| /* |
| * Copyright (c) 2020, ARM Limited and Contributors. All rights reserved. |
| * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <stdbool.h> |
| |
| #include <arch_helpers.h> |
| #include <bpmp_ipc.h> |
| #include <common/debug.h> |
| #include <drivers/delay_timer.h> |
| #include <lib/mmio.h> |
| #include <lib/psci/psci.h> |
| #include <se.h> |
| #include <tegra_platform.h> |
| |
| #include "se_private.h" |
| |
| /******************************************************************************* |
| * Constants and Macros |
| ******************************************************************************/ |
| #define ERR_STATUS_SW_CLEAR U(0xFFFFFFFF) |
| #define INT_STATUS_SW_CLEAR U(0xFFFFFFFF) |
| #define MAX_TIMEOUT_MS U(1000) /* Max. timeout of 1s */ |
| #define NUM_SE_REGS_TO_SAVE U(4) |
| |
| #define BYTES_IN_WORD U(4) |
| #define SHA256_MAX_HASH_RESULT U(7) |
| #define SHA256_DST_SIZE U(32) |
| #define SHA_FIRST_OP U(1) |
| #define MAX_SHA_ENGINE_CHUNK_SIZE U(0xFFFFFF) |
| #define SHA256_MSG_LENGTH_ONETIME U(0xFFFF) |
| |
| /******************************************************************************* |
| * Data structure and global variables |
| ******************************************************************************/ |
| static uint32_t se_regs[NUM_SE_REGS_TO_SAVE]; |
| |
| /* |
| * Check that SE operation has completed after kickoff. |
| * |
| * This function is invoked after an SE operation has been started, |
| * and it checks the following conditions: |
| * |
| * 1. SE_STATUS = IDLE |
| * 2. AHB bus data transfer is complete. |
| * 3. SE_ERR_STATUS is clean. |
| */ |
| static bool tegra_se_is_operation_complete(void) |
| { |
| uint32_t val = 0, timeout = 0, sha_status, aes_status; |
| int32_t ret = 0; |
| bool se_is_busy, txn_has_errors, txn_successful; |
| |
| /* |
| * Poll the status register to check if the operation |
| * completed. |
| */ |
| do { |
| val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS); |
| se_is_busy = ((val & CTX_SAVE_AUTO_SE_BUSY) != 0U); |
| |
| /* sleep until SE finishes */ |
| if (se_is_busy) { |
| mdelay(1); |
| timeout++; |
| } |
| |
| } while (se_is_busy && (timeout < MAX_TIMEOUT_MS)); |
| |
| /* any transaction errors? */ |
| txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) || |
| (tegra_se_read_32(AES0_ERR_STATUS) != 0U); |
| |
| /* transaction successful? */ |
| sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE; |
| aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE; |
| txn_successful = (sha_status == SHA_SE_OP_DONE) && |
| (aes_status == AES0_SE_OP_DONE); |
| |
| if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) { |
| ERROR("%s: Atomic context save operation failed!\n", |
| __func__); |
| ret = -ECANCELED; |
| } |
| |
| return (ret == 0); |
| } |
| |
| /* |
| * Wait for SE engine to be idle and clear any pending interrupts, before |
| * starting the next SE operation. |
| */ |
| static bool tegra_se_is_ready(void) |
| { |
| int32_t ret = 0; |
| uint32_t val = 0, timeout = 0; |
| bool se_is_ready; |
| |
| /* Wait for previous operation to finish */ |
| do { |
| val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS); |
| se_is_ready = (val == CTX_SAVE_AUTO_SE_READY); |
| |
| /* sleep until SE is ready */ |
| if (!se_is_ready) { |
| mdelay(1); |
| timeout++; |
| } |
| |
| } while (!se_is_ready && (timeout < MAX_TIMEOUT_MS)); |
| |
| if (timeout == MAX_TIMEOUT_MS) { |
| ERROR("%s: SE is not ready!\n", __func__); |
| ret = -ETIMEDOUT; |
| } |
| |
| /* Clear any pending interrupts from previous operation */ |
| tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR); |
| tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR); |
| tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR); |
| tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR); |
| |
| /* Clear error status for each engine seen from current port */ |
| tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR); |
| tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR); |
| tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR); |
| tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR); |
| |
| return (ret == 0); |
| } |
| |
| /* |
| * During System Suspend, this handler triggers the hardware context |
| * save operation. |
| */ |
| static int32_t tegra_se_save_context(void) |
| { |
| int32_t ret = -ECANCELED; |
| |
| /* |
| * 1. Ensure all SE Driver including RNG1/PKA1 are shut down. |
| * TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1, |
| * PKA1 are wrapped up. SE0 is ready for use. |
| * 2. Clear interrupt/error in SE0 status register. |
| * 3. Scrub SE0 register to avoid false failure for illegal |
| * configuration. Probably not needed, dependent on HW |
| * implementation. |
| * 4. Check SE is ready for HW CTX_SAVE by polling |
| * SE_CTX_SAVE_AUTO_STATUS.SE_READY. |
| * |
| * Steps 1-4 are executed by tegra_se_is_ready(). |
| * |
| * 5. Issue context save command. |
| * 6. Check SE is busy with CTX_SAVE, the command in step5 was not |
| * dropped for ongoing traffic in any of SE port/engine. |
| * 7. Poll SE register or wait for SE APB interrupt for task completion |
| * a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE |
| * b. Interrupt: After receiving interrupt from SE APB, read |
| * SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE. |
| * 8. Check AES0 and SHA ERR_STATUS to ensure no error case. |
| * 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully |
| * completed. |
| * |
| * Steps 6-9 are executed by tegra_se_is_operation_complete(). |
| */ |
| if (tegra_se_is_ready()) { |
| |
| /* Issue context save command */ |
| tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE); |
| |
| /* Wait for operation to finish */ |
| if (tegra_se_is_operation_complete()) { |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Check that SE operation has completed after kickoff |
| * This function is invoked after an SE operation has been started, |
| * and it checks the following conditions: |
| * 1. SE0_INT_STATUS = SE0_OP_DONE |
| * 2. SE0_STATUS = IDLE |
| * 3. SE0_ERR_STATUS is clean. |
| */ |
| static int32_t tegra_se_sha256_hash_operation_complete(void) |
| { |
| uint32_t val = 0U; |
| |
| /* Poll the SE interrupt register to ensure H/W operation complete */ |
| val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET); |
| while (SE0_INT_OP_DONE(val) == SE0_INT_OP_DONE_CLEAR) { |
| val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET); |
| if (SE0_INT_OP_DONE(val) != SE0_INT_OP_DONE_CLEAR) { |
| break; |
| } |
| } |
| |
| /* Poll the SE status idle to ensure H/W operation complete */ |
| val = tegra_se_read_32(SE0_SHA_STATUS_0); |
| while (val != SE0_SHA_STATUS_IDLE) { |
| val = tegra_se_read_32(SE0_SHA_STATUS_0); |
| if (val == SE0_SHA_STATUS_IDLE) { |
| break; |
| } |
| } |
| |
| /* Ensure that no errors are thrown during operation */ |
| val = tegra_se_read_32(SE0_ERR_STATUS_REG_OFFSET); |
| if (val != 0U) { |
| ERROR("%s: error during SE operation! 0x%x", __func__, |
| val); |
| return -ENOTSUP; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Security engine primitive normal operations |
| */ |
| static int32_t tegra_se_start_normal_operation(uint64_t src_addr, |
| uint32_t nbytes, uint32_t last_buf, uint32_t src_len_inbytes) |
| { |
| uint32_t val = 0U; |
| uint32_t src_in_lo; |
| uint32_t src_in_msb; |
| uint32_t src_in_hi; |
| int32_t ret = 0; |
| |
| if ((src_addr == 0ULL) || (nbytes == 0U)) |
| return -EINVAL; |
| |
| src_in_lo = (uint32_t)src_addr; |
| src_in_msb = (uint32_t)((src_addr >> 32U) & 0xFFU); |
| src_in_hi = ((src_in_msb << SE0_IN_HI_ADDR_HI_0_MSB_SHIFT) | |
| (nbytes & MAX_SHA_ENGINE_CHUNK_SIZE)); |
| |
| /* set SRC_IN_ADDR_LO and SRC_IN_ADDR_HI*/ |
| tegra_se_write_32(SE0_IN_ADDR, src_in_lo); |
| tegra_se_write_32(SE0_IN_HI_ADDR_HI, src_in_hi); |
| |
| val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET); |
| if (val > 0U) { |
| tegra_se_write_32(SE0_INT_STATUS_REG_OFFSET, 0x0U); |
| } |
| |
| /* Enable SHA interrupt for SE0 Operation */ |
| tegra_se_write_32(SE0_SHA_INT_ENABLE, 0x1aU); |
| |
| /* flush to DRAM for SE to use the updated contents */ |
| flush_dcache_range(src_addr, src_len_inbytes); |
| |
| /* Start SHA256 operation */ |
| if (last_buf == 1U) { |
| tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START | |
| SE0_UNIT_OPERATION_PKT_LASTBUF_FIELD); |
| } else { |
| tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START); |
| } |
| |
| return ret; |
| } |
| |
| static int32_t tegra_se_calculate_sha256_hash(uint64_t src_addr, |
| uint32_t src_len_inbyte) |
| { |
| uint32_t val, last_buf, i; |
| int32_t ret = 0; |
| uint32_t operations; |
| uint64_t src_len_inbits; |
| uint32_t len_bits_msb; |
| uint32_t len_bits_lsb; |
| uint32_t number_of_operations, max_bytes, bytes_left, remaining_bytes; |
| |
| if (src_len_inbyte > MAX_SHA_ENGINE_CHUNK_SIZE) { |
| ERROR("SHA input chunk size too big: 0x%x\n", src_len_inbyte); |
| return -EINVAL; |
| } |
| |
| if (src_addr == 0ULL) { |
| return -EINVAL; |
| } |
| |
| /* number of bytes per operation */ |
| max_bytes = (SHA256_HASH_SIZE_BYTES * SHA256_MSG_LENGTH_ONETIME); |
| |
| src_len_inbits = (uint32_t)(src_len_inbyte * 8U); |
| len_bits_msb = (uint32_t)(src_len_inbits >> 32U); |
| len_bits_lsb = (uint32_t)src_len_inbits; |
| |
| /* program SE0_CONFIG for SHA256 operation */ |
| val = (uint32_t)(SE0_CONFIG_ENC_ALG_SHA | SE0_CONFIG_ENC_MODE_SHA256 | |
| SE0_CONFIG_DEC_ALG_NOP | SE0_CONFIG_DST_HASHREG); |
| tegra_se_write_32(SE0_SHA_CONFIG, val); |
| |
| /* set SE0_SHA_MSG_LENGTH registers */ |
| tegra_se_write_32(SE0_SHA_MSG_LENGTH_0, len_bits_lsb); |
| tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb); |
| tegra_se_write_32(SE0_SHA_MSG_LENGTH_1, len_bits_msb); |
| |
| /* zero out unused SE0_SHA_MSG_LENGTH and SE0_SHA_MSG_LEFT */ |
| tegra_se_write_32(SE0_SHA_MSG_LENGTH_2, 0U); |
| tegra_se_write_32(SE0_SHA_MSG_LENGTH_3, 0U); |
| tegra_se_write_32(SE0_SHA_MSG_LEFT_1, 0U); |
| tegra_se_write_32(SE0_SHA_MSG_LEFT_2, 0U); |
| tegra_se_write_32(SE0_SHA_MSG_LEFT_3, 0U); |
| |
| number_of_operations = (src_len_inbyte / max_bytes); |
| remaining_bytes = (src_len_inbyte % max_bytes); |
| if (remaining_bytes > 0U) { |
| number_of_operations += 1U; |
| } |
| |
| /* |
| * 1. Operations == 1: program SE0_SHA_TASK register to initiate SHA256 |
| * hash generation by setting |
| * 1(SE0_SHA_CONFIG_HW_INIT_HASH) to SE0_SHA_TASK |
| * and start SHA256-normal operation. |
| * 2. 1 < Operations < number_of_operations: program SE0_SHA_TASK to |
| * 0(SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE) to load |
| * intermediate SHA256 digest result from |
| * HASH_RESULT register to continue SHA256 |
| * generation and start SHA256-normal operation. |
| * 3. Operations == number_of_operations: continue with step 2 and set |
| * max_bytes to bytes_left to process final |
| * hash-result generation and start SHA256-normal |
| * operation. |
| */ |
| bytes_left = src_len_inbyte; |
| for (operations = 1U; operations <= number_of_operations; |
| operations++) { |
| if (operations == SHA_FIRST_OP) { |
| val = SE0_SHA_CONFIG_HW_INIT_HASH; |
| } else { |
| /* Load intermediate SHA digest result to |
| * SHA:HASH_RESULT(0..7) to continue the SHA |
| * calculation and tell the SHA engine to use it. |
| */ |
| for (i = 0U; (i / BYTES_IN_WORD) <= |
| SHA256_MAX_HASH_RESULT; i += BYTES_IN_WORD) { |
| val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + |
| i); |
| tegra_se_write_32(SE0_SHA_HASH_RESULT_0 + i, |
| val); |
| } |
| val = SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE; |
| if (len_bits_lsb <= (max_bytes * 8U)) { |
| len_bits_lsb = (remaining_bytes * 8U); |
| } else { |
| len_bits_lsb -= (max_bytes * 8U); |
| } |
| tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb); |
| } |
| tegra_se_write_32(SE0_SHA_TASK_CONFIG, val); |
| |
| max_bytes = (SHA256_HASH_SIZE_BYTES * |
| SHA256_MSG_LENGTH_ONETIME); |
| if (bytes_left < max_bytes) { |
| max_bytes = bytes_left; |
| last_buf = 1U; |
| } else { |
| bytes_left = bytes_left - max_bytes; |
| last_buf = 0U; |
| } |
| /* start operation */ |
| ret = tegra_se_start_normal_operation(src_addr, max_bytes, |
| last_buf, src_len_inbyte); |
| if (ret != 0) { |
| ERROR("Error during SE operation! 0x%x", ret); |
| return -EINVAL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int32_t tegra_se_save_sha256_pmc_scratch(void) |
| { |
| uint32_t val = 0U, hash_offset = 0U, scratch_offset = 0U; |
| int32_t ret; |
| |
| /* Check SE0 operation status */ |
| ret = tegra_se_sha256_hash_operation_complete(); |
| if (ret != 0) { |
| ERROR("SE operation complete Failed! 0x%x", ret); |
| return ret; |
| } |
| |
| for (scratch_offset = SECURE_SCRATCH_TZDRAM_SHA256_HASH_START; |
| scratch_offset <= SECURE_SCRATCH_TZDRAM_SHA256_HASH_END; |
| scratch_offset += BYTES_IN_WORD) { |
| val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + hash_offset); |
| mmio_write_32((uint32_t)(TEGRA_SCRATCH_BASE + scratch_offset), |
| val); |
| hash_offset += BYTES_IN_WORD; |
| } |
| return 0; |
| } |
| |
| /* |
| * Handler to generate SHA256 and save HASH-result to pmc-scratch register |
| */ |
| int32_t tegra_se_calculate_save_sha256(uint64_t src_addr, |
| uint32_t src_len_inbyte) |
| { |
| uint32_t security; |
| int32_t val = 0; |
| |
| /* Set SE_SOFT_SETTINGS=SE_SECURE to prevent NS process to change SE |
| * registers. |
| */ |
| security = tegra_se_read_32(SE0_SECURITY); |
| tegra_se_write_32(SE0_SECURITY, security | SE0_SECURITY_SE_SOFT_SETTING); |
| |
| /* Bootrom enable IN_ID bit in SE0_SHA_GSCID_0 register during SC7-exit, causing |
| * SE0 ignores SE0 operation, and therefore failure of 2nd iteration of SC7 cycle. |
| */ |
| tegra_se_write_32(SE0_SHA_GSCID_0, 0x0U); |
| |
| /* Calculate SHA256 of BL31 */ |
| val = tegra_se_calculate_sha256_hash(src_addr, src_len_inbyte); |
| if (val != 0) { |
| ERROR("%s: SHA256 generation failed\n", __func__); |
| return val; |
| } |
| |
| /* |
| * Reset SE_SECURE to previous value. |
| */ |
| tegra_se_write_32(SE0_SECURITY, security); |
| |
| /* copy sha256_dst to PMC Scratch register */ |
| val = tegra_se_save_sha256_pmc_scratch(); |
| if (val != 0) { |
| ERROR("%s: SE0 status Error.\n", __func__); |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This |
| * needs to be called only during System Suspend. |
| */ |
| int32_t tegra_se_suspend(void) |
| { |
| int32_t ret = 0; |
| |
| /* initialise communication channel with BPMP */ |
| assert(tegra_bpmp_ipc_init() == 0); |
| |
| /* Enable SE clock before SE context save */ |
| ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE); |
| assert(ret == 0); |
| |
| /* save SE registers */ |
| se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT); |
| se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL); |
| se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT); |
| se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT); |
| |
| /* Save SE context. The BootROM restores it during System Resume */ |
| ret = tegra_se_save_context(); |
| if (ret != 0) { |
| ERROR("%s: context save failed (%d)\n", __func__, ret); |
| } |
| |
| /* Disable SE clock after SE context save */ |
| ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE); |
| assert(ret == 0); |
| |
| return ret; |
| } |
| |
| /* |
| * Handler to power up the SE hardware block(s) during System Resume. |
| */ |
| void tegra_se_resume(void) |
| { |
| int32_t ret = 0; |
| |
| /* initialise communication channel with BPMP */ |
| assert(tegra_bpmp_ipc_init() == 0); |
| |
| /* Enable SE clock before SE context restore */ |
| ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE); |
| assert(ret == 0); |
| |
| /* |
| * When TZ takes over after System Resume, TZ should first reconfigure |
| * SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT, |
| * RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before |
| * other operations. |
| */ |
| mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]); |
| mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]); |
| mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]); |
| mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]); |
| |
| /* Disable SE clock after SE context restore */ |
| ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE); |
| assert(ret == 0); |
| } |