blob: 42ecaed31bfbb0f9a3171a5d415feb7d105baa74 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright IBM Corp. 2021, 2022
*
* Specification exception test.
* Tests that specification exceptions occur when expected.
* This includes specification exceptions occurring during transactional execution
* as these result in another interruption code (the transactional-execution-aborted
* bit is set).
*
* Can be extended by adding triggers to spec_ex_triggers, see comments below.
*/
#include <stdlib.h>
#include <htmintrin.h>
#include <libcflat.h>
#include <bitops.h>
#include <asm/barrier.h>
#include <asm/interrupt.h>
#include <asm/facility.h>
/* toggled to signal occurrence of invalid psw fixup */
static bool invalid_psw_expected;
static struct psw expected_psw;
static struct psw invalid_psw;
static struct psw fixup_psw;
/*
* The standard program exception handler cannot deal with invalid old PSWs,
* especially not invalid instruction addresses, as in that case one cannot
* find the instruction following the faulting one from the old PSW.
* The PSW to return to is set by load_psw.
*/
static void fixup_invalid_psw(struct stack_frame_int *stack)
{
assert_msg(invalid_psw_expected,
"Unexpected invalid PSW during program interrupt fixup: %#lx %#lx",
lowcore.pgm_old_psw.mask, lowcore.pgm_old_psw.addr);
/* signal occurrence of invalid psw fixup */
invalid_psw_expected = false;
invalid_psw = lowcore.pgm_old_psw;
lowcore.pgm_old_psw = fixup_psw;
}
/*
* Load possibly invalid psw, but setup fixup_psw before,
* so that fixup_invalid_psw() can bring us back onto the right track.
* Also acts as compiler barrier, -> none required in expect/check_invalid_psw
*/
static void load_psw(struct psw psw)
{
uint64_t scratch;
/*
* The fixup psw is the current psw with the instruction address replaced
* by the address of the nop following the instruction loading the new psw.
*/
fixup_psw.mask = extract_psw_mask();
asm volatile ( "larl %[scratch],0f\n"
" stg %[scratch],%[fixup_addr]\n"
" lpswe %[psw]\n"
"0: nop\n"
: [scratch] "=&d" (scratch),
[fixup_addr] "=&T" (fixup_psw.addr)
: [psw] "Q" (psw)
: "cc", "memory"
);
}
static void load_short_psw(struct short_psw psw)
{
uint64_t scratch;
fixup_psw.mask = extract_psw_mask();
asm volatile ( "larl %[scratch],0f\n"
" stg %[scratch],%[fixup_addr]\n"
" lpsw %[psw]\n"
"0: nop\n"
: [scratch] "=&d" (scratch),
[fixup_addr] "=&T" (fixup_psw.addr)
: [psw] "Q" (psw)
: "cc", "memory"
);
}
static void expect_invalid_psw(struct psw psw)
{
expected_psw = psw;
invalid_psw_expected = true;
}
static int check_invalid_psw(void)
{
/* Since the fixup sets this to false we check for false here. */
if (!invalid_psw_expected) {
if (expected_psw.mask == invalid_psw.mask &&
expected_psw.addr == invalid_psw.addr)
return 0;
report_fail("Wrong invalid PSW");
} else {
report_fail("Expected exception due to invalid PSW");
}
return 1;
}
/* For normal PSWs bit 12 has to be 0 to be a valid PSW*/
static int psw_bit_12_is_1(void)
{
struct psw invalid = {
.mask = BIT(63 - 12),
.addr = 0x00000000deadbeee
};
expect_invalid_psw(invalid);
load_psw(invalid);
return check_invalid_psw();
}
/* A short PSW needs to have bit 12 set to be valid. */
static int short_psw_bit_12_is_0(void)
{
struct psw invalid = {
.mask = BIT(63 - 12),
.addr = 0x00000000deadbeee
};
struct short_psw short_invalid = {
.mask = 0x0,
.addr = 0xdeadbeee
};
expect_invalid_psw(invalid);
load_short_psw(short_invalid);
/*
* lpsw may optionally check bit 12 before loading the new psw
* -> cannot check the expected invalid psw like with lpswe
*/
return 0;
}
static int bad_alignment(void)
{
uint32_t words[5] __attribute__((aligned(16)));
uint32_t (*bad_aligned)[4] = (uint32_t (*)[4])&words[1];
/* LOAD PAIR FROM QUADWORD (LPQ) requires quadword alignment */
asm volatile ("lpq %%r6,%[bad]"
: : [bad] "T" (*bad_aligned)
: "%r6", "%r7"
);
return 0;
}
static int not_even(void)
{
uint64_t quad[2] __attribute__((aligned(16))) = {0};
asm volatile (".insn rxy,0xe3000000008f,%%r7,%[quad]" /* lpq %%r7,%[quad] */
: : [quad] "T" (quad)
: "%r7", "%r8"
);
return 0;
}
/*
* Harness for specification exception testing.
* func only triggers exception, reporting is taken care of automatically.
* If a trigger is transactable it will also be executed during a transaction.
*/
struct spec_ex_trigger {
const char *name;
int (*func)(void);
bool transactable;
void (*fixup)(struct stack_frame_int *stack);
};
/* List of all tests to execute */
static const struct spec_ex_trigger spec_ex_triggers[] = {
{ "psw_bit_12_is_1", &psw_bit_12_is_1, false, &fixup_invalid_psw },
{ "short_psw_bit_12_is_0", &short_psw_bit_12_is_0, false, &fixup_invalid_psw },
{ "bad_alignment", &bad_alignment, true, NULL },
{ "not_even", &not_even, true, NULL },
{ NULL, NULL, false, NULL },
};
static void test_spec_ex(const struct spec_ex_trigger *trigger)
{
int rc;
expect_pgm_int();
register_pgm_cleanup_func(trigger->fixup);
rc = trigger->func();
register_pgm_cleanup_func(NULL);
/* test failed, nothing to be done, reporting responsibility of trigger */
if (rc)
return;
check_pgm_int_code(PGM_INT_CODE_SPECIFICATION);
}
#define TRANSACTION_COMPLETED 4
#define TRANSACTION_MAX_RETRIES 5
/*
* NULL must not be passed to __builtin_tbegin via variable, only constant,
* forbid diagnose from being NULL at all to keep things simple
*/
static int __attribute__((nonnull))
with_transaction(int (*trigger)(void), struct __htm_tdb *diagnose)
{
int cc;
cc = __builtin_tbegin(diagnose);
/*
* Everything between tbegin and tend is part of the transaction,
* which either completes in its entirety or does not have any effect.
* If the transaction fails, execution is reset to this point with another
* condition code indicating why the transaction failed.
*/
if (cc == _HTM_TBEGIN_STARTED) {
/*
* return code is meaningless: transaction needs to complete
* in order to return and completion indicates a test failure
*/
trigger();
__builtin_tend();
return TRANSACTION_COMPLETED;
} else {
return cc;
}
}
static int retry_transaction(const struct spec_ex_trigger *trigger, unsigned int max_retries,
struct __htm_tdb *tdb, uint16_t expected_pgm)
{
int trans_result, i;
uint16_t pgm;
for (i = 0; i < max_retries; i++) {
expect_pgm_int();
trans_result = with_transaction(trigger->func, tdb);
if (trans_result == _HTM_TBEGIN_TRANSIENT) {
mb();
pgm = lowcore.pgm_int_code;
if (pgm == expected_pgm)
return 0;
else if (pgm == 0)
/*
* Transaction failed for unknown reason but not because
* of an unexpected program exception. Give it another
* go so that hopefully it reaches the triggering instruction.
*/
continue;
}
return trans_result;
}
return TRANSACTION_MAX_RETRIES;
}
struct args {
uint64_t max_retries;
bool diagnose;
};
static void test_spec_ex_trans(struct args *args, const struct spec_ex_trigger *trigger)
{
const uint16_t expected_pgm = PGM_INT_CODE_SPECIFICATION |
PGM_INT_CODE_TX_ABORTED_EVENT;
union {
struct __htm_tdb tdb;
uint64_t dwords[sizeof(struct __htm_tdb) / sizeof(uint64_t)];
} diag;
unsigned int i;
int trans_result;
if (!test_facility(73)) {
report_skip("transactional-execution facility not installed");
return;
}
ctl_set_bit(0, CTL0_TRANSACT_EX_CTL); /* enable transactional-exec */
register_pgm_cleanup_func(trigger->fixup);
trans_result = retry_transaction(trigger, args->max_retries, &diag.tdb, expected_pgm);
register_pgm_cleanup_func(NULL);
switch (trans_result) {
case 0:
report_pass("Program interrupt: expected(%d) == received(%d)",
expected_pgm, expected_pgm);
break;
case _HTM_TBEGIN_INDETERMINATE:
case _HTM_TBEGIN_PERSISTENT:
report_info("transaction failed with cc %d", trans_result);
report_info("transaction abort code: %llu", diag.tdb.abort_code);
if (args->diagnose)
for (i = 0; i < 32; i++)
report_info("diag+%03d: %016lx", i * 8, diag.dwords[i]);
break;
case _HTM_TBEGIN_TRANSIENT:
report_fail("Program interrupt: expected(%d) == received(%d)",
expected_pgm, clear_pgm_int());
break;
case TRANSACTION_COMPLETED:
report_fail("Transaction completed without exception");
break;
case TRANSACTION_MAX_RETRIES:
report_skip("Transaction retried %lu times with transient failures, giving up",
args->max_retries);
break;
default:
report_fail("Invalid transaction result");
break;
}
ctl_clear_bit(0, CTL0_TRANSACT_EX_CTL);
}
static bool parse_unsigned(const char *arg, unsigned int *out)
{
char *end;
long num;
if (arg[0] == '\0')
return false;
num = strtol(arg, &end, 10);
if (end[0] != '\0' || num < 0)
return false;
*out = num;
return true;
}
static struct args parse_args(int argc, char **argv)
{
struct args args = {
.max_retries = 20,
.diagnose = false
};
unsigned int i, arg;
bool has_arg;
const char *flag;
for (i = 1; i < argc; i++) {
if (i + 1 < argc)
has_arg = parse_unsigned(argv[i + 1], &arg);
else
has_arg = false;
flag = "--max-retries";
if (!strcmp(flag, argv[i])) {
if (!has_arg)
report_abort("%s needs a positive parameter", flag);
args.max_retries = arg;
++i;
continue;
}
if (!strcmp("--diagnose", argv[i])) {
args.diagnose = true;
continue;
}
if (!strcmp("--no-diagnose", argv[i])) {
args.diagnose = false;
continue;
}
report_abort("Unsupported parameter '%s'",
argv[i]);
}
return args;
}
int main(int argc, char **argv)
{
unsigned int i;
struct args args = parse_args(argc, argv);
report_prefix_push("specification exception");
for (i = 0; spec_ex_triggers[i].name; i++) {
report_prefix_push(spec_ex_triggers[i].name);
test_spec_ex(&spec_ex_triggers[i]);
report_prefix_pop();
}
report_prefix_pop();
report_prefix_push("specification exception during transaction");
for (i = 0; spec_ex_triggers[i].name; i++) {
if (spec_ex_triggers[i].transactable) {
report_prefix_push(spec_ex_triggers[i].name);
test_spec_ex_trans(&args, &spec_ex_triggers[i]);
report_prefix_pop();
}
}
report_prefix_pop();
return report_summary();
}