| /* |
| * Initialize machine setup information and I/O. |
| * |
| * After running setup() unit tests may query how many cpus they have |
| * (nr_cpus), how much memory they have (PHYSICAL_END - PHYSICAL_START), |
| * may use dynamic memory allocation (malloc, etc.), printf, and exit. |
| * Finally, argc and argv are also ready to be passed to main(). |
| * |
| * Copyright (C) 2016, Red Hat Inc, Andrew Jones <drjones@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU LGPL, version 2. |
| */ |
| #include <libcflat.h> |
| #include <libfdt/libfdt.h> |
| #include <devicetree.h> |
| #include <alloc.h> |
| #include <alloc_phys.h> |
| #include <argv.h> |
| #include <asm/setup.h> |
| #include <asm/page.h> |
| #include <asm/ptrace.h> |
| #include <asm/hcall.h> |
| #include "io.h" |
| |
| extern unsigned long stacktop; |
| |
| char *initrd; |
| u32 initrd_size; |
| |
| u32 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (~0U) }; |
| int nr_cpus; |
| uint64_t tb_hz; |
| |
| struct mem_region mem_regions[NR_MEM_REGIONS]; |
| phys_addr_t __physical_start, __physical_end; |
| unsigned __icache_bytes, __dcache_bytes; |
| |
| struct cpu_set_params { |
| unsigned icache_bytes; |
| unsigned dcache_bytes; |
| uint64_t tb_hz; |
| }; |
| |
| #define EXCEPTION_STACK_SIZE (32*1024) /* 32kB */ |
| |
| static char exception_stack[NR_CPUS][EXCEPTION_STACK_SIZE]; |
| |
| static void cpu_set(int fdtnode, u64 regval, void *info) |
| { |
| static bool read_common_info = false; |
| struct cpu_set_params *params = info; |
| int cpu = nr_cpus++; |
| |
| assert_msg(cpu < NR_CPUS, "Number cpus exceeds maximum supported (%d).", NR_CPUS); |
| |
| cpus[cpu] = regval; |
| |
| /* set exception stack address for this CPU (in SPGR0) */ |
| asm volatile ("mtsprg0 %[addr]" :: |
| [addr] "r" (exception_stack[cpu + 1])); |
| |
| if (!read_common_info) { |
| const struct fdt_property *prop; |
| u32 *data; |
| |
| prop = fdt_get_property(dt_fdt(), fdtnode, |
| "i-cache-line-size", NULL); |
| assert(prop != NULL); |
| data = (u32 *)prop->data; |
| params->icache_bytes = fdt32_to_cpu(*data); |
| |
| prop = fdt_get_property(dt_fdt(), fdtnode, |
| "d-cache-line-size", NULL); |
| assert(prop != NULL); |
| data = (u32 *)prop->data; |
| params->dcache_bytes = fdt32_to_cpu(*data); |
| |
| prop = fdt_get_property(dt_fdt(), fdtnode, |
| "timebase-frequency", NULL); |
| assert(prop != NULL); |
| data = (u32 *)prop->data; |
| params->tb_hz = fdt32_to_cpu(*data); |
| |
| read_common_info = true; |
| } |
| } |
| |
| static void cpu_init(void) |
| { |
| struct cpu_set_params params; |
| int ret; |
| |
| nr_cpus = 0; |
| ret = dt_for_each_cpu_node(cpu_set, ¶ms); |
| assert(ret == 0); |
| __icache_bytes = params.icache_bytes; |
| __dcache_bytes = params.dcache_bytes; |
| tb_hz = params.tb_hz; |
| |
| /* Interrupt Endianness */ |
| |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| hcall(H_SET_MODE, 1, 4, 0, 0); |
| #else |
| hcall(H_SET_MODE, 0, 4, 0, 0); |
| #endif |
| } |
| |
| static void mem_init(phys_addr_t freemem_start) |
| { |
| struct dt_pbus_reg regs[NR_MEM_REGIONS]; |
| struct mem_region primary, mem = { |
| .start = (phys_addr_t)-1, |
| }; |
| int nr_regs, i; |
| |
| nr_regs = dt_get_memory_params(regs, NR_MEM_REGIONS); |
| assert(nr_regs > 0); |
| |
| primary.end = 0; |
| |
| for (i = 0; i < nr_regs; ++i) { |
| mem_regions[i].start = regs[i].addr; |
| mem_regions[i].end = regs[i].addr + regs[i].size; |
| |
| /* |
| * pick the region we're in for our primary region |
| */ |
| if (freemem_start >= mem_regions[i].start |
| && freemem_start < mem_regions[i].end) { |
| mem_regions[i].flags |= MR_F_PRIMARY; |
| primary = mem_regions[i]; |
| } |
| |
| /* |
| * set the lowest and highest addresses found, |
| * ignoring potential gaps |
| */ |
| if (mem_regions[i].start < mem.start) |
| mem.start = mem_regions[i].start; |
| if (mem_regions[i].end > mem.end) |
| mem.end = mem_regions[i].end; |
| } |
| assert(primary.end != 0); |
| // assert(!(mem.start & ~PHYS_MASK) && !((mem.end - 1) & ~PHYS_MASK)); |
| |
| __physical_start = mem.start; /* PHYSICAL_START */ |
| __physical_end = mem.end; /* PHYSICAL_END */ |
| |
| phys_alloc_init(freemem_start, primary.end - freemem_start); |
| phys_alloc_set_minimum_alignment(__icache_bytes > __dcache_bytes |
| ? __icache_bytes : __dcache_bytes); |
| } |
| |
| void setup(const void *fdt) |
| { |
| void *freemem = &stacktop; |
| const char *bootargs, *tmp; |
| u32 fdt_size; |
| int ret; |
| |
| /* |
| * Before calling mem_init we need to move the fdt and initrd |
| * to safe locations. We move them to construct the memory |
| * map illustrated below: |
| * |
| * +----------------------+ <-- top of physical memory |
| * | | |
| * ~ ~ |
| * | | |
| * +----------------------+ <-- top of initrd |
| * | | |
| * +----------------------+ <-- top of FDT |
| * | | |
| * +----------------------+ <-- top of cpu0's stack |
| * | | |
| * +----------------------+ <-- top of text/data/bss/toc sections, |
| * | | see powerpc/flat.lds |
| * | | |
| * +----------------------+ <-- load address |
| * | | |
| * +----------------------+ |
| */ |
| fdt_size = fdt_totalsize(fdt); |
| ret = fdt_move(fdt, freemem, fdt_size); |
| assert(ret == 0); |
| ret = dt_init(freemem); |
| assert(ret == 0); |
| freemem += fdt_size; |
| |
| ret = dt_get_initrd(&tmp, &initrd_size); |
| assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); |
| if (ret == 0) { |
| initrd = freemem; |
| memmove(initrd, tmp, initrd_size); |
| freemem += initrd_size; |
| } |
| |
| assert(STACK_INT_FRAME_SIZE % 16 == 0); |
| |
| /* call init functions */ |
| cpu_init(); |
| |
| /* cpu_init must be called before mem_init */ |
| mem_init(PAGE_ALIGN((unsigned long)freemem)); |
| |
| /* mem_init must be called before io_init */ |
| io_init(); |
| |
| /* finish setup */ |
| ret = dt_get_bootargs(&bootargs); |
| assert(ret == 0 || ret == -FDT_ERR_NOTFOUND); |
| setup_args_progname(bootargs); |
| |
| if (initrd) { |
| /* environ is currently the only file in the initrd */ |
| char *env = malloc(initrd_size); |
| memcpy(env, initrd, initrd_size); |
| setup_env(env, initrd_size); |
| } |
| } |