blob: 4f41be413410f4b1c2f37b8bcf22fce7c0b1d087 [file] [log] [blame] [edit]
Performing an Initial Build
===========================
- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
to your cross compiler.
For AArch64:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
For AArch32:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-none-eabi-
It is possible to build TF-A using Clang or Arm Compiler 6. To do so
``CC`` needs to point to the clang or armclang binary, which will
also select the clang or armclang assembler. Arm Compiler 6 will be selected
when the base name of the path assigned to ``CC`` matches the string
'armclang'. GNU binutils are required since the TF-A build system doesn't
currently support Arm Scatter files. Meaning the GNU linker is used by
default for Arm Compiler 6. Because of this dependency, ``CROSS_COMPILE``
should be set as described above.
For AArch64 using Arm Compiler 6:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
On the other hand, Clang uses LLVM linker (LLD) and other LLVM binutils by
default instead of GNU utilities (LLVM linker (LLD) 14.0.0 is known to
work with TF-A). ``CROSS_COMPILE`` need not be set for Clang. Please note,
that the default linker may be manually overridden using the ``LD`` variable.
Clang will be selected when the base name of the path assigned to ``CC``
contains the string 'clang'. This is to allow both clang and clang-X.Y
to work.
For AArch64 using clang:
.. code:: shell
make CC=<path-to-clang>/bin/clang PLAT=<platform> all
- Change to the root directory of the TF-A source tree and build.
For AArch64:
.. code:: shell
make PLAT=<platform> all
For AArch32:
.. code:: shell
make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
Notes:
- If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
:ref:`Build Options` document for more information on available build
options.
- (AArch32 only) Currently only ``PLAT=fvp`` is supported.
- (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp_min, is
provided by TF-A to demonstrate how PSCI Library can be integrated with
an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
include other runtime services, for example Trusted OS services. A guide
to integrate PSCI library with AArch32 EL3 Runtime Software can be found
at :ref:`PSCI Library Integration guide for Armv8-A AArch32 systems`.
- (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
image, is not compiled in by default. Refer to the
:ref:`Test Secure Payload (TSP) and Dispatcher (TSPD)` document for
details on building the TSP.
- By default this produces a release version of the build. To produce a
debug version instead, refer to the "Debugging options" section below.
- The build process creates products in a ``build`` directory tree, building
the objects and binaries for each boot loader stage in separate
sub-directories. The following boot loader binary files are created
from the corresponding ELF files:
- ``build/<platform>/<build-type>/bl1.bin``
- ``build/<platform>/<build-type>/bl2.bin``
- ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
- ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
where ``<platform>`` is the name of the chosen platform and ``<build-type>``
is either ``debug`` or ``release``. The actual number of images might differ
depending on the platform.
- Build products for a specific build variant can be removed using:
.. code:: shell
make DEBUG=<D> PLAT=<platform> clean
... where ``<D>`` is ``0`` or ``1``, as specified when building.
The build tree can be removed completely using:
.. code:: shell
make realclean
--------------
*Copyright (c) 2020-2022, Arm Limited. All rights reserved.*