blob: 31b0e26780e53ce7a54e2b887b5c60c8bdbbc153 [file] [log] [blame]
/*
* Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <arch_helpers.h>
#include <bpmp_ipc.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <lib/psci/psci.h>
#include <se.h>
#include <tegra_platform.h>
#include "se_private.h"
/*******************************************************************************
* Constants and Macros
******************************************************************************/
#define ERR_STATUS_SW_CLEAR U(0xFFFFFFFF)
#define INT_STATUS_SW_CLEAR U(0xFFFFFFFF)
#define MAX_TIMEOUT_MS U(1000) /* Max. timeout of 1s */
#define NUM_SE_REGS_TO_SAVE U(4)
#define BYTES_IN_WORD U(4)
#define SHA256_MAX_HASH_RESULT U(7)
#define SHA256_DST_SIZE U(32)
#define SHA_FIRST_OP U(1)
#define MAX_SHA_ENGINE_CHUNK_SIZE U(0xFFFFFF)
#define SHA256_MSG_LENGTH_ONETIME U(0xFFFF)
/*******************************************************************************
* Data structure and global variables
******************************************************************************/
static uint32_t se_regs[NUM_SE_REGS_TO_SAVE];
/*
* Check that SE operation has completed after kickoff.
*
* This function is invoked after an SE operation has been started,
* and it checks the following conditions:
*
* 1. SE_STATUS = IDLE
* 2. AHB bus data transfer is complete.
* 3. SE_ERR_STATUS is clean.
*/
static bool tegra_se_is_operation_complete(void)
{
uint32_t val = 0, timeout = 0, sha_status, aes_status;
int32_t ret = 0;
bool se_is_busy, txn_has_errors, txn_successful;
/*
* Poll the status register to check if the operation
* completed.
*/
do {
val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
se_is_busy = ((val & CTX_SAVE_AUTO_SE_BUSY) != 0U);
/* sleep until SE finishes */
if (se_is_busy) {
mdelay(1);
timeout++;
}
} while (se_is_busy && (timeout < MAX_TIMEOUT_MS));
/* any transaction errors? */
txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) ||
(tegra_se_read_32(AES0_ERR_STATUS) != 0U);
/* transaction successful? */
sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE;
aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE;
txn_successful = (sha_status == SHA_SE_OP_DONE) &&
(aes_status == AES0_SE_OP_DONE);
if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) {
ERROR("%s: Atomic context save operation failed!\n",
__func__);
ret = -ECANCELED;
}
return (ret == 0);
}
/*
* Wait for SE engine to be idle and clear any pending interrupts, before
* starting the next SE operation.
*/
static bool tegra_se_is_ready(void)
{
int32_t ret = 0;
uint32_t val = 0, timeout = 0;
bool se_is_ready;
/* Wait for previous operation to finish */
do {
val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
se_is_ready = (val == CTX_SAVE_AUTO_SE_READY);
/* sleep until SE is ready */
if (!se_is_ready) {
mdelay(1);
timeout++;
}
} while (!se_is_ready && (timeout < MAX_TIMEOUT_MS));
if (timeout == MAX_TIMEOUT_MS) {
ERROR("%s: SE is not ready!\n", __func__);
ret = -ETIMEDOUT;
}
/* Clear any pending interrupts from previous operation */
tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR);
tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR);
tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR);
tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR);
/* Clear error status for each engine seen from current port */
tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR);
tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR);
tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
return (ret == 0);
}
/*
* During System Suspend, this handler triggers the hardware context
* save operation.
*/
static int32_t tegra_se_save_context(void)
{
int32_t ret = -ECANCELED;
/*
* 1. Ensure all SE Driver including RNG1/PKA1 are shut down.
* TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1,
* PKA1 are wrapped up. SE0 is ready for use.
* 2. Clear interrupt/error in SE0 status register.
* 3. Scrub SE0 register to avoid false failure for illegal
* configuration. Probably not needed, dependent on HW
* implementation.
* 4. Check SE is ready for HW CTX_SAVE by polling
* SE_CTX_SAVE_AUTO_STATUS.SE_READY.
*
* Steps 1-4 are executed by tegra_se_is_ready().
*
* 5. Issue context save command.
* 6. Check SE is busy with CTX_SAVE, the command in step5 was not
* dropped for ongoing traffic in any of SE port/engine.
* 7. Poll SE register or wait for SE APB interrupt for task completion
* a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE
* b. Interrupt: After receiving interrupt from SE APB, read
* SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE.
* 8. Check AES0 and SHA ERR_STATUS to ensure no error case.
* 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully
* completed.
*
* Steps 6-9 are executed by tegra_se_is_operation_complete().
*/
if (tegra_se_is_ready()) {
/* Issue context save command */
tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE);
/* Wait for operation to finish */
if (tegra_se_is_operation_complete()) {
ret = 0;
}
}
return ret;
}
/*
* Check that SE operation has completed after kickoff
* This function is invoked after an SE operation has been started,
* and it checks the following conditions:
* 1. SE0_INT_STATUS = SE0_OP_DONE
* 2. SE0_STATUS = IDLE
* 3. SE0_ERR_STATUS is clean.
*/
static int32_t tegra_se_sha256_hash_operation_complete(void)
{
uint32_t val = 0U;
/* Poll the SE interrupt register to ensure H/W operation complete */
val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
while (SE0_INT_OP_DONE(val) == SE0_INT_OP_DONE_CLEAR) {
val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
if (SE0_INT_OP_DONE(val) != SE0_INT_OP_DONE_CLEAR) {
break;
}
}
/* Poll the SE status idle to ensure H/W operation complete */
val = tegra_se_read_32(SE0_SHA_STATUS_0);
while (val != SE0_SHA_STATUS_IDLE) {
val = tegra_se_read_32(SE0_SHA_STATUS_0);
if (val == SE0_SHA_STATUS_IDLE) {
break;
}
}
/* Ensure that no errors are thrown during operation */
val = tegra_se_read_32(SE0_ERR_STATUS_REG_OFFSET);
if (val != 0U) {
ERROR("%s: error during SE operation! 0x%x", __func__,
val);
return -ENOTSUP;
}
return 0;
}
/*
* Security engine primitive normal operations
*/
static int32_t tegra_se_start_normal_operation(uint64_t src_addr,
uint32_t nbytes, uint32_t last_buf, uint32_t src_len_inbytes)
{
uint32_t val = 0U;
uint32_t src_in_lo;
uint32_t src_in_msb;
uint32_t src_in_hi;
int32_t ret = 0;
if ((src_addr == 0ULL) || (nbytes == 0U))
return -EINVAL;
src_in_lo = (uint32_t)src_addr;
src_in_msb = (uint32_t)((src_addr >> 32U) & 0xFFU);
src_in_hi = ((src_in_msb << SE0_IN_HI_ADDR_HI_0_MSB_SHIFT) |
(nbytes & MAX_SHA_ENGINE_CHUNK_SIZE));
/* set SRC_IN_ADDR_LO and SRC_IN_ADDR_HI*/
tegra_se_write_32(SE0_IN_ADDR, src_in_lo);
tegra_se_write_32(SE0_IN_HI_ADDR_HI, src_in_hi);
val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
if (val > 0U) {
tegra_se_write_32(SE0_INT_STATUS_REG_OFFSET, 0x0U);
}
/* Enable SHA interrupt for SE0 Operation */
tegra_se_write_32(SE0_SHA_INT_ENABLE, 0x1aU);
/* flush to DRAM for SE to use the updated contents */
flush_dcache_range(src_addr, src_len_inbytes);
/* Start SHA256 operation */
if (last_buf == 1U) {
tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START |
SE0_UNIT_OPERATION_PKT_LASTBUF_FIELD);
} else {
tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START);
}
return ret;
}
static int32_t tegra_se_calculate_sha256_hash(uint64_t src_addr,
uint32_t src_len_inbyte)
{
uint32_t val, last_buf, i;
int32_t ret = 0;
uint32_t operations;
uint64_t src_len_inbits;
uint32_t len_bits_msb;
uint32_t len_bits_lsb;
uint32_t number_of_operations, max_bytes, bytes_left, remaining_bytes;
if (src_len_inbyte > MAX_SHA_ENGINE_CHUNK_SIZE) {
ERROR("SHA input chunk size too big: 0x%x\n", src_len_inbyte);
return -EINVAL;
}
if (src_addr == 0ULL) {
return -EINVAL;
}
/* number of bytes per operation */
max_bytes = (SHA256_HASH_SIZE_BYTES * SHA256_MSG_LENGTH_ONETIME);
src_len_inbits = (uint32_t)(src_len_inbyte * 8U);
len_bits_msb = (uint32_t)(src_len_inbits >> 32U);
len_bits_lsb = (uint32_t)src_len_inbits;
/* program SE0_CONFIG for SHA256 operation */
val = (uint32_t)(SE0_CONFIG_ENC_ALG_SHA | SE0_CONFIG_ENC_MODE_SHA256 |
SE0_CONFIG_DEC_ALG_NOP | SE0_CONFIG_DST_HASHREG);
tegra_se_write_32(SE0_SHA_CONFIG, val);
/* set SE0_SHA_MSG_LENGTH registers */
tegra_se_write_32(SE0_SHA_MSG_LENGTH_0, len_bits_lsb);
tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
tegra_se_write_32(SE0_SHA_MSG_LENGTH_1, len_bits_msb);
/* zero out unused SE0_SHA_MSG_LENGTH and SE0_SHA_MSG_LEFT */
tegra_se_write_32(SE0_SHA_MSG_LENGTH_2, 0U);
tegra_se_write_32(SE0_SHA_MSG_LENGTH_3, 0U);
tegra_se_write_32(SE0_SHA_MSG_LEFT_1, 0U);
tegra_se_write_32(SE0_SHA_MSG_LEFT_2, 0U);
tegra_se_write_32(SE0_SHA_MSG_LEFT_3, 0U);
number_of_operations = (src_len_inbyte / max_bytes);
remaining_bytes = (src_len_inbyte % max_bytes);
if (remaining_bytes > 0U) {
number_of_operations += 1U;
}
/*
* 1. Operations == 1: program SE0_SHA_TASK register to initiate SHA256
* hash generation by setting
* 1(SE0_SHA_CONFIG_HW_INIT_HASH) to SE0_SHA_TASK
* and start SHA256-normal operation.
* 2. 1 < Operations < number_of_operations: program SE0_SHA_TASK to
* 0(SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE) to load
* intermediate SHA256 digest result from
* HASH_RESULT register to continue SHA256
* generation and start SHA256-normal operation.
* 3. Operations == number_of_operations: continue with step 2 and set
* max_bytes to bytes_left to process final
* hash-result generation and start SHA256-normal
* operation.
*/
bytes_left = src_len_inbyte;
for (operations = 1U; operations <= number_of_operations;
operations++) {
if (operations == SHA_FIRST_OP) {
val = SE0_SHA_CONFIG_HW_INIT_HASH;
} else {
/* Load intermediate SHA digest result to
* SHA:HASH_RESULT(0..7) to continue the SHA
* calculation and tell the SHA engine to use it.
*/
for (i = 0U; (i / BYTES_IN_WORD) <=
SHA256_MAX_HASH_RESULT; i += BYTES_IN_WORD) {
val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 +
i);
tegra_se_write_32(SE0_SHA_HASH_RESULT_0 + i,
val);
}
val = SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE;
if (len_bits_lsb <= (max_bytes * 8U)) {
len_bits_lsb = (remaining_bytes * 8U);
} else {
len_bits_lsb -= (max_bytes * 8U);
}
tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
}
tegra_se_write_32(SE0_SHA_TASK_CONFIG, val);
max_bytes = (SHA256_HASH_SIZE_BYTES *
SHA256_MSG_LENGTH_ONETIME);
if (bytes_left < max_bytes) {
max_bytes = bytes_left;
last_buf = 1U;
} else {
bytes_left = bytes_left - max_bytes;
last_buf = 0U;
}
/* start operation */
ret = tegra_se_start_normal_operation(src_addr, max_bytes,
last_buf, src_len_inbyte);
if (ret != 0) {
ERROR("Error during SE operation! 0x%x", ret);
return -EINVAL;
}
}
return ret;
}
static int32_t tegra_se_save_sha256_pmc_scratch(void)
{
uint32_t val = 0U, hash_offset = 0U, scratch_offset = 0U;
int32_t ret;
/* Check SE0 operation status */
ret = tegra_se_sha256_hash_operation_complete();
if (ret != 0) {
ERROR("SE operation complete Failed! 0x%x", ret);
return ret;
}
for (scratch_offset = SECURE_SCRATCH_TZDRAM_SHA256_HASH_START;
scratch_offset <= SECURE_SCRATCH_TZDRAM_SHA256_HASH_END;
scratch_offset += BYTES_IN_WORD) {
val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + hash_offset);
mmio_write_32((uint32_t)(TEGRA_SCRATCH_BASE + scratch_offset),
val);
hash_offset += BYTES_IN_WORD;
}
return 0;
}
/*
* Handler to generate SHA256 and save HASH-result to pmc-scratch register
*/
int32_t tegra_se_calculate_save_sha256(uint64_t src_addr,
uint32_t src_len_inbyte)
{
uint32_t security;
int32_t val = 0;
/* Set SE_SOFT_SETTINGS=SE_SECURE to prevent NS process to change SE
* registers.
*/
security = tegra_se_read_32(SE0_SECURITY);
tegra_se_write_32(SE0_SECURITY, security | SE0_SECURITY_SE_SOFT_SETTING);
/* Bootrom enable IN_ID bit in SE0_SHA_GSCID_0 register during SC7-exit, causing
* SE0 ignores SE0 operation, and therefore failure of 2nd iteration of SC7 cycle.
*/
tegra_se_write_32(SE0_SHA_GSCID_0, 0x0U);
/* Calculate SHA256 of BL31 */
val = tegra_se_calculate_sha256_hash(src_addr, src_len_inbyte);
if (val != 0) {
ERROR("%s: SHA256 generation failed\n", __func__);
return val;
}
/*
* Reset SE_SECURE to previous value.
*/
tegra_se_write_32(SE0_SECURITY, security);
/* copy sha256_dst to PMC Scratch register */
val = tegra_se_save_sha256_pmc_scratch();
if (val != 0) {
ERROR("%s: SE0 status Error.\n", __func__);
}
return val;
}
/*
* Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This
* needs to be called only during System Suspend.
*/
int32_t tegra_se_suspend(void)
{
int32_t ret = 0;
/* initialise communication channel with BPMP */
assert(tegra_bpmp_ipc_init() == 0);
/* Enable SE clock before SE context save */
ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
assert(ret == 0);
/* save SE registers */
se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT);
se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL);
se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT);
se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT);
/* Save SE context. The BootROM restores it during System Resume */
ret = tegra_se_save_context();
if (ret != 0) {
ERROR("%s: context save failed (%d)\n", __func__, ret);
}
/* Disable SE clock after SE context save */
ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
assert(ret == 0);
return ret;
}
/*
* Handler to power up the SE hardware block(s) during System Resume.
*/
void tegra_se_resume(void)
{
int32_t ret = 0;
/* initialise communication channel with BPMP */
assert(tegra_bpmp_ipc_init() == 0);
/* Enable SE clock before SE context restore */
ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
assert(ret == 0);
/*
* When TZ takes over after System Resume, TZ should first reconfigure
* SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT,
* RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before
* other operations.
*/
mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]);
mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]);
mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]);
mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]);
/* Disable SE clock after SE context restore */
ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
assert(ret == 0);
}