blob: 82f8df58704d19e258ec7656162276dd91f09d0e [file] [log] [blame]
#ifndef _X86_PROCESSOR_H_
#define _X86_PROCESSOR_H_
#include "libcflat.h"
#include "desc.h"
#include "msr.h"
#include <bitops.h>
#include <stdint.h>
#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
#ifdef __x86_64__
# define R "r"
# define W "q"
# define S "8"
#else
# define R "e"
# define W "l"
# define S "4"
#endif
#define DB_VECTOR 1
#define BP_VECTOR 3
#define UD_VECTOR 6
#define DF_VECTOR 8
#define TS_VECTOR 10
#define NP_VECTOR 11
#define SS_VECTOR 12
#define GP_VECTOR 13
#define PF_VECTOR 14
#define AC_VECTOR 17
#define CP_VECTOR 21
#define X86_CR0_PE BIT(0)
#define X86_CR0_MP BIT(1)
#define X86_CR0_EM BIT(2)
#define X86_CR0_TS BIT(3)
#define X86_CR0_ET BIT(4)
#define X86_CR0_NE BIT(5)
#define X86_CR0_WP BIT(16)
#define X86_CR0_AM BIT(18)
#define X86_CR0_NW BIT(29)
#define X86_CR0_CD BIT(30)
#define X86_CR0_PG BIT(31)
#define X86_CR3_PCID_MASK GENMASK(11, 0)
#define X86_CR4_VME BIT(0)
#define X86_CR4_PVI BIT(1)
#define X86_CR4_TSD BIT(2)
#define X86_CR4_DE BIT(3)
#define X86_CR4_PSE BIT(4)
#define X86_CR4_PAE BIT(5)
#define X86_CR4_MCE BIT(6)
#define X86_CR4_PGE BIT(7)
#define X86_CR4_PCE BIT(8)
#define X86_CR4_OSFXSR BIT(9)
#define X86_CR4_OSXMMEXCPT BIT(10)
#define X86_CR4_UMIP BIT(11)
#define X86_CR4_LA57 BIT(12)
#define X86_CR4_VMXE BIT(13)
#define X86_CR4_SMXE BIT(14)
/* UNUSED BIT(15) */
#define X86_CR4_FSGSBASE BIT(16)
#define X86_CR4_PCIDE BIT(17)
#define X86_CR4_OSXSAVE BIT(18)
#define X86_CR4_KL BIT(19)
#define X86_CR4_SMEP BIT(20)
#define X86_CR4_SMAP BIT(21)
#define X86_CR4_PKE BIT(22)
#define X86_CR4_CET BIT(23)
#define X86_CR4_PKS BIT(24)
#define X86_EFLAGS_CF BIT(0)
#define X86_EFLAGS_FIXED BIT(1)
#define X86_EFLAGS_PF BIT(2)
/* RESERVED 0 BIT(3) */
#define X86_EFLAGS_AF BIT(4)
/* RESERVED 0 BIT(5) */
#define X86_EFLAGS_ZF BIT(6)
#define X86_EFLAGS_SF BIT(7)
#define X86_EFLAGS_TF BIT(8)
#define X86_EFLAGS_IF BIT(9)
#define X86_EFLAGS_DF BIT(10)
#define X86_EFLAGS_OF BIT(11)
#define X86_EFLAGS_IOPL GENMASK(13, 12)
#define X86_EFLAGS_NT BIT(14)
/* RESERVED 0 BIT(15) */
#define X86_EFLAGS_RF BIT(16)
#define X86_EFLAGS_VM BIT(17)
#define X86_EFLAGS_AC BIT(18)
#define X86_EFLAGS_VIF BIT(19)
#define X86_EFLAGS_VIP BIT(20)
#define X86_EFLAGS_ID BIT(21)
#define X86_EFLAGS_ALU (X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | \
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)
/*
* CPU features
*/
enum cpuid_output_regs {
EAX,
EBX,
ECX,
EDX
};
struct cpuid { u32 a, b, c, d; };
static inline struct cpuid raw_cpuid(u32 function, u32 index)
{
struct cpuid r;
asm volatile ("cpuid"
: "=a"(r.a), "=b"(r.b), "=c"(r.c), "=d"(r.d)
: "0"(function), "2"(index));
return r;
}
static inline struct cpuid cpuid_indexed(u32 function, u32 index)
{
u32 level = raw_cpuid(function & 0xf0000000, 0).a;
if (level < function)
return (struct cpuid) { 0, 0, 0, 0 };
return raw_cpuid(function, index);
}
static inline struct cpuid cpuid(u32 function)
{
return cpuid_indexed(function, 0);
}
static inline u8 cpuid_maxphyaddr(void)
{
if (raw_cpuid(0x80000000, 0).a < 0x80000008)
return 36;
return raw_cpuid(0x80000008, 0).a & 0xff;
}
static inline bool is_intel(void)
{
struct cpuid c = cpuid(0);
u32 name[4] = {c.b, c.d, c.c };
return strcmp((char *)name, "GenuineIntel") == 0;
}
#define CPUID(a, b, c, d) ((((unsigned long long) a) << 32) | (b << 16) | \
(c << 8) | d)
/*
* Each X86_FEATURE_XXX definition is 64-bit and contains the following
* CPUID meta-data:
*
* [63:32] : input value for EAX
* [31:16] : input value for ECX
* [15:8] : output register
* [7:0] : bit position in output register
*/
/*
* Basic Leafs, a.k.a. Intel defined
*/
#define X86_FEATURE_MWAIT (CPUID(0x1, 0, ECX, 3))
#define X86_FEATURE_VMX (CPUID(0x1, 0, ECX, 5))
#define X86_FEATURE_PCID (CPUID(0x1, 0, ECX, 17))
#define X86_FEATURE_MOVBE (CPUID(0x1, 0, ECX, 22))
#define X86_FEATURE_TSC_DEADLINE_TIMER (CPUID(0x1, 0, ECX, 24))
#define X86_FEATURE_XSAVE (CPUID(0x1, 0, ECX, 26))
#define X86_FEATURE_OSXSAVE (CPUID(0x1, 0, ECX, 27))
#define X86_FEATURE_RDRAND (CPUID(0x1, 0, ECX, 30))
#define X86_FEATURE_MCE (CPUID(0x1, 0, EDX, 7))
#define X86_FEATURE_APIC (CPUID(0x1, 0, EDX, 9))
#define X86_FEATURE_CLFLUSH (CPUID(0x1, 0, EDX, 19))
#define X86_FEATURE_XMM (CPUID(0x1, 0, EDX, 25))
#define X86_FEATURE_XMM2 (CPUID(0x1, 0, EDX, 26))
#define X86_FEATURE_TSC_ADJUST (CPUID(0x7, 0, EBX, 1))
#define X86_FEATURE_HLE (CPUID(0x7, 0, EBX, 4))
#define X86_FEATURE_SMEP (CPUID(0x7, 0, EBX, 7))
#define X86_FEATURE_INVPCID (CPUID(0x7, 0, EBX, 10))
#define X86_FEATURE_RTM (CPUID(0x7, 0, EBX, 11))
#define X86_FEATURE_SMAP (CPUID(0x7, 0, EBX, 20))
#define X86_FEATURE_PCOMMIT (CPUID(0x7, 0, EBX, 22))
#define X86_FEATURE_CLFLUSHOPT (CPUID(0x7, 0, EBX, 23))
#define X86_FEATURE_CLWB (CPUID(0x7, 0, EBX, 24))
#define X86_FEATURE_UMIP (CPUID(0x7, 0, ECX, 2))
#define X86_FEATURE_PKU (CPUID(0x7, 0, ECX, 3))
#define X86_FEATURE_LA57 (CPUID(0x7, 0, ECX, 16))
#define X86_FEATURE_RDPID (CPUID(0x7, 0, ECX, 22))
#define X86_FEATURE_SHSTK (CPUID(0x7, 0, ECX, 7))
#define X86_FEATURE_IBT (CPUID(0x7, 0, EDX, 20))
#define X86_FEATURE_SPEC_CTRL (CPUID(0x7, 0, EDX, 26))
#define X86_FEATURE_ARCH_CAPABILITIES (CPUID(0x7, 0, EDX, 29))
#define X86_FEATURE_PKS (CPUID(0x7, 0, ECX, 31))
/*
* Extended Leafs, a.k.a. AMD defined
*/
#define X86_FEATURE_SVM (CPUID(0x80000001, 0, ECX, 2))
#define X86_FEATURE_NX (CPUID(0x80000001, 0, EDX, 20))
#define X86_FEATURE_GBPAGES (CPUID(0x80000001, 0, EDX, 26))
#define X86_FEATURE_RDTSCP (CPUID(0x80000001, 0, EDX, 27))
#define X86_FEATURE_LM (CPUID(0x80000001, 0, EDX, 29))
#define X86_FEATURE_RDPRU (CPUID(0x80000008, 0, EBX, 4))
#define X86_FEATURE_AMD_IBPB (CPUID(0x80000008, 0, EBX, 12))
#define X86_FEATURE_NPT (CPUID(0x8000000A, 0, EDX, 0))
#define X86_FEATURE_LBRV (CPUID(0x8000000A, 0, EDX, 1))
#define X86_FEATURE_NRIPS (CPUID(0x8000000A, 0, EDX, 3))
#define X86_FEATURE_TSCRATEMSR (CPUID(0x8000000A, 0, EDX, 4))
#define X86_FEATURE_PAUSEFILTER (CPUID(0x8000000A, 0, EDX, 10))
#define X86_FEATURE_PFTHRESHOLD (CPUID(0x8000000A, 0, EDX, 12))
#define X86_FEATURE_VGIF (CPUID(0x8000000A, 0, EDX, 16))
static inline bool this_cpu_has(u64 feature)
{
u32 input_eax = feature >> 32;
u32 input_ecx = (feature >> 16) & 0xffff;
u32 output_reg = (feature >> 8) & 0xff;
u8 bit = feature & 0xff;
struct cpuid c;
u32 *tmp;
c = cpuid_indexed(input_eax, input_ecx);
tmp = (u32 *)&c;
return ((*(tmp + (output_reg % 32))) & (1 << bit));
}
struct far_pointer32 {
u32 offset;
u16 selector;
} __attribute__((packed));
struct descriptor_table_ptr {
u16 limit;
ulong base;
} __attribute__((packed));
static inline void clac(void)
{
asm volatile (".byte 0x0f, 0x01, 0xca" : : : "memory");
}
static inline void stac(void)
{
asm volatile (".byte 0x0f, 0x01, 0xcb" : : : "memory");
}
static inline u16 read_cs(void)
{
unsigned val;
asm volatile ("mov %%cs, %0" : "=mr"(val));
return val;
}
static inline u16 read_ds(void)
{
unsigned val;
asm volatile ("mov %%ds, %0" : "=mr"(val));
return val;
}
static inline u16 read_es(void)
{
unsigned val;
asm volatile ("mov %%es, %0" : "=mr"(val));
return val;
}
static inline u16 read_ss(void)
{
unsigned val;
asm volatile ("mov %%ss, %0" : "=mr"(val));
return val;
}
static inline u16 read_fs(void)
{
unsigned val;
asm volatile ("mov %%fs, %0" : "=mr"(val));
return val;
}
static inline u16 read_gs(void)
{
unsigned val;
asm volatile ("mov %%gs, %0" : "=mr"(val));
return val;
}
static inline unsigned long read_rflags(void)
{
unsigned long f;
asm volatile ("pushf; pop %0\n\t" : "=rm"(f));
return f;
}
static inline void write_ds(unsigned val)
{
asm volatile ("mov %0, %%ds" : : "rm"(val) : "memory");
}
static inline void write_es(unsigned val)
{
asm volatile ("mov %0, %%es" : : "rm"(val) : "memory");
}
static inline void write_ss(unsigned val)
{
asm volatile ("mov %0, %%ss" : : "rm"(val) : "memory");
}
static inline void write_fs(unsigned val)
{
asm volatile ("mov %0, %%fs" : : "rm"(val) : "memory");
}
static inline void write_gs(unsigned val)
{
asm volatile ("mov %0, %%gs" : : "rm"(val) : "memory");
}
static inline void write_rflags(unsigned long f)
{
asm volatile ("push %0; popf\n\t" : : "rm"(f));
}
static inline void set_iopl(int iopl)
{
unsigned long flags = read_rflags() & ~X86_EFLAGS_IOPL;
flags |= iopl * (X86_EFLAGS_IOPL / 3);
write_rflags(flags);
}
/*
* Don't use the safe variants for rdmsr() or wrmsr(). The exception fixup
* infrastructure uses per-CPU data and thus consumes GS.base. Various tests
* temporarily modify MSR_GS_BASE and will explode when trying to determine
* whether or not RDMSR/WRMSR faulted.
*/
static inline u64 rdmsr(u32 index)
{
u32 a, d;
asm volatile ("rdmsr" : "=a"(a), "=d"(d) : "c"(index) : "memory");
return a | ((u64)d << 32);
}
static inline void wrmsr(u32 index, u64 val)
{
u32 a = val, d = val >> 32;
asm volatile ("wrmsr" : : "a"(a), "d"(d), "c"(index) : "memory");
}
static inline int rdmsr_safe(u32 index, uint64_t *val)
{
uint32_t a, d;
asm volatile (ASM_TRY("1f")
"rdmsr\n\t"
"1:"
: "=a"(a), "=d"(d)
: "c"(index) : "memory");
*val = (uint64_t)a | ((uint64_t)d << 32);
return exception_vector();
}
static inline int wrmsr_safe(u32 index, u64 val)
{
u32 a = val, d = val >> 32;
asm volatile (ASM_TRY("1f")
"wrmsr\n\t"
"1:"
: : "a"(a), "d"(d), "c"(index) : "memory");
return exception_vector();
}
static inline uint64_t rdpmc(uint32_t index)
{
uint32_t a, d;
asm volatile ("rdpmc" : "=a"(a), "=d"(d) : "c"(index));
return a | ((uint64_t)d << 32);
}
static inline int write_cr0_safe(ulong val)
{
asm volatile(ASM_TRY("1f")
"mov %0,%%cr0\n\t"
"1:": : "r" (val));
return exception_vector();
}
static inline void write_cr0(ulong val)
{
int vector = write_cr0_safe(val);
assert_msg(!vector, "Unexpected fault '%d' writing CR0 = %lx",
vector, val);
}
static inline ulong read_cr0(void)
{
ulong val;
asm volatile ("mov %%cr0, %0" : "=r"(val) : : "memory");
return val;
}
static inline void write_cr2(ulong val)
{
asm volatile ("mov %0, %%cr2" : : "r"(val) : "memory");
}
static inline ulong read_cr2(void)
{
ulong val;
asm volatile ("mov %%cr2, %0" : "=r"(val) : : "memory");
return val;
}
static inline int write_cr3_safe(ulong val)
{
asm volatile(ASM_TRY("1f")
"mov %0,%%cr3\n\t"
"1:": : "r" (val));
return exception_vector();
}
static inline void write_cr3(ulong val)
{
int vector = write_cr3_safe(val);
assert_msg(!vector, "Unexpected fault '%d' writing CR3 = %lx",
vector, val);
}
static inline ulong read_cr3(void)
{
ulong val;
asm volatile ("mov %%cr3, %0" : "=r"(val) : : "memory");
return val;
}
static inline void update_cr3(void *cr3)
{
write_cr3((ulong)cr3);
}
static inline int write_cr4_safe(ulong val)
{
asm volatile(ASM_TRY("1f")
"mov %0,%%cr4\n\t"
"1:": : "r" (val));
return exception_vector();
}
static inline void write_cr4(ulong val)
{
int vector = write_cr4_safe(val);
assert_msg(!vector, "Unexpected fault '%d' writing CR4 = %lx",
vector, val);
}
static inline ulong read_cr4(void)
{
ulong val;
asm volatile ("mov %%cr4, %0" : "=r"(val) : : "memory");
return val;
}
static inline void write_cr8(ulong val)
{
asm volatile ("mov %0, %%cr8" : : "r"(val) : "memory");
}
static inline ulong read_cr8(void)
{
ulong val;
asm volatile ("mov %%cr8, %0" : "=r"(val) : : "memory");
return val;
}
static inline void lgdt(const struct descriptor_table_ptr *ptr)
{
asm volatile ("lgdt %0" : : "m"(*ptr));
}
static inline void sgdt(struct descriptor_table_ptr *ptr)
{
asm volatile ("sgdt %0" : "=m"(*ptr));
}
static inline void lidt(const struct descriptor_table_ptr *ptr)
{
asm volatile ("lidt %0" : : "m"(*ptr));
}
static inline void sidt(struct descriptor_table_ptr *ptr)
{
asm volatile ("sidt %0" : "=m"(*ptr));
}
static inline void lldt(u16 val)
{
asm volatile ("lldt %0" : : "rm"(val));
}
static inline u16 sldt(void)
{
u16 val;
asm volatile ("sldt %0" : "=rm"(val));
return val;
}
static inline void ltr(u16 val)
{
asm volatile ("ltr %0" : : "rm"(val));
}
static inline u16 str(void)
{
u16 val;
asm volatile ("str %0" : "=rm"(val));
return val;
}
static inline void write_dr0(void *val)
{
asm volatile ("mov %0, %%dr0" : : "r"(val) : "memory");
}
static inline void write_dr1(void *val)
{
asm volatile ("mov %0, %%dr1" : : "r"(val) : "memory");
}
static inline void write_dr2(void *val)
{
asm volatile ("mov %0, %%dr2" : : "r"(val) : "memory");
}
static inline void write_dr3(void *val)
{
asm volatile ("mov %0, %%dr3" : : "r"(val) : "memory");
}
static inline void write_dr6(ulong val)
{
asm volatile ("mov %0, %%dr6" : : "r"(val) : "memory");
}
static inline ulong read_dr6(void)
{
ulong val;
asm volatile ("mov %%dr6, %0" : "=r"(val));
return val;
}
static inline void write_dr7(ulong val)
{
asm volatile ("mov %0, %%dr7" : : "r"(val) : "memory");
}
static inline ulong read_dr7(void)
{
ulong val;
asm volatile ("mov %%dr7, %0" : "=r"(val));
return val;
}
static inline void pause(void)
{
asm volatile ("pause");
}
static inline void cli(void)
{
asm volatile ("cli");
}
static inline void sti(void)
{
asm volatile ("sti");
}
static inline unsigned long long rdrand(void)
{
long long r;
asm volatile("rdrand %0\n\t"
"jc 1f\n\t"
"mov $0, %0\n\t"
"1:\n\t" : "=r" (r));
return r;
}
static inline unsigned long long rdtsc(void)
{
long long r;
#ifdef __x86_64__
unsigned a, d;
asm volatile ("rdtsc" : "=a"(a), "=d"(d));
r = a | ((long long)d << 32);
#else
asm volatile ("rdtsc" : "=A"(r));
#endif
return r;
}
/*
* Per the advice in the SDM, volume 2, the sequence "mfence; lfence"
* executed immediately before rdtsc ensures that rdtsc will be
* executed only after all previous instructions have executed and all
* previous loads and stores are globally visible. In addition, the
* lfence immediately after rdtsc ensures that rdtsc will be executed
* prior to the execution of any subsequent instruction.
*/
static inline unsigned long long fenced_rdtsc(void)
{
unsigned long long tsc;
#ifdef __x86_64__
unsigned int eax, edx;
asm volatile ("mfence; lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
tsc = eax | ((unsigned long long)edx << 32);
#else
asm volatile ("mfence; lfence; rdtsc; lfence" : "=A"(tsc));
#endif
return tsc;
}
static inline unsigned long long rdtscp(u32 *aux)
{
long long r;
#ifdef __x86_64__
unsigned a, d;
asm volatile ("rdtscp" : "=a"(a), "=d"(d), "=c"(*aux));
r = a | ((long long)d << 32);
#else
asm volatile ("rdtscp" : "=A"(r), "=c"(*aux));
#endif
return r;
}
static inline void wrtsc(u64 tsc)
{
wrmsr(MSR_IA32_TSC, tsc);
}
static inline void irq_disable(void)
{
asm volatile("cli");
}
/* Note that irq_enable() does not ensure an interrupt shadow due
* to the vagaries of compiler optimizations. If you need the
* shadow, use a single asm with "sti" and the instruction after it.
*/
static inline void irq_enable(void)
{
asm volatile("sti");
}
static inline void invlpg(volatile void *va)
{
asm volatile("invlpg (%0)" ::"r" (va) : "memory");
}
static inline void safe_halt(void)
{
asm volatile("sti; hlt");
}
static inline u32 read_pkru(void)
{
unsigned int eax, edx;
unsigned int ecx = 0;
unsigned int pkru;
asm volatile(".byte 0x0f,0x01,0xee\n\t"
: "=a" (eax), "=d" (edx)
: "c" (ecx));
pkru = eax;
return pkru;
}
static inline void write_pkru(u32 pkru)
{
unsigned int eax = pkru;
unsigned int ecx = 0;
unsigned int edx = 0;
asm volatile(".byte 0x0f,0x01,0xef\n\t"
: : "a" (eax), "c" (ecx), "d" (edx));
}
static inline bool is_canonical(u64 addr)
{
int va_width = (raw_cpuid(0x80000008, 0).a & 0xff00) >> 8;
int shift_amt = 64 - va_width;
return (s64)(addr << shift_amt) >> shift_amt == addr;
}
static inline void clear_bit(int bit, u8 *addr)
{
__asm__ __volatile__("btr %1, %0"
: "+m" (*addr) : "Ir" (bit) : "cc", "memory");
}
static inline void set_bit(int bit, u8 *addr)
{
__asm__ __volatile__("bts %1, %0"
: "+m" (*addr) : "Ir" (bit) : "cc", "memory");
}
static inline void flush_tlb(void)
{
ulong cr4;
cr4 = read_cr4();
write_cr4(cr4 ^ X86_CR4_PGE);
write_cr4(cr4);
}
static inline int has_spec_ctrl(void)
{
return !!(this_cpu_has(X86_FEATURE_SPEC_CTRL));
}
static inline int cpu_has_efer_nx(void)
{
return !!(this_cpu_has(X86_FEATURE_NX));
}
static inline bool cpuid_osxsave(void)
{
return cpuid(1).c & (1 << (X86_FEATURE_OSXSAVE % 32));
}
#endif