blob: 2fb353f40476580c15434d236e7a970d7bf205a3 [file] [log] [blame] [edit]
/*
* Copyright 2018-2021 NXP
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <endian.h>
#include <arch.h>
#include <caam.h>
#include <cassert.h>
#include <cci.h>
#include <common/debug.h>
#include <dcfg.h>
#include <i2c.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <ls_interconnect.h>
#include <mmio.h>
#ifdef POLICY_FUSE_PROVISION
#include <nxp_gpio.h>
#endif
#if TRUSTED_BOARD_BOOT
#include <nxp_smmu.h>
#endif
#include <nxp_timer.h>
#include <plat_console.h>
#include <plat_gic.h>
#include <plat_tzc400.h>
#include <pmu.h>
#include <scfg.h>
#if defined(NXP_SFP_ENABLED)
#include <sfp.h>
#endif
#include <errata.h>
#ifdef CONFIG_OCRAM_ECC_EN
#include <ocram.h>
#endif
#include "plat_common.h"
#include "platform_def.h"
#include "soc.h"
static dcfg_init_info_t dcfg_init_data = {
.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
};
static struct soc_type soc_list[] = {
SOC_ENTRY(LS1017AN, LS1017AN, 1, 1),
SOC_ENTRY(LS1017AE, LS1017AE, 1, 1),
SOC_ENTRY(LS1018AN, LS1018AN, 1, 1),
SOC_ENTRY(LS1018AE, LS1018AE, 1, 1),
SOC_ENTRY(LS1027AN, LS1027AN, 1, 2),
SOC_ENTRY(LS1027AE, LS1027AE, 1, 2),
SOC_ENTRY(LS1028AN, LS1028AN, 1, 2),
SOC_ENTRY(LS1028AE, LS1028AE, 1, 2),
};
CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
assert_invalid_ls1028a_cluster_count);
/*
* Function returns the base counter frequency
* after reading the first entry at CNTFID0 (0x20 offset).
*
* Function is used by:
* 1. ARM common code for PSCI management.
* 2. ARM Generic Timer init.
*
*/
unsigned int plat_get_syscnt_freq2(void)
{
unsigned int counter_base_frequency;
/*
* Below register specifies the base frequency of the system counter.
* As per NXP Board Manuals:
* The system counter always works with SYS_REF_CLK/4 frequency clock.
*/
counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
return counter_base_frequency;
}
#ifdef IMAGE_BL2
#ifdef POLICY_FUSE_PROVISION
static gpio_init_info_t gpio_init_data = {
.gpio1_base_addr = NXP_GPIO1_ADDR,
.gpio2_base_addr = NXP_GPIO2_ADDR,
.gpio3_base_addr = NXP_GPIO3_ADDR,
};
#endif
void soc_preload_setup(void)
{
}
void soc_early_init(void)
{
uint8_t num_clusters, cores_per_cluster;
#ifdef CONFIG_OCRAM_ECC_EN
ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
#endif
dcfg_init(&dcfg_init_data);
enable_timer_base_to_cluster(NXP_PMU_ADDR);
enable_core_tb(NXP_PMU_ADDR);
dram_regions_info_t *dram_regions_info = get_dram_regions_info();
#ifdef POLICY_FUSE_PROVISION
gpio_init(&gpio_init_data);
sec_init(NXP_CAAM_ADDR);
#endif
#if LOG_LEVEL > 0
/* Initialize the console to provide early debug support */
plat_console_init(NXP_CONSOLE_ADDR,
NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
enum boot_device dev = get_boot_dev();
/*
* Mark the buffer for SD in OCRAM as non secure.
* The buffer is assumed to be at end of OCRAM for
* the logic below to calculate TZPC programming
*/
if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
/*
* Calculate the region in OCRAM which is secure
* The buffer for SD needs to be marked non-secure
* to allow SD to do DMA operations on it
*/
uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE);
uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
/* Add the entry for buffer in MMU Table */
mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS);
}
#if TRUSTED_BOARD_BOOT
uint32_t mode;
sfp_init(NXP_SFP_ADDR);
/*
* For secure boot disable SMMU.
* Later when platform security policy comes in picture,
* this might get modified based on the policy
*/
if (check_boot_mode_secure(&mode) == true) {
bypass_smmu(NXP_SMMU_ADDR);
}
/*
* For Mbedtls currently crypto is not supported via CAAM
* enable it when that support is there. In tbbr.mk
* the CAAM_INTEG is set as 0.
*/
#ifndef MBEDTLS_X509
/* Initialize the crypto accelerator if enabled */
if (is_sec_enabled()) {
sec_init(NXP_CAAM_ADDR);
} else {
INFO("SEC is disabled.\n");
}
#endif
#endif
/* Set eDDRTQ for DDR performance */
scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f);
soc_errata();
/*
* Initialize Interconnect for this cluster during cold boot.
* No need for locks as no other CPU is active.
*/
cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
/*
* Enable Interconnect coherency for the primary CPU's cluster.
*/
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
plat_ls_interconnect_enter_coherency(num_clusters);
delay_timer_init(NXP_TIMER_ADDR);
i2c_init(NXP_I2C_ADDR);
dram_regions_info->total_dram_size = init_ddr();
}
void soc_bl2_prepare_exit(void)
{
#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
set_sfp_wr_disable();
#endif
}
/*
* This function returns the boot device based on RCW_SRC
*/
enum boot_device get_boot_dev(void)
{
enum boot_device src = BOOT_DEVICE_NONE;
uint32_t porsr1;
uint32_t rcw_src;
porsr1 = read_reg_porsr1();
rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
switch (rcw_src) {
case FLEXSPI_NOR:
src = BOOT_DEVICE_FLEXSPI_NOR;
INFO("RCW BOOT SRC is FLEXSPI NOR\n");
break;
case FLEXSPI_NAND2K_VAL:
case FLEXSPI_NAND4K_VAL:
INFO("RCW BOOT SRC is FLEXSPI NAND\n");
src = BOOT_DEVICE_FLEXSPI_NAND;
break;
case SDHC1_VAL:
src = BOOT_DEVICE_EMMC;
INFO("RCW BOOT SRC is SD\n");
break;
case SDHC2_VAL:
src = BOOT_DEVICE_SDHC2_EMMC;
INFO("RCW BOOT SRC is EMMC\n");
break;
default:
break;
}
return src;
}
/*
* This function sets up access permissions on memory regions
****************************************************************************/
void soc_mem_access(void)
{
dram_regions_info_t *info_dram_regions = get_dram_regions_info();
struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
int dram_idx = 0;
/* index 0 is reserved for region-0 */
int index = 1;
for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
dram_idx++) {
if (info_dram_regions->region[dram_idx].size == 0) {
ERROR("DDR init failure, or");
ERROR("DRAM regions not populated correctly.\n");
break;
}
index = populate_tzc400_reg_list(tzc400_reg_list,
dram_idx, index,
info_dram_regions->region[dram_idx].addr,
info_dram_regions->region[dram_idx].size,
NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
}
mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list);
}
#else
static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
/*
* This function dynamically constructs the topology according to
* SoC Flavor and returns it.
*/
const unsigned char *plat_get_power_domain_tree_desc(void)
{
uint8_t num_clusters, cores_per_cluster;
unsigned int i;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
/*
* The highest level is the system level. The next level is constituted
* by clusters and then cores in clusters.
*/
_power_domain_tree_desc[0] = 1;
_power_domain_tree_desc[1] = num_clusters;
for (i = 0; i < _power_domain_tree_desc[1]; i++)
_power_domain_tree_desc[i + 2] = cores_per_cluster;
return _power_domain_tree_desc;
}
/*
* This function returns the core count within the cluster corresponding to
* `mpidr`.
*/
unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
{
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
return num_clusters;
}
void soc_early_platform_setup2(void)
{
dcfg_init(&dcfg_init_data);
/* Initialize system level generic timer for Socs */
delay_timer_init(NXP_TIMER_ADDR);
#if LOG_LEVEL > 0
/* Initialize the console to provide early debug support */
plat_console_init(NXP_CONSOLE_ADDR,
NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
#endif
}
void soc_platform_setup(void)
{
/* Initialize the GIC driver, cpu and distributor interfaces */
static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
static interrupt_prop_t ls_interrupt_props[] = {
PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
};
plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
PLATFORM_CORE_COUNT,
ls_interrupt_props,
ARRAY_SIZE(ls_interrupt_props),
target_mask_array,
plat_core_pos);
plat_ls_gic_init();
enable_init_timer();
}
/* This function initializes the soc from the BL31 module */
void soc_init(void)
{
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
/* Low-level init of the soc */
soc_init_lowlevel();
_init_global_data();
soc_init_percpu();
_initialize_psci();
/*
* Initialize Interconnect for this cluster during cold boot.
* No need for locks as no other CPU is active.
*/
cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
/* Enable Interconnect coherency for the primary CPU's cluster. */
plat_ls_interconnect_enter_coherency(num_clusters);
/* Set platform security policies */
_set_platform_security();
/* Init SEC Engine which will be used by SiP */
if (is_sec_enabled()) {
sec_init(NXP_CAAM_ADDR);
} else {
INFO("SEC is disabled.\n");
}
}
#ifdef NXP_WDOG_RESTART
static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
uint8_t data = WDOG_RESET_FLAG;
wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
(uint8_t *)&data, sizeof(data));
mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
return 0;
}
#endif
void soc_runtime_setup(void)
{
#ifdef NXP_WDOG_RESTART
request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
#endif
}
/* This function returns the total number of cores in the SoC. */
unsigned int get_tot_num_cores(void)
{
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
return (num_clusters * cores_per_cluster);
}
/* This function returns the PMU IDLE Cluster mask. */
unsigned int get_pmu_idle_cluster_mask(void)
{
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
return ((1 << num_clusters) - 2);
}
/* This function returns the PMU Flush Cluster mask. */
unsigned int get_pmu_flush_cluster_mask(void)
{
uint8_t num_clusters, cores_per_cluster;
get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
return ((1 << num_clusters) - 2);
}
/* This function returns the PMU idle core mask. */
unsigned int get_pmu_idle_core_mask(void)
{
return ((1 << get_tot_num_cores()) - 2);
}
/* Function to return the SoC SYS CLK */
unsigned int get_sys_clk(void)
{
return NXP_SYSCLK_FREQ;
}
#endif