| /* |
| * Test the ARM Performance Monitors Unit (PMU). |
| * |
| * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2016, Red Hat Inc, Wei Huang <wei@redhat.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU Lesser General Public License version 2.1 and |
| * only version 2.1 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License |
| * for more details. |
| */ |
| #include "libcflat.h" |
| #include "errata.h" |
| #include "asm/barrier.h" |
| #include "asm/sysreg.h" |
| #include "asm/processor.h" |
| #include <bitops.h> |
| #include <asm/gic.h> |
| |
| #define PMU_PMCR_E (1 << 0) |
| #define PMU_PMCR_P (1 << 1) |
| #define PMU_PMCR_C (1 << 2) |
| #define PMU_PMCR_D (1 << 3) |
| #define PMU_PMCR_X (1 << 4) |
| #define PMU_PMCR_DP (1 << 5) |
| #define PMU_PMCR_LC (1 << 6) |
| #define PMU_PMCR_LP (1 << 7) |
| #define PMU_PMCR_N_SHIFT 11 |
| #define PMU_PMCR_N_MASK 0x1f |
| #define PMU_PMCR_ID_SHIFT 16 |
| #define PMU_PMCR_ID_MASK 0xff |
| #define PMU_PMCR_IMP_SHIFT 24 |
| #define PMU_PMCR_IMP_MASK 0xff |
| |
| #define PMU_CYCLE_IDX 31 |
| |
| #define NR_SAMPLES 10 |
| |
| /* Some PMU events */ |
| #define SW_INCR 0x0 |
| #define INST_RETIRED 0x8 |
| #define CPU_CYCLES 0x11 |
| #define MEM_ACCESS 0x13 |
| #define INST_PREC 0x1B |
| #define STALL_FRONTEND 0x23 |
| #define STALL_BACKEND 0x24 |
| #define CHAIN 0x1E |
| |
| #define COMMON_EVENTS_LOW 0x0 |
| #define COMMON_EVENTS_HIGH 0x3F |
| #define EXT_COMMON_EVENTS_LOW 0x4000 |
| #define EXT_COMMON_EVENTS_HIGH 0x403F |
| |
| #define ALL_SET_32 0x00000000FFFFFFFFULL |
| #define ALL_SET_64 0xFFFFFFFFFFFFFFFFULL |
| |
| #define ALL_SET(__overflow_at_64bits) \ |
| (__overflow_at_64bits ? ALL_SET_64 : ALL_SET_32) |
| |
| #define ALL_CLEAR 0x0000000000000000ULL |
| #define PRE_OVERFLOW_32 0x00000000FFFFFFF0ULL |
| #define PRE_OVERFLOW_64 0xFFFFFFFFFFFFFFF0ULL |
| #define COUNT 250 |
| #define MARGIN 100 |
| /* |
| * PRE_OVERFLOW2 is set so that 1st @COUNT iterations do not |
| * produce 32b overflow and 2nd @COUNT iterations do. To accommodate |
| * for some observed variability we take into account a given @MARGIN |
| */ |
| #define PRE_OVERFLOW2_32 (ALL_SET_32 - COUNT - MARGIN) |
| #define PRE_OVERFLOW2_64 (ALL_SET_64 - COUNT - MARGIN) |
| |
| #define PRE_OVERFLOW2(__overflow_at_64bits) \ |
| (__overflow_at_64bits ? PRE_OVERFLOW2_64 : PRE_OVERFLOW2_32) |
| |
| #define PRE_OVERFLOW(__overflow_at_64bits) \ |
| (__overflow_at_64bits ? PRE_OVERFLOW_64 : PRE_OVERFLOW_32) |
| |
| #define PMU_PPI 23 |
| |
| struct pmu { |
| unsigned int version; |
| unsigned int nb_implemented_counters; |
| uint32_t pmcr_ro; |
| }; |
| |
| struct pmu_stats { |
| unsigned long bitmap; |
| uint32_t interrupts[32]; |
| bool unexpected; |
| }; |
| |
| static struct pmu pmu; |
| |
| #if defined(__arm__) |
| #define ID_DFR0_PERFMON_SHIFT 24 |
| #define ID_DFR0_PERFMON_MASK 0xf |
| |
| #define ID_DFR0_PMU_NOTIMPL 0b0000 |
| #define ID_DFR0_PMU_V1 0b0001 |
| #define ID_DFR0_PMU_V2 0b0010 |
| #define ID_DFR0_PMU_V3 0b0011 |
| #define ID_DFR0_PMU_V3_8_1 0b0100 |
| #define ID_DFR0_PMU_V3_8_4 0b0101 |
| #define ID_DFR0_PMU_V3_8_5 0b0110 |
| #define ID_DFR0_PMU_IMPDEF 0b1111 |
| |
| #define PMCR __ACCESS_CP15(c9, 0, c12, 0) |
| #define ID_DFR0 __ACCESS_CP15(c0, 0, c1, 2) |
| #define PMSELR __ACCESS_CP15(c9, 0, c12, 5) |
| #define PMXEVTYPER __ACCESS_CP15(c9, 0, c13, 1) |
| #define PMCNTENSET __ACCESS_CP15(c9, 0, c12, 1) |
| #define PMCNTENCLR __ACCESS_CP15(c9, 0, c12, 2) |
| #define PMOVSR __ACCESS_CP15(c9, 0, c12, 3) |
| #define PMCCNTR32 __ACCESS_CP15(c9, 0, c13, 0) |
| #define PMINTENCLR __ACCESS_CP15(c9, 0, c14, 2) |
| #define PMCCNTR64 __ACCESS_CP15_64(0, c9) |
| |
| static inline uint32_t get_id_dfr0(void) { return read_sysreg(ID_DFR0); } |
| static inline uint32_t get_pmcr(void) { return read_sysreg(PMCR); } |
| static inline void set_pmcr(uint32_t v) { write_sysreg(v, PMCR); } |
| static inline void set_pmcntenset(uint32_t v) { write_sysreg(v, PMCNTENSET); } |
| |
| static inline uint8_t get_pmu_version(void) |
| { |
| return (get_id_dfr0() >> ID_DFR0_PERFMON_SHIFT) & ID_DFR0_PERFMON_MASK; |
| } |
| |
| static inline uint64_t get_pmccntr(void) |
| { |
| return read_sysreg(PMCCNTR32); |
| } |
| |
| static inline void set_pmccntr(uint64_t value) |
| { |
| write_sysreg(value & 0xffffffff, PMCCNTR32); |
| } |
| |
| /* PMCCFILTR is an obsolete name for PMXEVTYPER31 in ARMv7 */ |
| static inline void set_pmccfiltr(uint32_t value) |
| { |
| write_sysreg(PMU_CYCLE_IDX, PMSELR); |
| write_sysreg(value, PMXEVTYPER); |
| isb(); |
| } |
| |
| /* |
| * Extra instructions inserted by the compiler would be difficult to compensate |
| * for, so hand assemble everything between, and including, the PMCR accesses |
| * to start and stop counting. isb instructions were inserted to make sure |
| * pmccntr read after this function returns the exact instructions executed in |
| * the controlled block. Total instrs = isb + mcr + 2*loop = 2 + 2*loop. |
| */ |
| static inline void precise_instrs_loop(int loop, uint32_t pmcr) |
| { |
| asm volatile( |
| " mcr p15, 0, %[pmcr], c9, c12, 0\n" |
| " isb\n" |
| "1: subs %[loop], %[loop], #1\n" |
| " bgt 1b\n" |
| " mcr p15, 0, %[z], c9, c12, 0\n" |
| " isb\n" |
| : [loop] "+r" (loop) |
| : [pmcr] "r" (pmcr), [z] "r" (0) |
| : "cc"); |
| } |
| |
| static void pmu_reset(void) |
| { |
| /* reset all counters, counting disabled at PMCR level*/ |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P); |
| /* Disable all counters */ |
| write_sysreg(ALL_SET_32, PMCNTENCLR); |
| /* clear overflow reg */ |
| write_sysreg(ALL_SET_32, PMOVSR); |
| /* disable overflow interrupts on all counters */ |
| write_sysreg(ALL_SET_32, PMINTENCLR); |
| isb(); |
| } |
| |
| /* event counter tests only implemented for aarch64 */ |
| static void test_event_introspection(void) {} |
| static void test_event_counter_config(void) {} |
| static void test_basic_event_count(bool overflow_at_64bits) {} |
| static void test_mem_access_reliability(bool overflow_at_64bits) {} |
| static void test_mem_access(bool overflow_at_64bits) {} |
| static void test_sw_incr(bool overflow_at_64bits) {} |
| static void test_chained_counters(bool unused) {} |
| static void test_chained_sw_incr(bool unused) {} |
| static void test_chain_promotion(bool unused) {} |
| static void test_overflow_interrupt(bool overflow_at_64bits) {} |
| |
| #elif defined(__aarch64__) |
| #define ID_AA64DFR0_PERFMON_SHIFT 8 |
| #define ID_AA64DFR0_PERFMON_MASK 0xf |
| |
| #define ID_DFR0_PMU_NOTIMPL 0b0000 |
| #define ID_DFR0_PMU_V3 0b0001 |
| #define ID_DFR0_PMU_V3_8_1 0b0100 |
| #define ID_DFR0_PMU_V3_8_4 0b0101 |
| #define ID_DFR0_PMU_V3_8_5 0b0110 |
| #define ID_DFR0_PMU_IMPDEF 0b1111 |
| |
| static inline uint32_t get_id_aa64dfr0(void) { return read_sysreg(id_aa64dfr0_el1); } |
| static inline uint32_t get_pmcr(void) { return read_sysreg(pmcr_el0); } |
| static inline void set_pmcr(uint32_t v) { write_sysreg(v, pmcr_el0); } |
| static inline uint64_t get_pmccntr(void) { return read_sysreg(pmccntr_el0); } |
| static inline void set_pmccntr(uint64_t v) { write_sysreg(v, pmccntr_el0); } |
| static inline void set_pmcntenset(uint32_t v) { write_sysreg(v, pmcntenset_el0); } |
| static inline void set_pmccfiltr(uint32_t v) { write_sysreg(v, pmccfiltr_el0); } |
| |
| static inline uint8_t get_pmu_version(void) |
| { |
| uint8_t ver = (get_id_aa64dfr0() >> ID_AA64DFR0_PERFMON_SHIFT) & ID_AA64DFR0_PERFMON_MASK; |
| return ver; |
| } |
| |
| /* |
| * Extra instructions inserted by the compiler would be difficult to compensate |
| * for, so hand assemble everything between, and including, the PMCR accesses |
| * to start and stop counting. isb instructions are inserted to make sure |
| * pmccntr read after this function returns the exact instructions executed |
| * in the controlled block. Total instrs = isb + msr + 2*loop = 2 + 2*loop. |
| */ |
| static inline void precise_instrs_loop(int loop, uint32_t pmcr) |
| { |
| uint64_t pmcr64 = pmcr; |
| asm volatile( |
| " msr pmcr_el0, %[pmcr]\n" |
| " isb\n" |
| "1: subs %w[loop], %w[loop], #1\n" |
| " b.gt 1b\n" |
| " msr pmcr_el0, xzr\n" |
| " isb\n" |
| : [loop] "+r" (loop) |
| : [pmcr] "r" (pmcr64) |
| : "cc"); |
| } |
| |
| #define PMCEID1_EL0 sys_reg(3, 3, 9, 12, 7) |
| #define PMCNTENSET_EL0 sys_reg(3, 3, 9, 12, 1) |
| #define PMCNTENCLR_EL0 sys_reg(3, 3, 9, 12, 2) |
| |
| #define PMEVTYPER_EXCLUDE_EL1 BIT(31) |
| #define PMEVTYPER_EXCLUDE_EL0 BIT(30) |
| |
| static bool is_event_supported(uint32_t n, bool warn) |
| { |
| uint64_t pmceid0 = read_sysreg(pmceid0_el0); |
| uint64_t pmceid1 = read_sysreg_s(PMCEID1_EL0); |
| bool supported; |
| uint64_t reg; |
| |
| /* |
| * The low 32-bits of PMCEID0/1 respectively describe |
| * event support for events 0-31/32-63. Their High |
| * 32-bits describe support for extended events |
| * starting at 0x4000, using the same split. |
| */ |
| assert((n >= COMMON_EVENTS_LOW && n <= COMMON_EVENTS_HIGH) || |
| (n >= EXT_COMMON_EVENTS_LOW && n <= EXT_COMMON_EVENTS_HIGH)); |
| |
| if (n <= COMMON_EVENTS_HIGH) |
| reg = lower_32_bits(pmceid0) | ((u64)lower_32_bits(pmceid1) << 32); |
| else |
| reg = upper_32_bits(pmceid0) | ((u64)upper_32_bits(pmceid1) << 32); |
| |
| supported = reg & (1UL << (n & 0x3F)); |
| |
| if (!supported && warn) |
| report_info("event 0x%x is not supported", n); |
| return supported; |
| } |
| |
| static void test_event_introspection(void) |
| { |
| bool required_events; |
| |
| if (!pmu.nb_implemented_counters) { |
| report_skip("No event counter, skip ..."); |
| return; |
| } |
| |
| /* PMUv3 requires an implementation includes some common events */ |
| required_events = is_event_supported(SW_INCR, true) && |
| is_event_supported(CPU_CYCLES, true) && |
| (is_event_supported(INST_RETIRED, true) || |
| is_event_supported(INST_PREC, true)); |
| |
| if (pmu.version >= ID_DFR0_PMU_V3_8_1) { |
| required_events = required_events && |
| is_event_supported(STALL_FRONTEND, true) && |
| is_event_supported(STALL_BACKEND, true); |
| } |
| |
| report(required_events, "Check required events are implemented"); |
| } |
| |
| /* |
| * Extra instructions inserted by the compiler would be difficult to compensate |
| * for, so hand assemble everything between, and including, the PMCR accesses |
| * to start and stop counting. isb instructions are inserted to make sure |
| * pmccntr read after this function returns the exact instructions executed |
| * in the controlled block. Loads @loop times the data at @address into x9. |
| */ |
| static void mem_access_loop(void *addr, long loop, uint32_t pmcr) |
| { |
| uint64_t pmcr64 = pmcr; |
| asm volatile( |
| " dsb ish\n" |
| " msr pmcr_el0, %[pmcr]\n" |
| " isb\n" |
| " dsb ish\n" |
| " mov x10, %[loop]\n" |
| "1: sub x10, x10, #1\n" |
| " ldr x9, [%[addr]]\n" |
| " cmp x10, #0x0\n" |
| " b.gt 1b\n" |
| " dsb ish\n" |
| " msr pmcr_el0, xzr\n" |
| " isb\n" |
| : |
| : [addr] "r" (addr), [pmcr] "r" (pmcr64), [loop] "r" (loop) |
| : "x9", "x10", "cc"); |
| } |
| |
| static struct pmu_stats pmu_stats; |
| |
| static void irq_handler(struct pt_regs *regs) |
| { |
| uint32_t irqstat, irqnr; |
| |
| irqstat = gic_read_iar(); |
| irqnr = gic_iar_irqnr(irqstat); |
| |
| if (irqnr == PMU_PPI) { |
| unsigned long overflows = read_sysreg(pmovsclr_el0); |
| int i; |
| |
| for (i = 0; i < 32; i++) { |
| if (test_and_clear_bit(i, &overflows)) { |
| pmu_stats.interrupts[i]++; |
| pmu_stats.bitmap |= 1 << i; |
| } |
| } |
| write_sysreg(ALL_SET_32, pmovsclr_el0); |
| isb(); |
| } else { |
| pmu_stats.unexpected = true; |
| } |
| gic_write_eoir(irqstat); |
| } |
| |
| static void pmu_reset_stats(void) |
| { |
| int i; |
| |
| for (i = 0; i < 32; i++) |
| pmu_stats.interrupts[i] = 0; |
| |
| pmu_stats.bitmap = 0; |
| pmu_stats.unexpected = false; |
| } |
| |
| static void pmu_reset(void) |
| { |
| /* reset all counters, counting disabled at PMCR level*/ |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P); |
| /* Disable all counters */ |
| write_sysreg_s(ALL_SET_32, PMCNTENCLR_EL0); |
| /* clear overflow reg */ |
| write_sysreg(ALL_SET_32, pmovsclr_el0); |
| /* disable overflow interrupts on all counters */ |
| write_sysreg(ALL_SET_32, pmintenclr_el1); |
| pmu_reset_stats(); |
| isb(); |
| } |
| |
| static void test_event_counter_config(void) |
| { |
| int i; |
| |
| if (!pmu.nb_implemented_counters) { |
| report_skip("No event counter, skip ..."); |
| return; |
| } |
| |
| pmu_reset(); |
| |
| /* |
| * Test setting through PMESELR/PMXEVTYPER and PMEVTYPERn read, |
| * select counter 0 |
| */ |
| write_sysreg(1, PMSELR_EL0); |
| /* program this counter to count unsupported event */ |
| write_sysreg(0xEA, PMXEVTYPER_EL0); |
| write_sysreg(0xdeadbeef, PMXEVCNTR_EL0); |
| report((read_regn_el0(pmevtyper, 1) & 0xFFF) == 0xEA, |
| "PMESELR/PMXEVTYPER/PMEVTYPERn"); |
| report((read_regn_el0(pmevcntr, 1) == 0xdeadbeef), |
| "PMESELR/PMXEVCNTR/PMEVCNTRn"); |
| |
| /* try to configure an unsupported event within the range [0x0, 0x3F] */ |
| for (i = 0; i <= 0x3F; i++) { |
| if (!is_event_supported(i, false)) |
| break; |
| } |
| if (i > 0x3F) { |
| report_skip("pmevtyper: all events within [0x0, 0x3F] are supported"); |
| return; |
| } |
| |
| /* select counter 0 */ |
| write_sysreg(0, PMSELR_EL0); |
| /* program this counter to count unsupported event */ |
| write_sysreg(i, PMXEVCNTR_EL0); |
| /* read the counter value */ |
| read_sysreg(PMXEVCNTR_EL0); |
| report(read_sysreg(PMXEVCNTR_EL0) == i, |
| "read of a counter programmed with unsupported event"); |
| } |
| |
| static bool satisfy_prerequisites(uint32_t *events, unsigned int nb_events) |
| { |
| int i; |
| |
| if (pmu.nb_implemented_counters < nb_events) { |
| report_skip("Skip test as number of counters is too small (%d)", |
| pmu.nb_implemented_counters); |
| return false; |
| } |
| |
| for (i = 0; i < nb_events; i++) { |
| if (!is_event_supported(events[i], false)) { |
| report_skip("Skip test as event 0x%x is not supported", |
| events[i]); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static uint64_t pmevcntr_mask(void) |
| { |
| /* |
| * Bits [63:0] are always incremented for 64-bit counters, |
| * even if the PMU is configured to generate an overflow at |
| * bits [31:0] |
| * |
| * For more details see the AArch64.IncrementEventCounter() |
| * pseudo-code in the ARM ARM DDI 0487I.a, section J1.1.1. |
| */ |
| if (pmu.version >= ID_DFR0_PMU_V3_8_5) |
| return ~0; |
| |
| return (uint32_t)~0; |
| } |
| |
| static bool check_overflow_prerequisites(bool overflow_at_64bits) |
| { |
| if (overflow_at_64bits && pmu.version < ID_DFR0_PMU_V3_8_5) { |
| report_skip("Skip test as 64 overflows need FEAT_PMUv3p5"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void test_basic_event_count(bool overflow_at_64bits) |
| { |
| uint32_t implemented_counter_mask, non_implemented_counter_mask; |
| uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits); |
| uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0; |
| uint32_t events[] = {CPU_CYCLES, INST_RETIRED}; |
| uint32_t counter_mask; |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) || |
| !check_overflow_prerequisites(overflow_at_64bits)) |
| return; |
| |
| implemented_counter_mask = BIT(pmu.nb_implemented_counters) - 1; |
| non_implemented_counter_mask = ~(BIT(31) | implemented_counter_mask); |
| counter_mask = implemented_counter_mask | non_implemented_counter_mask; |
| |
| write_regn_el0(pmevtyper, 0, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, INST_RETIRED | PMEVTYPER_EXCLUDE_EL0); |
| |
| /* disable all counters */ |
| write_sysreg_s(ALL_SET_32, PMCNTENCLR_EL0); |
| report(!read_sysreg_s(PMCNTENCLR_EL0) && !read_sysreg_s(PMCNTENSET_EL0), |
| "pmcntenclr: disable all counters"); |
| |
| /* |
| * clear cycle and all event counters and allow counter enablement |
| * through PMCNTENSET. LC is RES1. |
| */ |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P | pmcr_lp); |
| isb(); |
| report(get_pmcr() == (pmu.pmcr_ro | PMU_PMCR_LC | pmcr_lp), "pmcr: reset counters"); |
| |
| /* Preset counter #0 to pre overflow value to trigger an overflow */ |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| report(read_regn_el0(pmevcntr, 0) == pre_overflow, |
| "counter #0 preset to pre-overflow value"); |
| report(!read_regn_el0(pmevcntr, 1), "counter #1 is 0"); |
| |
| /* |
| * Enable all implemented counters and also attempt to enable |
| * not supported counters. Counting still is disabled by !PMCR.E |
| */ |
| write_sysreg_s(counter_mask, PMCNTENSET_EL0); |
| |
| /* check only those implemented are enabled */ |
| report((read_sysreg_s(PMCNTENSET_EL0) == read_sysreg_s(PMCNTENCLR_EL0)) && |
| (read_sysreg_s(PMCNTENSET_EL0) == implemented_counter_mask), |
| "pmcntenset: enabled implemented_counters"); |
| |
| /* Disable all counters but counters #0 and #1 */ |
| write_sysreg_s(~0x3, PMCNTENCLR_EL0); |
| report((read_sysreg_s(PMCNTENSET_EL0) == read_sysreg_s(PMCNTENCLR_EL0)) && |
| (read_sysreg_s(PMCNTENSET_EL0) == 0x3), |
| "pmcntenset: just enabled #0 and #1"); |
| |
| /* clear overflow register */ |
| write_sysreg(ALL_SET_32, pmovsclr_el0); |
| report(!read_sysreg(pmovsclr_el0), "check overflow reg is 0"); |
| |
| /* disable overflow interrupts on all counters*/ |
| write_sysreg(ALL_SET_32, pmintenclr_el1); |
| report(!read_sysreg(pmintenclr_el1), |
| "pmintenclr_el1=0, all interrupts disabled"); |
| |
| /* enable overflow interrupts on all event counters */ |
| write_sysreg(implemented_counter_mask | non_implemented_counter_mask, |
| pmintenset_el1); |
| report(read_sysreg(pmintenset_el1) == implemented_counter_mask, |
| "overflow interrupts enabled on all implemented counters"); |
| |
| /* Set PMCR.E, execute asm code and unset PMCR.E */ |
| precise_instrs_loop(20, pmu.pmcr_ro | PMU_PMCR_E); |
| |
| report_info("counter #0 is 0x%lx (CPU_CYCLES)", |
| read_regn_el0(pmevcntr, 0)); |
| report_info("counter #1 is 0x%lx (INST_RETIRED)", |
| read_regn_el0(pmevcntr, 1)); |
| |
| report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0)); |
| report(read_sysreg(pmovsclr_el0) & 0x1, |
| "check overflow happened on #0 only"); |
| } |
| |
| static void test_mem_access(bool overflow_at_64bits) |
| { |
| void *addr = malloc(PAGE_SIZE); |
| uint32_t events[] = {MEM_ACCESS, MEM_ACCESS}; |
| uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits); |
| uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0; |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) || |
| !check_overflow_prerequisites(overflow_at_64bits)) |
| return; |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| isb(); |
| mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| report_info("counter #0 is 0x%lx (MEM_ACCESS)", read_regn_el0(pmevcntr, 0)); |
| report_info("counter #1 is 0x%lx (MEM_ACCESS)", read_regn_el0(pmevcntr, 1)); |
| /* We may measure more than 20 mem access depending on the core */ |
| report((read_regn_el0(pmevcntr, 0) == read_regn_el0(pmevcntr, 1)) && |
| (read_regn_el0(pmevcntr, 0) >= 20) && !read_sysreg(pmovsclr_el0), |
| "Ran 20 mem accesses"); |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| write_regn_el0(pmevcntr, 1, pre_overflow); |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| isb(); |
| mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| report(read_sysreg(pmovsclr_el0) == 0x3, |
| "Ran 20 mem accesses with expected overflows on both counters"); |
| report_info("cnt#0=0x%lx cnt#1=0x%lx overflow=0x%lx", |
| read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1), |
| read_sysreg(pmovsclr_el0)); |
| } |
| |
| static void test_sw_incr(bool overflow_at_64bits) |
| { |
| uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits); |
| uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0; |
| uint32_t events[] = {SW_INCR, SW_INCR}; |
| uint64_t cntr0 = (pre_overflow + 100) & pmevcntr_mask(); |
| int i; |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) || |
| !check_overflow_prerequisites(overflow_at_64bits)) |
| return; |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevtyper, 0, SW_INCR | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, SW_INCR | PMEVTYPER_EXCLUDE_EL0); |
| /* enable counters #0 and #1 */ |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| isb(); |
| |
| for (i = 0; i < 100; i++) |
| write_sysreg(0x1, pmswinc_el0); |
| |
| isb(); |
| report_info("SW_INCR counter #0 has value 0x%lx", read_regn_el0(pmevcntr, 0)); |
| report(read_regn_el0(pmevcntr, 0) == pre_overflow, |
| "PWSYNC does not increment if PMCR.E is unset"); |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| isb(); |
| |
| for (i = 0; i < 100; i++) |
| write_sysreg(0x3, pmswinc_el0); |
| |
| isb(); |
| report(read_regn_el0(pmevcntr, 0) == cntr0, "counter #0 after + 100 SW_INCR"); |
| report(read_regn_el0(pmevcntr, 1) == 100, "counter #1 after + 100 SW_INCR"); |
| report_info("counter values after 100 SW_INCR #0=0x%lx #1=0x%lx", |
| read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1)); |
| report(read_sysreg(pmovsclr_el0) == 0x1, |
| "overflow on counter #0 after 100 SW_INCR"); |
| } |
| |
| static void enable_chain_counter(int even) |
| { |
| write_sysreg_s(BIT(even + 1), PMCNTENSET_EL0); /* Enable the high counter first */ |
| isb(); |
| write_sysreg_s(BIT(even), PMCNTENSET_EL0); /* Enable the low counter */ |
| isb(); |
| } |
| |
| static void disable_chain_counter(int even) |
| { |
| write_sysreg_s(BIT(even), PMCNTENCLR_EL0); /* Disable the low counter first*/ |
| isb(); |
| write_sysreg_s(BIT(even + 1), PMCNTENCLR_EL0); /* Disable the high counter */ |
| isb(); |
| } |
| |
| static void test_chained_counters(bool unused) |
| { |
| uint32_t events[] = {CPU_CYCLES, CHAIN}; |
| uint64_t all_set = pmevcntr_mask(); |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events))) |
| return; |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevtyper, 0, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32); |
| enable_chain_counter(0); |
| |
| precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E); |
| |
| report(read_regn_el0(pmevcntr, 1) == 1, "CHAIN counter #1 incremented"); |
| report(read_sysreg(pmovsclr_el0) == 0x1, "overflow recorded for chained incr #1"); |
| |
| /* test 64b overflow */ |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32); |
| write_regn_el0(pmevcntr, 1, 0x1); |
| enable_chain_counter(0); |
| precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E); |
| report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0)); |
| report(read_regn_el0(pmevcntr, 1) == 2, "CHAIN counter #1 set to 2"); |
| report(read_sysreg(pmovsclr_el0) == 0x1, "overflow recorded for chained incr #2"); |
| |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32); |
| write_regn_el0(pmevcntr, 1, all_set); |
| |
| precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E); |
| report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0)); |
| report(read_regn_el0(pmevcntr, 1) == 0, "CHAIN counter #1 wrapped"); |
| report(read_sysreg(pmovsclr_el0) == 0x3, "overflow on even and odd counters"); |
| } |
| |
| static void test_chained_sw_incr(bool unused) |
| { |
| uint32_t events[] = {SW_INCR, CHAIN}; |
| uint64_t cntr0 = (PRE_OVERFLOW_32 + 100) & pmevcntr_mask(); |
| uint64_t cntr1 = (ALL_SET_32 + 1) & pmevcntr_mask(); |
| int i; |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events))) |
| return; |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevtyper, 0, SW_INCR | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0); |
| enable_chain_counter(0); |
| |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32); |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_E); |
| isb(); |
| |
| for (i = 0; i < 100; i++) |
| write_sysreg(0x1, pmswinc_el0); |
| |
| isb(); |
| report((read_sysreg(pmovsclr_el0) == 0x1) && |
| (read_regn_el0(pmevcntr, 1) == 1), |
| "overflow and chain counter incremented after 100 SW_INCR/CHAIN"); |
| report_info("overflow=0x%lx, #0=0x%lx #1=0x%lx", read_sysreg(pmovsclr_el0), |
| read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1)); |
| |
| /* 64b SW_INCR and overflow on CHAIN counter*/ |
| pmu_reset(); |
| |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32); |
| write_regn_el0(pmevcntr, 1, ALL_SET_32); |
| enable_chain_counter(0); |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_E); |
| isb(); |
| |
| for (i = 0; i < 100; i++) |
| write_sysreg(0x1, pmswinc_el0); |
| |
| isb(); |
| report((read_sysreg(pmovsclr_el0) == 0x3) && |
| (read_regn_el0(pmevcntr, 0) == cntr0) && |
| (read_regn_el0(pmevcntr, 1) == cntr1), |
| "expected overflows and values after 100 SW_INCR/CHAIN"); |
| report_info("overflow=0x%lx, #0=0x%lx #1=0x%lx", read_sysreg(pmovsclr_el0), |
| read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1)); |
| } |
| #define PRINT_REGS(__s) \ |
| report_info("%s #1=0x%lx #0=0x%lx overflow=0x%lx", __s, \ |
| read_regn_el0(pmevcntr, 1), \ |
| read_regn_el0(pmevcntr, 0), \ |
| read_sysreg(pmovsclr_el0)) |
| |
| /* |
| * This test checks that a mem access loop featuring COUNT accesses |
| * does not overflow with an init value of PRE_OVERFLOW2. It also |
| * records the min/max access count to see how much the counting |
| * is (un)reliable |
| */ |
| static void test_mem_access_reliability(bool overflow_at_64bits) |
| { |
| uint32_t events[] = {MEM_ACCESS}; |
| void *addr = malloc(PAGE_SIZE); |
| uint64_t cntr_val, num_events, max = 0, min = pmevcntr_mask(); |
| uint64_t pre_overflow2 = PRE_OVERFLOW2(overflow_at_64bits); |
| uint64_t all_set = ALL_SET(overflow_at_64bits); |
| uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0; |
| bool overflow = false; |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) || |
| !check_overflow_prerequisites(overflow_at_64bits)) |
| return; |
| |
| pmu_reset(); |
| write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| for (int i = 0; i < 100; i++) { |
| pmu_reset(); |
| write_regn_el0(pmevcntr, 0, pre_overflow2); |
| write_sysreg_s(0x1, PMCNTENSET_EL0); |
| isb(); |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| cntr_val = read_regn_el0(pmevcntr, 0); |
| if (cntr_val >= pre_overflow2) { |
| num_events = cntr_val - pre_overflow2; |
| } else { |
| /* unexpected counter overflow */ |
| num_events = cntr_val + all_set - pre_overflow2; |
| overflow = true; |
| report_info("iter=%d num_events=%ld min=%ld max=%ld overflow!!!", |
| i, num_events, min, max); |
| } |
| /* record extreme value */ |
| max = MAX(num_events, max); |
| min = MIN(num_events, min); |
| } |
| report_info("overflow=%d min=%ld max=%ld expected=%d acceptable margin=%d", |
| overflow, min, max, COUNT, MARGIN); |
| report(!overflow, "mem_access count is reliable"); |
| } |
| |
| static void test_chain_promotion(bool unused) |
| { |
| uint32_t events[] = {MEM_ACCESS, CHAIN}; |
| void *addr = malloc(PAGE_SIZE); |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events))) |
| return; |
| |
| /* Only enable CHAIN counter */ |
| report_prefix_push("subtest1"); |
| pmu_reset(); |
| write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0); |
| write_sysreg_s(0x2, PMCNTENSET_EL0); |
| isb(); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("post"); |
| report(!read_regn_el0(pmevcntr, 0), |
| "chain counter not counting if even counter is disabled"); |
| report_prefix_pop(); |
| |
| /* Only enable even counter */ |
| report_prefix_push("subtest2"); |
| pmu_reset(); |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32); |
| write_sysreg_s(0x1, PMCNTENSET_EL0); |
| isb(); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("post"); |
| report(!read_regn_el0(pmevcntr, 1) && (read_sysreg(pmovsclr_el0) == 0x1), |
| "odd counter did not increment on overflow if disabled"); |
| report_prefix_pop(); |
| |
| /* 1st COUNT with CHAIN enabled, next COUNT with CHAIN disabled */ |
| report_prefix_push("subtest3"); |
| pmu_reset(); |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32); |
| enable_chain_counter(0); |
| PRINT_REGS("init"); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 1st loop"); |
| |
| /* disable the CHAIN event */ |
| disable_chain_counter(0); |
| write_sysreg_s(0x1, PMCNTENSET_EL0); /* Enable the low counter */ |
| isb(); |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 2nd loop"); |
| report(read_sysreg(pmovsclr_el0) == 0x1, |
| "should have triggered an overflow on #0"); |
| report(!read_regn_el0(pmevcntr, 1), |
| "CHAIN counter #1 shouldn't have incremented"); |
| report_prefix_pop(); |
| |
| /* 1st COUNT with CHAIN disabled, next COUNT with CHAIN enabled */ |
| |
| report_prefix_push("subtest4"); |
| pmu_reset(); |
| write_sysreg_s(0x1, PMCNTENSET_EL0); |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32); |
| isb(); |
| PRINT_REGS("init"); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 1st loop"); |
| |
| /* Disable the low counter first and enable the chain counter */ |
| write_sysreg_s(0x1, PMCNTENCLR_EL0); |
| isb(); |
| enable_chain_counter(0); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| |
| PRINT_REGS("After 2nd loop"); |
| |
| report((read_regn_el0(pmevcntr, 1) == 1) && |
| (read_sysreg(pmovsclr_el0) == 0x1), |
| "CHAIN counter enabled: CHAIN counter was incremented and overflow"); |
| report_prefix_pop(); |
| |
| /* start as MEM_ACCESS/CPU_CYCLES and move to CHAIN/MEM_ACCESS */ |
| report_prefix_push("subtest5"); |
| pmu_reset(); |
| write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0); |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32); |
| isb(); |
| PRINT_REGS("init"); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 1st loop"); |
| |
| /* 0 becomes CHAINED */ |
| write_sysreg_s(0x3, PMCNTENCLR_EL0); |
| write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevcntr, 1, 0x0); |
| enable_chain_counter(0); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 2nd loop"); |
| |
| report((read_regn_el0(pmevcntr, 1) == 1) && |
| (read_sysreg(pmovsclr_el0) == 0x1), |
| "32b->64b: CHAIN counter incremented and overflow"); |
| report_prefix_pop(); |
| |
| /* start as CHAIN/MEM_ACCESS and move to MEM_ACCESS/CPU_CYCLES */ |
| report_prefix_push("subtest6"); |
| pmu_reset(); |
| write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32); |
| enable_chain_counter(0); |
| PRINT_REGS("init"); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 1st loop"); |
| |
| disable_chain_counter(0); |
| write_regn_el0(pmevtyper, 1, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0); |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| |
| mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E); |
| PRINT_REGS("After 2nd loop"); |
| report(read_sysreg(pmovsclr_el0) == 1, |
| "overflow is expected on counter 0"); |
| report_prefix_pop(); |
| } |
| |
| static bool expect_interrupts(uint32_t bitmap) |
| { |
| int i; |
| |
| if (pmu_stats.bitmap ^ bitmap || pmu_stats.unexpected) |
| return false; |
| |
| for (i = 0; i < 32; i++) { |
| if (test_and_clear_bit(i, &pmu_stats.bitmap)) |
| if (pmu_stats.interrupts[i] != 1) |
| return false; |
| } |
| return true; |
| } |
| |
| static void test_overflow_interrupt(bool overflow_at_64bits) |
| { |
| uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits); |
| uint64_t all_set = pmevcntr_mask(); |
| uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0; |
| uint32_t events[] = {MEM_ACCESS, SW_INCR}; |
| void *addr = malloc(PAGE_SIZE); |
| int i; |
| |
| if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) || |
| !check_overflow_prerequisites(overflow_at_64bits)) |
| return; |
| |
| gic_enable_defaults(); |
| install_irq_handler(EL1H_IRQ, irq_handler); |
| local_irq_enable(); |
| gic_enable_irq(23); |
| |
| pmu_reset(); |
| |
| write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevtyper, 1, SW_INCR | PMEVTYPER_EXCLUDE_EL0); |
| write_sysreg_s(0x3, PMCNTENSET_EL0); |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| write_regn_el0(pmevcntr, 1, pre_overflow); |
| isb(); |
| |
| /* interrupts are disabled (PMINTENSET_EL1 == 0) */ |
| |
| mem_access_loop(addr, 200, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| report(expect_interrupts(0), "no overflow interrupt after preset"); |
| |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| isb(); |
| |
| for (i = 0; i < 100; i++) |
| write_sysreg(0x2, pmswinc_el0); |
| |
| isb(); |
| set_pmcr(pmu.pmcr_ro); |
| isb(); |
| report(expect_interrupts(0), "no overflow interrupt after counting"); |
| |
| /* enable interrupts (PMINTENSET_EL1 <= ALL_SET_32) */ |
| |
| pmu_reset_stats(); |
| |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| write_regn_el0(pmevcntr, 1, pre_overflow); |
| write_sysreg(ALL_SET_32, pmovsclr_el0); |
| write_sysreg(ALL_SET_32, pmintenset_el1); |
| isb(); |
| |
| mem_access_loop(addr, 200, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| |
| set_pmcr(pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| isb(); |
| |
| for (i = 0; i < 100; i++) |
| write_sysreg(0x3, pmswinc_el0); |
| |
| mem_access_loop(addr, 200, pmu.pmcr_ro); |
| report_info("overflow=0x%lx", read_sysreg(pmovsclr_el0)); |
| report(expect_interrupts(0x3), |
| "overflow interrupts expected on #0 and #1"); |
| |
| /* |
| * promote to 64-b: |
| * |
| * This only applies to the !overflow_at_64bits case, as |
| * overflow_at_64bits doesn't implement CHAIN events. The |
| * overflow_at_64bits case just checks that chained counters are |
| * not incremented when PMCR.LP == 1. |
| */ |
| |
| pmu_reset_stats(); |
| |
| write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0); |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| isb(); |
| mem_access_loop(addr, 200, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| report(expect_interrupts(0x1), "expect overflow interrupt"); |
| |
| /* overflow on odd counter */ |
| pmu_reset_stats(); |
| write_regn_el0(pmevcntr, 0, pre_overflow); |
| write_regn_el0(pmevcntr, 1, all_set); |
| isb(); |
| mem_access_loop(addr, 400, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp); |
| if (overflow_at_64bits) { |
| report(expect_interrupts(0x1), |
| "expect overflow interrupt on even counter"); |
| report(read_regn_el0(pmevcntr, 1) == all_set, |
| "Odd counter did not change"); |
| } else { |
| report(expect_interrupts(0x3), |
| "expect overflow interrupt on even and odd counter"); |
| report(read_regn_el0(pmevcntr, 1) != all_set, |
| "Odd counter wrapped"); |
| } |
| } |
| #endif |
| |
| /* |
| * Ensure that the cycle counter progresses between back-to-back reads. |
| */ |
| static bool check_cycles_increase(void) |
| { |
| bool success = true; |
| |
| /* init before event access, this test only cares about cycle count */ |
| pmu_reset(); |
| set_pmcntenset(1 << PMU_CYCLE_IDX); |
| set_pmccfiltr(0); /* count cycles in EL0, EL1, but not EL2 */ |
| |
| set_pmcr(get_pmcr() | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_E); |
| isb(); |
| |
| for (int i = 0; i < NR_SAMPLES; i++) { |
| uint64_t a, b; |
| |
| a = get_pmccntr(); |
| b = get_pmccntr(); |
| |
| if (a >= b) { |
| printf("Read %"PRId64" then %"PRId64".\n", a, b); |
| success = false; |
| break; |
| } |
| } |
| |
| set_pmcr(get_pmcr() & ~PMU_PMCR_E); |
| isb(); |
| |
| return success; |
| } |
| |
| /* |
| * Execute a known number of guest instructions. Only even instruction counts |
| * greater than or equal to 4 are supported by the in-line assembly code. The |
| * control register (PMCR_EL0) is initialized with the provided value (allowing |
| * for example for the cycle counter or event counters to be reset). At the end |
| * of the exact instruction loop, zero is written to PMCR_EL0 to disable |
| * counting, allowing the cycle counter or event counters to be read at the |
| * leisure of the calling code. |
| */ |
| static void measure_instrs(int num, uint32_t pmcr) |
| { |
| int loop = (num - 2) / 2; |
| |
| assert(num >= 4 && ((num - 2) % 2 == 0)); |
| precise_instrs_loop(loop, pmcr); |
| } |
| |
| /* |
| * Measure cycle counts for various known instruction counts. Ensure that the |
| * cycle counter progresses (similar to check_cycles_increase() but with more |
| * instructions and using reset and stop controls). If supplied a positive, |
| * nonzero CPI parameter, it also strictly checks that every measurement matches |
| * it. Strict CPI checking is used to test -icount mode. |
| */ |
| static bool check_cpi(int cpi) |
| { |
| uint32_t pmcr = get_pmcr() | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_E; |
| |
| /* init before event access, this test only cares about cycle count */ |
| pmu_reset(); |
| set_pmcntenset(1 << PMU_CYCLE_IDX); |
| set_pmccfiltr(0); /* count cycles in EL0, EL1, but not EL2 */ |
| |
| if (cpi > 0) |
| printf("Checking for CPI=%d.\n", cpi); |
| printf("instrs : cycles0 cycles1 ...\n"); |
| |
| for (unsigned int i = 4; i < 300; i += 32) { |
| uint64_t avg, sum = 0; |
| |
| printf("%4d:", i); |
| for (int j = 0; j < NR_SAMPLES; j++) { |
| uint64_t cycles; |
| |
| set_pmccntr(0); |
| measure_instrs(i, pmcr); |
| cycles = get_pmccntr(); |
| printf(" %4"PRId64"", cycles); |
| |
| if (!cycles) { |
| printf("\ncycles not incrementing!\n"); |
| return false; |
| } else if (cpi > 0 && cycles != i * cpi) { |
| printf("\nunexpected cycle count received!\n"); |
| return false; |
| } else if ((cycles >> 32) != 0) { |
| /* The cycles taken by the loop above should |
| * fit in 32 bits easily. We check the upper |
| * 32 bits of the cycle counter to make sure |
| * there is no supprise. */ |
| printf("\ncycle count bigger than 32bit!\n"); |
| return false; |
| } |
| |
| sum += cycles; |
| } |
| avg = sum / NR_SAMPLES; |
| printf(" avg=%-4"PRId64" %s=%-3"PRId64"\n", avg, |
| (avg >= i) ? "cpi" : "ipc", |
| (avg >= i) ? avg / i : i / avg); |
| } |
| |
| return true; |
| } |
| |
| static void pmccntr64_test(void) |
| { |
| #ifdef __arm__ |
| if (pmu.version == ID_DFR0_PMU_V3) { |
| if (ERRATA(9e3f7a296940)) { |
| write_sysreg(0xdead, PMCCNTR64); |
| report(read_sysreg(PMCCNTR64) == 0xdead, "pmccntr64"); |
| } else |
| report_skip("Skipping unsafe pmccntr64 test. Set ERRATA_9e3f7a296940=y to enable."); |
| } |
| #endif |
| } |
| |
| /* Return FALSE if no PMU found, otherwise return TRUE */ |
| static bool pmu_probe(void) |
| { |
| uint32_t pmcr; |
| uint8_t implementer; |
| |
| pmu.version = get_pmu_version(); |
| if (pmu.version == ID_DFR0_PMU_NOTIMPL || pmu.version == ID_DFR0_PMU_IMPDEF) |
| return false; |
| |
| report_info("PMU version: 0x%x", pmu.version); |
| |
| pmcr = get_pmcr(); |
| implementer = (pmcr >> PMU_PMCR_IMP_SHIFT) & PMU_PMCR_IMP_MASK; |
| report_info("PMU implementer/ID code: %#"PRIx32"(\"%c\")/%#"PRIx32, |
| (pmcr >> PMU_PMCR_IMP_SHIFT) & PMU_PMCR_IMP_MASK, |
| implementer ? implementer : ' ', |
| (pmcr >> PMU_PMCR_ID_SHIFT) & PMU_PMCR_ID_MASK); |
| |
| /* store read-only and RES0 fields of the PMCR bottom-half*/ |
| pmu.pmcr_ro = pmcr & 0xFFFFFF00; |
| pmu.nb_implemented_counters = |
| (pmcr >> PMU_PMCR_N_SHIFT) & PMU_PMCR_N_MASK; |
| report_info("Implements %d event counters", |
| pmu.nb_implemented_counters); |
| |
| return true; |
| } |
| |
| static void run_test(const char *name, const char *prefix, |
| void (*test)(bool), void *arg) |
| { |
| report_prefix_push(name); |
| report_prefix_push(prefix); |
| |
| test(arg); |
| |
| report_prefix_pop(); |
| report_prefix_pop(); |
| } |
| |
| static void run_event_test(char *name, void (*test)(bool), |
| bool overflow_at_64bits) |
| { |
| const char *prefix = overflow_at_64bits ? "64-bit overflows" |
| : "32-bit overflows"; |
| |
| run_test(name, prefix, test, (void *)overflow_at_64bits); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| int cpi = 0; |
| |
| if (!pmu_probe()) { |
| printf("No PMU found, test skipped...\n"); |
| return report_summary(); |
| } |
| |
| if (argc < 2) |
| report_abort("no test specified"); |
| |
| report_prefix_push("pmu"); |
| |
| if (strcmp(argv[1], "cycle-counter") == 0) { |
| report_prefix_push(argv[1]); |
| if (argc > 2) |
| cpi = atol(argv[2]); |
| report(check_cycles_increase(), |
| "Monotonically increasing cycle count"); |
| report(check_cpi(cpi), "Cycle/instruction ratio"); |
| pmccntr64_test(); |
| report_prefix_pop(); |
| } else if (strcmp(argv[1], "pmu-event-introspection") == 0) { |
| report_prefix_push(argv[1]); |
| test_event_introspection(); |
| report_prefix_pop(); |
| } else if (strcmp(argv[1], "pmu-event-counter-config") == 0) { |
| report_prefix_push(argv[1]); |
| test_event_counter_config(); |
| report_prefix_pop(); |
| } else if (strcmp(argv[1], "pmu-basic-event-count") == 0) { |
| run_event_test(argv[1], test_basic_event_count, false); |
| run_event_test(argv[1], test_basic_event_count, true); |
| } else if (strcmp(argv[1], "pmu-mem-access-reliability") == 0) { |
| run_event_test(argv[1], test_mem_access_reliability, false); |
| run_event_test(argv[1], test_mem_access_reliability, true); |
| } else if (strcmp(argv[1], "pmu-mem-access") == 0) { |
| run_event_test(argv[1], test_mem_access, false); |
| run_event_test(argv[1], test_mem_access, true); |
| } else if (strcmp(argv[1], "pmu-sw-incr") == 0) { |
| run_event_test(argv[1], test_sw_incr, false); |
| run_event_test(argv[1], test_sw_incr, true); |
| } else if (strcmp(argv[1], "pmu-chained-counters") == 0) { |
| run_event_test(argv[1], test_chained_counters, false); |
| } else if (strcmp(argv[1], "pmu-chained-sw-incr") == 0) { |
| run_event_test(argv[1], test_chained_sw_incr, false); |
| } else if (strcmp(argv[1], "pmu-chain-promotion") == 0) { |
| run_event_test(argv[1], test_chain_promotion, false); |
| } else if (strcmp(argv[1], "pmu-overflow-interrupt") == 0) { |
| run_event_test(argv[1], test_overflow_interrupt, false); |
| run_event_test(argv[1], test_overflow_interrupt, true); |
| } else { |
| report_abort("Unknown sub-test '%s'", argv[1]); |
| } |
| |
| return report_summary(); |
| } |