otherwise, uses
* the function object's member template result to extract the
* result type.
*/
template<bool _Has_result_type, typename _Signature>
struct _Result_of_impl;
// Handle member data pointers using _Mem_fn's logic
template<typename _Res, typename _Class, typename _T1>
struct _Result_of_impl<false, _Res _Class::*(_T1)>
{
typedef typename _Mem_fn<_Res _Class::*>
::template _Result_type<_T1>::type type;
};
/**
* Determine whether we can determine a result type from @c Functor
* alone.
*/
template<typename _Functor, typename... _ArgTypes>
class result_of<_Functor(_ArgTypes...)>
: public _Result_of_impl<
_Has_result_type<_Weak_result_type<_Functor> >::value,
_Functor(_ArgTypes...)>
{
};
/// We already know the result type for @c Functor; use it.
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<true, _Functor(_ArgTypes...)>
{
typedef typename _Weak_result_type<_Functor>::result_type type;
};
/**
* We need to compute the result type for this invocation the hard
* way.
*/
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<false, _Functor(_ArgTypes...)>
{
typedef typename _Functor
::template result<_Functor(_ArgTypes...)>::type type;
};
/**
* It is unsafe to access ::result when there are zero arguments, so we
* return @c void instead.
*/
template<typename _Functor>
struct _Result_of_impl<false, _Functor()>
{
typedef void type;
};
/// Determines if the type _Tp derives from unary_function.
template<typename _Tp>
struct _Derives_from_unary_function : __sfinae_types
{
private:
template<typename _T1, typename _Res>
static __one __test(const volatile unary_function<_T1, _Res>*);
// It's tempting to change "..." to const volatile void*, but
// that fails when _Tp is a function type.
static __two __test(...);
public:
static const bool value = sizeof(__test((_Tp*)0)) == 1;
};
/// Determines if the type _Tp derives from binary_function.
template<typename _Tp>
struct _Derives_from_binary_function : __sfinae_types
{
private:
template<typename _T1, typename _T2, typename _Res>
static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
// It's tempting to change "..." to const volatile void*, but
// that fails when _Tp is a function type.
static __two __test(...);
public:
static const bool value = sizeof(__test((_Tp*)0)) == 1;
};
/// Turns a function type into a function pointer type
template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
struct _Function_to_function_pointer
{
typedef _Tp type;
};
template<typename _Tp>
struct _Function_to_function_pointer<_Tp, true>
{
typedef _Tp* type;
};
/**
* Invoke a function object, which may be either a member pointer or a
* function object. The first parameter will tell which.
*/
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(!is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor& __f, _Args&... __args)
{
return __f(__args...);
}
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor& __f, _Args&... __args)
{
return mem_fn(__f)(__args...);
}
// To pick up function references (that will become function pointers)
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(is_pointer<_Functor>::value
&& is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor __f, _Args&... __args)
{
return __f(__args...);
}
/**
* Knowing which of unary_function and binary_function _Tp derives
* from, derives from the same and ensures that reference_wrapper
* will have a weak result type. See cases below.
*/
template<bool _Unary, bool _Binary, typename _Tp>
struct _Reference_wrapper_base_impl;
// Not a unary_function or binary_function, so try a weak result type.
template<typename _Tp>
struct _Reference_wrapper_base_impl<false, false, _Tp>
: _Weak_result_type<_Tp>
{ };
// unary_function but not binary_function
template<typename _Tp>
struct _Reference_wrapper_base_impl<true, false, _Tp>
: unary_function<typename _Tp::argument_type,
typename _Tp::result_type>
{ };
// binary_function but not unary_function
template<typename _Tp>
struct _Reference_wrapper_base_impl<false, true, _Tp>
: binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{ };
// Both unary_function and binary_function. Import result_type to
// avoid conflicts.
template<typename _Tp>
struct _Reference_wrapper_base_impl<true, true, _Tp>
: unary_function<typename _Tp::argument_type,
typename _Tp::result_type>,
binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{
typedef typename _Tp::result_type result_type;
};
/**
* Derives from unary_function or binary_function when it
* can. Specializations handle all of the easy cases. The primary
* template determines what to do with a class type, which may
* derive from both unary_function and binary_function.
*/
template<typename _Tp>
struct _Reference_wrapper_base
: _Reference_wrapper_base_impl<
_Derives_from_unary_function<_Tp>::value,
_Derives_from_binary_function<_Tp>::value,
_Tp>
{ };
// - a function type (unary)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1)>
: unary_function<_T1, _Res>
{ };
// - a function type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2)>
: binary_function<_T1, _T2, _Res>
{ };
// - a function pointer type (unary)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(*)(_T1)>
: unary_function<_T1, _Res>
{ };
// - a function pointer type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
: binary_function<_T1, _T2, _Res>
{ };
// - a pointer to member function type (unary, no qualifiers)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)()>
: unary_function<_T1*, _Res>
{ };
// - a pointer to member function type (binary, no qualifiers)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
: binary_function<_T1*, _T2, _Res>
{ };
// - a pointer to member function type (unary, const)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const>
: unary_function<const _T1*, _Res>
{ };
// - a pointer to member function type (binary, const)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
: binary_function<const _T1*, _T2, _Res>
{ };
// - a pointer to member function type (unary, volatile)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
: unary_function<volatile _T1*, _Res>
{ };
// - a pointer to member function type (binary, volatile)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
: binary_function<volatile _T1*, _T2, _Res>
{ };
// - a pointer to member function type (unary, const volatile)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
: unary_function<const volatile _T1*, _Res>
{ };
// - a pointer to member function type (binary, const volatile)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
: binary_function<const volatile _T1*, _T2, _Res>
{ };
/// reference_wrapper
template<typename _Tp>
class reference_wrapper
: public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
{
// If _Tp is a function type, we can't form result_of<_Tp(...)>,
// so turn it into a function pointer type.
typedef typename _Function_to_function_pointer<_Tp>::type
_M_func_type;
_Tp* _M_data;
public:
typedef _Tp type;
explicit
reference_wrapper(_Tp& __indata)
: _M_data(std::__addressof(__indata))
{ }
reference_wrapper(const reference_wrapper<_Tp>& __inref):
_M_data(__inref._M_data)
{ }
reference_wrapper&
operator=(const reference_wrapper<_Tp>& __inref)
{
_M_data = __inref._M_data;
return *this;
}
operator _Tp&() const
{ return this->get(); }
_Tp&
get() const
{ return *_M_data; }
template<typename... _Args>
typename result_of<_M_func_type(_Args...)>::type
operator()(_Args&... __args) const
{
return __invoke(get(), __args...);
}
};
// Denotes a reference should be taken to a variable.
template<typename _Tp>
inline reference_wrapper<_Tp>
ref(_Tp& __t)
{ return reference_wrapper<_Tp>(__t); }
// Denotes a const reference should be taken to a variable.
template<typename _Tp>
inline reference_wrapper<const _Tp>
cref(const _Tp& __t)
{ return reference_wrapper<const _Tp>(__t); }
template<typename _Tp>
inline reference_wrapper<_Tp>
ref(reference_wrapper<_Tp> __t)
{ return ref(__t.get()); }
template<typename _Tp>
inline reference_wrapper<const _Tp>
cref(reference_wrapper<_Tp> __t)
{ return cref(__t.get()); }
template<typename _Tp, bool>
struct _Mem_fn_const_or_non
{
typedef const _Tp& type;
};
template<typename _Tp>
struct _Mem_fn_const_or_non<_Tp, false>
{
typedef _Tp& type;
};
/**
* Derives from @c unary_function or @c binary_function, or perhaps
* nothing, depending on the number of arguments provided. The
* primary template is the basis case, which derives nothing.
*/
template<typename _Res, typename... _ArgTypes>
struct _Maybe_unary_or_binary_function { };
/// Derives from @c unary_function, as appropriate.
template<typename _Res, typename _T1>
struct _Maybe_unary_or_binary_function<_Res, _T1>
: std::unary_function<_T1, _Res> { };
/// Derives from @c binary_function, as appropriate.
template<typename _Res, typename _T1, typename _T2>
struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
: std::binary_function<_T1, _T2, _Res> { };
/// Implementation of @c mem_fn for member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...);
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(_Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(_Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res
operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
/// Implementation of @c mem_fn for const member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
: public _Maybe_unary_or_binary_function<_Res, const _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(const _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(const _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
/// Implementation of @c mem_fn for volatile member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
: public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(volatile _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(volatile _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res
operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
/// Implementation of @c mem_fn for const volatile member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
: public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
public:
typedef _Res result_type;
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
// Handle objects
_Res
operator()(const volatile _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
// Handle pointers
_Res
operator()(const volatile _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
private:
_Functor __pmf;
};
template<typename _Res, typename _Class>
class _Mem_fn<_Res _Class::*>
{
// This bit of genius is due to Peter Dimov, improved slightly by
// Douglas Gregor.
template<typename _Tp>
_Res&
_M_call(_Tp& __object, _Class *) const
{ return __object.*__pm; }
template<typename _Tp, typename _Up>
_Res&
_M_call(_Tp& __object, _Up * const *) const
{ return (*__object).*__pm; }
template<typename _Tp, typename _Up>
const _Res&
_M_call(_Tp& __object, const _Up * const *) const
{ return (*__object).*__pm; }
template<typename _Tp>
const _Res&
_M_call(_Tp& __object, const _Class *) const
{ return __object.*__pm; }
template<typename _Tp>
const _Res&
_M_call(_Tp& __ptr, const volatile void*) const
{ return (*__ptr).*__pm; }
template<typename _Tp> static _Tp& __get_ref();
template<typename _Tp>
static __sfinae_types::__one __check_const(_Tp&, _Class*);
template<typename _Tp, typename _Up>
static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
template<typename _Tp, typename _Up>
static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
template<typename _Tp>
static __sfinae_types::__two __check_const(_Tp&, const _Class*);
template<typename _Tp>
static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
public:
template<typename _Tp>
struct _Result_type
: _Mem_fn_const_or_non<_Res,
(sizeof(__sfinae_types::__two)
== sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
{ };
template<typename _Signature>
struct result;
template<typename _CVMem, typename _Tp>
struct result<_CVMem(_Tp)>
: public _Result_type<_Tp> { };
template<typename _CVMem, typename _Tp>
struct result<_CVMem(_Tp&)>
: public _Result_type<_Tp> { };
explicit
_Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
// Handle objects
_Res&
operator()(_Class& __object) const
{ return __object.*__pm; }
const _Res&
operator()(const _Class& __object) const
{ return __object.*__pm; }
// Handle pointers
_Res&
operator()(_Class* __object) const
{ return __object->*__pm; }
const _Res&
operator()(const _Class* __object) const
{ return __object->*__pm; }
// Handle smart pointers and derived
template<typename _Tp>
typename _Result_type<_Tp>::type
operator()(_Tp& __unknown) const
{ return _M_call(__unknown, &__unknown); }
private:
_Res _Class::*__pm;
};
/**
* @brief Returns a function object that forwards to the member
* pointer @a pm.
*/
template<typename _Tp, typename _Class>
inline _Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::* __pm)
{
return _Mem_fn<_Tp _Class::*>(__pm);
}
/**
* @brief Determines if the given type _Tp is a function object
* should be treated as a subexpression when evaluating calls to
* function objects returned by bind(). [TR1 3.6.1]
*/
template<typename _Tp>
struct is_bind_expression
{ static const bool value = false; };
template<typename _Tp>
const bool is_bind_expression<_Tp>::value;
/**
* @brief Determines if the given type _Tp is a placeholder in a
* bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
*/
template<typename _Tp>
struct is_placeholder
{ static const int value = 0; };
template<typename _Tp>
const int is_placeholder<_Tp>::value;
/// The type of placeholder objects defined by libstdc++.
template<int _Num> struct _Placeholder { };
_GLIBCXX_END_NAMESPACE_VERSION
/** @namespace std::tr1::placeholders
* @brief Sub-namespace for tr1/functional.
*/
namespace placeholders
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/* Define a large number of placeholders. There is no way to
* simplify this with variadic templates, because we're introducing
* unique names for each.
*/
namespace
{
_Placeholder<1> _1;
_Placeholder<2> _2;
_Placeholder<3> _3;
_Placeholder<4> _4;
_Placeholder<5> _5;
_Placeholder<6> _6;
_Placeholder<7> _7;
_Placeholder<8> _8;
_Placeholder<9> _9;
_Placeholder<10> _10;
_Placeholder<11> _11;
_Placeholder<12> _12;
_Placeholder<13> _13;
_Placeholder<14> _14;
_Placeholder<15> _15;
_Placeholder<16> _16;
_Placeholder<17> _17;
_Placeholder<18> _18;
_Placeholder<19> _19;
_Placeholder<20> _20;
_Placeholder<21> _21;
_Placeholder<22> _22;
_Placeholder<23> _23;
_Placeholder<24> _24;
_Placeholder<25> _25;
_Placeholder<26> _26;
_Placeholder<27> _27;
_Placeholder<28> _28;
_Placeholder<29> _29;
}
_GLIBCXX_END_NAMESPACE_VERSION
}
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* Partial specialization of is_placeholder that provides the placeholder
* number for the placeholder objects defined by libstdc++.
*/
template<int _Num>
struct is_placeholder<_Placeholder<_Num> >
{ static const int value = _Num; };
template<int _Num>
const int is_placeholder<_Placeholder<_Num> >::value;
#if __cplusplus >= 201103L
template<int _Num>
struct is_placeholder<std::_Placeholder<_Num>>
: std::integral_constant<int, _Num>
{ };
template<int _Num>
struct is_placeholder<const std::_Placeholder<_Num>>
: std::integral_constant<int, _Num>
{ };
#endif
/**
* Stores a tuple of indices. Used by bind() to extract the elements
* in a tuple.
*/
template<int... _Indexes>
struct _Index_tuple { };
/// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
template<std::size_t _Num, typename _Tuple = _Index_tuple<> >
struct _Build_index_tuple;
template<std::size_t _Num, int... _Indexes>
struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
: _Build_index_tuple<_Num - 1,
_Index_tuple<_Indexes..., sizeof...(_Indexes)> >
{
};
template<int... _Indexes>
struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
{
typedef _Index_tuple<_Indexes...> __type;
};
/**
* Used by _Safe_tuple_element to indicate that there is no tuple
* element at this position.
*/
struct _No_tuple_element;
/**
* Implementation helper for _Safe_tuple_element. This primary
* template handles the case where it is safe to use @c
* tuple_element.
*/
template<int __i, typename _Tuple, bool _IsSafe>
struct _Safe_tuple_element_impl
: tuple_element<__i, _Tuple> { };
/**
* Implementation helper for _Safe_tuple_element. This partial
* specialization handles the case where it is not safe to use @c
* tuple_element. We just return @c _No_tuple_element.
*/
template<int __i, typename _Tuple>
struct _Safe_tuple_element_impl<__i, _Tuple, false>
{
typedef _No_tuple_element type;
};
/**
* Like tuple_element, but returns @c _No_tuple_element when
* tuple_element would return an error.
*/
template<int __i, typename _Tuple>
struct _Safe_tuple_element
: _Safe_tuple_element_impl<__i, _Tuple,
(__i >= 0 && __i < tuple_size<_Tuple>::value)>
{
};
/**
* Maps an argument to bind() into an actual argument to the bound
* function object [TR1 3.6.3/5]. Only the first parameter should
* be specified: the rest are used to determine among the various
* implementations. Note that, although this class is a function
* object, it isn't entirely normal because it takes only two
* parameters regardless of the number of parameters passed to the
* bind expression. The first parameter is the bound argument and
* the second parameter is a tuple containing references to the
* rest of the arguments.
*/
template<typename _Arg,
bool _IsBindExp = is_bind_expression<_Arg>::value,
bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
class _Mu;
/**
* If the argument is reference_wrapper<_Tp>, returns the
* underlying reference. [TR1 3.6.3/5 bullet 1]
*/
template<typename _Tp>
class _Mu<reference_wrapper<_Tp>, false, false>
{
public:
typedef _Tp& result_type;
/* Note: This won't actually work for const volatile
* reference_wrappers, because reference_wrapper::get() is const
* but not volatile-qualified. This might be a defect in the TR.
*/
template<typename _CVRef, typename _Tuple>
result_type
operator()(_CVRef& __arg, const _Tuple&) const volatile
{ return __arg.get(); }
};
/**
* If the argument is a bind expression, we invoke the underlying
* function object with the same cv-qualifiers as we are given and
* pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
*/
template<typename _Arg>
class _Mu<_Arg, true, false>
{
public:
template<typename _Signature> class result;
// Determine the result type when we pass the arguments along. This
// involves passing along the cv-qualifiers placed on _Mu and
// unwrapping the argument bundle.
template<typename _CVMu, typename _CVArg, typename... _Args>
class result<_CVMu(_CVArg, tuple<_Args...>)>
: public result_of<_CVArg(_Args...)> { };
template<typename _CVArg, typename... _Args>
typename result_of<_CVArg(_Args...)>::type
operator()(_CVArg& __arg,
const tuple<_Args...>& __tuple) const volatile
{
// Construct an index tuple and forward to __call
typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
_Indexes;
return this->__call(__arg, __tuple, _Indexes());
}
private:
// Invokes the underlying function object __arg by unpacking all
// of the arguments in the tuple.
template<typename _CVArg, typename... _Args, int... _Indexes>
typename result_of<_CVArg(_Args...)>::type
__call(_CVArg& __arg, const tuple<_Args...>& __tuple,
const _Index_tuple<_Indexes...>&) const volatile
{
return __arg(tr1::get<_Indexes>(__tuple)...);
}
};
/**
* If the argument is a placeholder for the Nth argument, returns
* a reference to the Nth argument to the bind function object.
* [TR1 3.6.3/5 bullet 3]
*/
template<typename _Arg>
class _Mu<_Arg, false, true>
{
public:
template<typename _Signature> class result;
template<typename _CVMu, typename _CVArg, typename _Tuple>
class result<_CVMu(_CVArg, _Tuple)>
{
// Add a reference, if it hasn't already been done for us.
// This allows us to be a little bit sloppy in constructing
// the tuple that we pass to result_of<...>.
typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
- 1), _Tuple>::type
__base_type;
public:
typedef typename add_reference<__base_type>::type type;
};
template<typename _Tuple>
typename result<_Mu(_Arg, _Tuple)>::type
operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
{
return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
}
};
/**
* If the argument is just a value, returns a reference to that
* value. The cv-qualifiers on the reference are the same as the
* cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
*/
template<typename _Arg>
class _Mu<_Arg, false, false>
{
public:
template<typename _Signature> struct result;
template<typename _CVMu, typename _CVArg, typename _Tuple>
struct result<_CVMu(_CVArg, _Tuple)>
{
typedef typename add_reference<_CVArg>::type type;
};
// Pick up the cv-qualifiers of the argument
template<typename _CVArg, typename _Tuple>
_CVArg&
operator()(_CVArg& __arg, const _Tuple&) const volatile
{ return __arg; }
};
/**
* Maps member pointers into instances of _Mem_fn but leaves all
* other function objects untouched. Used by tr1::bind(). The
* primary template handles the non--member-pointer case.
*/
template<typename _Tp>
struct _Maybe_wrap_member_pointer
{
typedef _Tp type;
static const _Tp&
__do_wrap(const _Tp& __x)
{ return __x; }
};
/**
* Maps member pointers into instances of _Mem_fn but leaves all
* other function objects untouched. Used by tr1::bind(). This
* partial specialization handles the member pointer case.
*/
template<typename _Tp, typename _Class>
struct _Maybe_wrap_member_pointer<_Tp _Class::*>
{
typedef _Mem_fn<_Tp _Class::*> type;
static type
__do_wrap(_Tp _Class::* __pm)
{ return type(__pm); }
};
/// Type of the function object returned from bind().
template<typename _Signature>
struct _Bind;
template<typename _Functor, typename... _Bound_args>
class _Bind<_Functor(_Bound_args...)>
: public _Weak_result_type<_Functor>
{
typedef _Bind __self_type;
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
// Call unqualified
template<typename... _Args, int... _Indexes>
typename result_of<
_Functor(typename result_of<_Mu<_Bound_args>
(_Bound_args, tuple<_Args...>)>::type...)
>::type
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const
template<typename... _Args, int... _Indexes>
typename result_of<
const _Functor(typename result_of<_Mu<_Bound_args>
(const _Bound_args, tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as volatile
template<typename... _Args, int... _Indexes>
typename result_of<
volatile _Functor(typename result_of<_Mu<_Bound_args>
(volatile _Bound_args, tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const volatile
template<typename... _Args, int... _Indexes>
typename result_of<
const volatile _Functor(typename result_of<_Mu<_Bound_args>
(const volatile _Bound_args,
tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) const volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
public:
explicit _Bind(_Functor __f, _Bound_args... __bound_args)
: _M_f(__f), _M_bound_args(__bound_args...) { }
// Call unqualified
template<typename... _Args>
typename result_of<
_Functor(typename result_of<_Mu<_Bound_args>
(_Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args)
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const
template<typename... _Args>
typename result_of<
const _Functor(typename result_of<_Mu<_Bound_args>
(const _Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) const
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as volatile
template<typename... _Args>
typename result_of<
volatile _Functor(typename result_of<_Mu<_Bound_args>
(volatile _Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const volatile
template<typename... _Args>
typename result_of<
const volatile _Functor(typename result_of<_Mu<_Bound_args>
(const volatile _Bound_args,
tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) const volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
};
/// Type of the function object returned from bind<R>().
template<typename _Result, typename _Signature>
struct _Bind_result;
template<typename _Result, typename _Functor, typename... _Bound_args>
class _Bind_result<_Result, _Functor(_Bound_args...)>
{
typedef _Bind_result __self_type;
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
// Call unqualified
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as volatile
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
// Call as const volatile
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) const volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
public:
typedef _Result result_type;
explicit
_Bind_result(_Functor __f, _Bound_args... __bound_args)
: _M_f(__f), _M_bound_args(__bound_args...) { }
// Call unqualified
template<typename... _Args>
result_type
operator()(_Args&... __args)
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const
template<typename... _Args>
result_type
operator()(_Args&... __args) const
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as volatile
template<typename... _Args>
result_type
operator()(_Args&... __args) volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
// Call as const volatile
template<typename... _Args>
result_type
operator()(_Args&... __args) const volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
};
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<_Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<_Bind<_Signature> >::value;
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<const _Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<const _Bind<_Signature> >::value;
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<volatile _Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<volatile _Bind<_Signature> >::value;
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<const volatile _Bind<_Signature> >
{ static const bool value = true; };
template<typename _Signature>
const bool is_bind_expression<const volatile _Bind<_Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<_Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<const _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool
is_bind_expression<const _Bind_result<_Result, _Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool
is_bind_expression<volatile _Bind_result<_Result, _Signature> >::value;
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct
is_bind_expression<const volatile _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
template<typename _Result, typename _Signature>
const bool
is_bind_expression<const volatile _Bind_result<_Result,
_Signature> >::value;
#if __cplusplus >= 201103L
template<typename _Signature>
struct is_bind_expression<std::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const std::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<volatile std::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const volatile std::_Bind<_Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<std::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const std::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile std::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile std::_Bind_result<_Result,
_Signature>>
: true_type { };
#endif
/// bind
template<typename _Functor, typename... _ArgTypes>
inline
_Bind<typename _Maybe_wrap_member_pointer<_Functor>::type(_ArgTypes...)>
bind(_Functor __f, _ArgTypes... __args)
{
typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
typedef typename __maybe_type::type __functor_type;
typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
return __result_type(__maybe_type::__do_wrap(__f), __args...);
}
template<typename _Result, typename _Functor, typename... _ArgTypes>
inline
_Bind_result<_Result,
typename _Maybe_wrap_member_pointer<_Functor>::type
(_ArgTypes...)>
bind(_Functor __f, _ArgTypes... __args)
{
typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
typedef typename __maybe_type::type __functor_type;
typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
__result_type;
return __result_type(__maybe_type::__do_wrap(__f), __args...);
}
/**
* @brief Exception class thrown when class template function's
* operator() is called with an empty target.
* @ingroup exceptions
*/
class bad_function_call : public std::exception { };
/**
* The integral constant expression 0 can be converted into a
* pointer to this type. It is used by the function template to
* accept NULL pointers.
*/
struct _M_clear_type;
/**
* Trait identifying @a location-invariant types, meaning that the
* address of the object (or any of its members) will not escape.
* Also implies a trivial copy constructor and assignment operator.
*/
template<typename _Tp>
struct __is_location_invariant
: integral_constant<bool,
(is_pointer<_Tp>::value
|| is_member_pointer<_Tp>::value)>
{
};
class _Undefined_class;
union _Nocopy_types
{
void* _M_object;
const void* _M_const_object;
void (*_M_function_pointer)();
void (_Undefined_class::*_M_member_pointer)();
};
union _Any_data
{
void* _M_access() { return &_M_pod_data[0]; }
const void* _M_access() const { return &_M_pod_data[0]; }
template<typename _Tp>
_Tp&
_M_access()
{ return *static_cast<_Tp*>(_M_access()); }
template<typename _Tp>
const _Tp&
_M_access() const
{ return *static_cast<const _Tp*>(_M_access()); }
_Nocopy_types _M_unused;
char _M_pod_data[sizeof(_Nocopy_types)];
};
enum _Manager_operation
{
__get_type_info,
__get_functor_ptr,
__clone_functor,
__destroy_functor
};
// Simple type wrapper that helps avoid annoying const problems
// when casting between void pointers and pointers-to-pointers.
template<typename _Tp>
struct _Simple_type_wrapper
{
_Simple_type_wrapper(_Tp __value) : __value(__value) { }
_Tp __value;
};
template<typename _Tp>
struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
: __is_location_invariant<_Tp>
{
};
// Converts a reference to a function object into a callable
// function object.
template<typename _Functor>
inline _Functor&
__callable_functor(_Functor& __f)
{ return __f; }
template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*>
__callable_functor(_Member _Class::* &__p)
{ return mem_fn(__p); }
template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*>
__callable_functor(_Member _Class::* const &__p)
{ return mem_fn(__p); }
template<typename _Signature>
class function;
/// Base class of all polymorphic function object wrappers.
class _Function_base
{
public:
static const std::size_t _M_max_size = sizeof(_Nocopy_types);
static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
template<typename _Functor>
class _Base_manager
{
protected:
static const bool __stored_locally =
(__is_location_invariant<_Functor>::value
&& sizeof(_Functor) <= _M_max_size
&& __alignof__(_Functor) <= _M_max_align
&& (_M_max_align % __alignof__(_Functor) == 0));
typedef integral_constant<bool, __stored_locally> _Local_storage;
// Retrieve a pointer to the function object
static _Functor*
_M_get_pointer(const _Any_data& __source)
{
const _Functor* __ptr =
__stored_locally? std::__addressof(__source._M_access<_Functor>())
/* have stored a pointer */ : __source._M_access<_Functor*>();
return const_cast<_Functor*>(__ptr);
}
// Clone a location-invariant function object that fits within
// an _Any_data structure.
static void
_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
{
new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
}
// Clone a function object that is not location-invariant or
// that cannot fit into an _Any_data structure.
static void
_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
{
__dest._M_access<_Functor*>() =
new _Functor(*__source._M_access<_Functor*>());
}
// Destroying a location-invariant object may still require
// destruction.
static void
_M_destroy(_Any_data& __victim, true_type)
{
__victim._M_access<_Functor>().~_Functor();
}
// Destroying an object located on the heap.
static void
_M_destroy(_Any_data& __victim, false_type)
{
delete __victim._M_access<_Functor*>();
}
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#ifdef __GXX_RTTI
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() = _M_get_pointer(__source);
break;
case __clone_functor:
_M_clone(__dest, __source, _Local_storage());
break;
case __destroy_functor:
_M_destroy(__dest, _Local_storage());
break;
}
return false;
}
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f)
{ _M_init_functor(__functor, __f, _Local_storage()); }
template<typename _Signature>
static bool
_M_not_empty_function(const function<_Signature>& __f)
{ return static_cast<bool>(__f); }
template<typename _Tp>
static bool
_M_not_empty_function(const _Tp*& __fp)
{ return __fp; }
template<typename _Class, typename _Tp>
static bool
_M_not_empty_function(_Tp _Class::* const& __mp)
{ return __mp; }
template<typename _Tp>
static bool
_M_not_empty_function(const _Tp&)
{ return true; }
private:
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
{ new (__functor._M_access()) _Functor(__f); }
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
{ __functor._M_access<_Functor*>() = new _Functor(__f); }
};
template<typename _Functor>
class _Ref_manager : public _Base_manager<_Functor*>
{
typedef _Function_base::_Base_manager<_Functor*> _Base;
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#ifdef __GXX_RTTI
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
return is_const<_Functor>::value;
break;
default:
_Base::_M_manager(__dest, __source, __op);
}
return false;
}
static void
_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
{
_Base::_M_init_functor(__functor, std::__addressof(__f.get()));
}
};
_Function_base() : _M_manager(0) { }
~_Function_base()
{
if (_M_manager)
_M_manager(_M_functor, _M_functor, __destroy_functor);
}
bool _M_empty() const { return !_M_manager; }
typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
_Manager_operation);
_Any_data _M_functor;
_Manager_type _M_manager;
};
template<typename _Signature, typename _Functor>
class _Function_handler;
template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Functor>
: public _Function_base::_Base_manager<_Functor>
{
typedef _Function_base::_Base_manager<_Functor> _Base;
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return (*_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Functor>
: public _Function_base::_Base_manager<_Functor>
{
typedef _Function_base::_Base_manager<_Functor> _Base;
public:
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
(*_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
: public _Function_base::_Ref_manager<_Functor>
{
typedef _Function_base::_Ref_manager<_Functor> _Base;
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return
__callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
: public _Function_base::_Ref_manager<_Functor>
{
typedef _Function_base::_Ref_manager<_Functor> _Base;
public:
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
__callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
}
};
template<typename _Class, typename _Member, typename _Res,
typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
: public _Function_handler<void(_ArgTypes...), _Member _Class::*>
{
typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
_Base;
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return tr1::
mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
}
};
template<typename _Class, typename _Member, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Member _Class::*>
: public _Function_base::_Base_manager<
_Simple_type_wrapper< _Member _Class::* > >
{
typedef _Member _Class::* _Functor;
typedef _Simple_type_wrapper<_Functor> _Wrapper;
typedef _Function_base::_Base_manager<_Wrapper> _Base;
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#ifdef __GXX_RTTI
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() =
&_Base::_M_get_pointer(__source)->__value;
break;
default:
_Base::_M_manager(__dest, __source, __op);
}
return false;
}
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
tr1::mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
}
};
/// class function
template<typename _Res, typename... _ArgTypes>
class function<_Res(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
private _Function_base
{
#if __cplusplus < 201103L
/// This class is used to implement the safe_bool idiom.
struct _Hidden_type
{
_Hidden_type* _M_bool;
};
/// This typedef is used to implement the safe_bool idiom.
typedef _Hidden_type* _Hidden_type::* _Safe_bool;
#endif
typedef _Res _Signature_type(_ArgTypes...);
struct _Useless { };
public:
typedef _Res result_type;
// [3.7.2.1] construct/copy/destroy
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function() : _Function_base() { }
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function(_M_clear_type*) : _Function_base() { }
/**
* @brief %Function copy constructor.
* @param x A %function object with identical call signature.
* @post @c (bool)*this == (bool)x
*
* The newly-created %function contains a copy of the target of @a
* x (if it has one).
*/
function(const function& __x);
/**
* @brief Builds a %function that targets a copy of the incoming
* function object.
* @param f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
*
* The newly-created %function object will target a copy of @a
* f. If @a f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* f.get(). If @a f is a NULL function pointer or NULL
* pointer-to-member, the newly-created object will be empty.
*
* If @a f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor>
function(_Functor __f,
typename __gnu_cxx::__enable_if<
!is_integral<_Functor>::value, _Useless>::__type
= _Useless());
/**
* @brief %Function assignment operator.
* @param x A %function with identical call signature.
* @post @c (bool)*this == (bool)x
* @returns @c *this
*
* The target of @a x is copied to @c *this. If @a x has no
* target, then @c *this will be empty.
*
* If @a x targets a function pointer or a reference to a function
* object, then this operation will not throw an %exception.
*/
function&
operator=(const function& __x)
{
function(__x).swap(*this);
return *this;
}
/**
* @brief %Function assignment to zero.
* @post @c !(bool)*this
* @returns @c *this
*
* The target of @c *this is deallocated, leaving it empty.
*/
function&
operator=(_M_clear_type*)
{
if (_M_manager)
{
_M_manager(_M_functor, _M_functor, __destroy_functor);
_M_manager = 0;
_M_invoker = 0;
}
return *this;
}
/**
* @brief %Function assignment to a new target.
* @param f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
* @return @c *this
*
* This %function object wrapper will target a copy of @a
* f. If @a f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* f.get(). If @a f is a NULL function pointer or NULL
* pointer-to-member, @c this object will be empty.
*
* If @a f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor>
typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
function&>::__type
operator=(_Functor __f)
{
function(__f).swap(*this);
return *this;
}
// [3.7.2.2] function modifiers
/**
* @brief Swap the targets of two %function objects.
* @param f A %function with identical call signature.
*
* Swap the targets of @c this function object and @a f. This
* function will not throw an %exception.
*/
void swap(function& __x)
{
std::swap(_M_functor, __x._M_functor);
std::swap(_M_manager, __x._M_manager);
std::swap(_M_invoker, __x._M_invoker);
}
// [3.7.2.3] function capacity
/**
* @brief Determine if the %function wrapper has a target.
*
* @return @c true when this %function object contains a target,
* or @c false when it is empty.
*
* This function will not throw an %exception.
*/
#if __cplusplus >= 201103L
explicit operator bool() const
{ return !_M_empty(); }
#else
operator _Safe_bool() const
{
if (_M_empty())
return 0;
else
return &_Hidden_type::_M_bool;
}
#endif
// [3.7.2.4] function invocation
/**
* @brief Invokes the function targeted by @c *this.
* @returns the result of the target.
* @throws bad_function_call when @c !(bool)*this
*
* The function call operator invokes the target function object
* stored by @c this.
*/
_Res operator()(_ArgTypes... __args) const;
#ifdef __GXX_RTTI
// [3.7.2.5] function target access
/**
* @brief Determine the type of the target of this function object
* wrapper.
*
* @returns the type identifier of the target function object, or
* @c typeid(void) if @c !(bool)*this.
*
* This function will not throw an %exception.
*/
const type_info& target_type() const;
/**
* @brief Access the stored target function object.
*
* @return Returns a pointer to the stored target function object,
* if @c typeid(Functor).equals(target_type()); otherwise, a NULL
* pointer.
*
* This function will not throw an %exception.
*/
template<typename _Functor> _Functor* target();
/// @overload
template<typename _Functor> const _Functor* target() const;
#endif
private:
// [3.7.2.6] undefined operators
template<typename _Function>
void operator==(const function<_Function>&) const;
template<typename _Function>
void operator!=(const function<_Function>&) const;
typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
_Invoker_type _M_invoker;
};
template<typename _Res, typename... _ArgTypes>
function<_Res(_ArgTypes...)>::
function(const function& __x)
: _Function_base()
{
if (static_cast<bool>(__x))
{
__x._M_manager(_M_functor, __x._M_functor, __clone_functor);
_M_invoker = __x._M_invoker;
_M_manager = __x._M_manager;
}
}
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
function<_Res(_ArgTypes...)>::
function(_Functor __f,
typename __gnu_cxx::__enable_if<
!is_integral<_Functor>::value, _Useless>::__type)
: _Function_base()
{
typedef _Function_handler<_Signature_type, _Functor> _My_handler;
if (_My_handler::_M_not_empty_function(__f))
{
_My_handler::_M_init_functor(_M_functor, __f);
_M_invoker = &_My_handler::_M_invoke;
_M_manager = &_My_handler::_M_manager;
}
}
template<typename _Res, typename... _ArgTypes>
_Res
function<_Res(_ArgTypes...)>::
operator()(_ArgTypes... __args) const
{
if (_M_empty())
_GLIBCXX_THROW_OR_ABORT(bad_function_call());
return _M_invoker(_M_functor, __args...);
}
#ifdef __GXX_RTTI
template<typename _Res, typename... _ArgTypes>
const type_info&
function<_Res(_ArgTypes...)>::
target_type() const
{
if (_M_manager)
{
_Any_data __typeinfo_result;
_M_manager(__typeinfo_result, _M_functor, __get_type_info);
return *__typeinfo_result._M_access<const type_info*>();
}
else
return typeid(void);
}
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
_Functor*
function<_Res(_ArgTypes...)>::
target()
{
if (typeid(_Functor) == target_type() && _M_manager)
{
_Any_data __ptr;
if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
&& !is_const<_Functor>::value)
return 0;
else
return __ptr._M_access<_Functor*>();
}
else
return 0;
}
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
const _Functor*
function<_Res(_ArgTypes...)>::
target() const
{
if (typeid(_Functor) == target_type() && _M_manager)
{
_Any_data __ptr;
_M_manager(__ptr, _M_functor, __get_functor_ptr);
return __ptr._M_access<const _Functor*>();
}
else
return 0;
}
#endif
// [3.7.2.7] null pointer comparisons
/**
* @brief Compares a polymorphic function object wrapper against 0
* (the NULL pointer).
* @returns @c true if the wrapper has no target, @c false otherwise
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline bool
operator==(const function<_Signature>& __f, _M_clear_type*)
{ return !static_cast<bool>(__f); }
/// @overload
template<typename _Signature>
inline bool
operator==(_M_clear_type*, const function<_Signature>& __f)
{ return !static_cast<bool>(__f); }
/**
* @brief Compares a polymorphic function object wrapper against 0
* (the NULL pointer).
* @returns @c false if the wrapper has no target, @c true otherwise
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline bool
operator!=(const function<_Signature>& __f, _M_clear_type*)
{ return static_cast<bool>(__f); }
/// @overload
template<typename _Signature>
inline bool
operator!=(_M_clear_type*, const function<_Signature>& __f)
{ return static_cast<bool>(__f); }
// [3.7.2.8] specialized algorithms
/**
* @brief Swap the targets of two polymorphic function object wrappers.
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline void
swap(function<_Signature>& __x, function<_Signature>& __y)
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_VERSION
}
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename> struct is_placeholder;
template<int _Num>
struct is_placeholder<tr1::_Placeholder<_Num>>
: integral_constant<int, _Num>
{ };
template<int _Num>
struct is_placeholder<const tr1::_Placeholder<_Num>>
: integral_constant<int, _Num>
{ };
template<typename> struct is_bind_expression;
template<typename _Signature>
struct is_bind_expression<tr1::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const tr1::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<volatile tr1::_Bind<_Signature>>
: true_type { };
template<typename _Signature>
struct is_bind_expression<const volatile tr1::_Bind<_Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<tr1::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const tr1::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile tr1::_Bind_result<_Result, _Signature>>
: true_type { };
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile tr1::_Bind_result<_Result,
_Signature>>
: true_type { };
_GLIBCXX_END_NAMESPACE_VERSION
#endif
}
#endif // _GLIBCXX_TR1_FUNCTIONAL