| /* |
| * All test cases of nested virtualization should be in this file |
| * |
| * Author : Arthur Chunqi Li <yzt356@gmail.com> |
| */ |
| #include "vmx.h" |
| #include "msr.h" |
| #include "processor.h" |
| #include "vm.h" |
| #include "fwcfg.h" |
| #include "isr.h" |
| #include "desc.h" |
| #include "apic.h" |
| #include "types.h" |
| #include "vmalloc.h" |
| #include "alloc_page.h" |
| |
| #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull |
| |
| #define VPID_CAP_INVVPID_TYPES_SHIFT 40 |
| |
| u64 ia32_pat; |
| u64 ia32_efer; |
| void *io_bitmap_a, *io_bitmap_b; |
| u16 ioport; |
| |
| unsigned long *pml4; |
| u64 eptp; |
| void *data_page1, *data_page2; |
| |
| void *pml_log; |
| #define PML_INDEX 512 |
| |
| static inline unsigned ffs(unsigned x) |
| { |
| int pos = -1; |
| |
| __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" |
| : "+r"(pos) : "rm"(x) : "eax"); |
| return pos + 1; |
| } |
| |
| static inline void vmcall() |
| { |
| asm volatile("vmcall"); |
| } |
| |
| void basic_guest_main() |
| { |
| report("Basic VMX test", 1); |
| } |
| |
| int basic_exit_handler() |
| { |
| report("Basic VMX test", 0); |
| print_vmexit_info(); |
| return VMX_TEST_EXIT; |
| } |
| |
| void vmenter_main() |
| { |
| u64 rax; |
| u64 rsp, resume_rsp; |
| |
| report("test vmlaunch", 1); |
| |
| asm volatile( |
| "mov %%rsp, %0\n\t" |
| "mov %3, %%rax\n\t" |
| "vmcall\n\t" |
| "mov %%rax, %1\n\t" |
| "mov %%rsp, %2\n\t" |
| : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) |
| : "g"(0xABCD)); |
| report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp)); |
| } |
| |
| int vmenter_exit_handler() |
| { |
| u64 guest_rip; |
| ulong reason; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| switch (reason) { |
| case VMX_VMCALL: |
| if (regs.rax != 0xABCD) { |
| report("test vmresume", 0); |
| return VMX_TEST_VMEXIT; |
| } |
| regs.rax = 0xFFFF; |
| vmcs_write(GUEST_RIP, guest_rip + 3); |
| return VMX_TEST_RESUME; |
| default: |
| report("test vmresume", 0); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| u32 preempt_scale; |
| volatile unsigned long long tsc_val; |
| volatile u32 preempt_val; |
| u64 saved_rip; |
| |
| int preemption_timer_init() |
| { |
| if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { |
| printf("\tPreemption timer is not supported\n"); |
| return VMX_TEST_EXIT; |
| } |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); |
| preempt_val = 10000000; |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; |
| |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) |
| printf("\tSave preemption value is not supported\n"); |
| |
| return VMX_TEST_START; |
| } |
| |
| void preemption_timer_main() |
| { |
| tsc_val = rdtsc(); |
| if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { |
| vmx_set_test_stage(0); |
| vmcall(); |
| if (vmx_get_test_stage() == 1) |
| vmcall(); |
| } |
| vmx_set_test_stage(1); |
| while (vmx_get_test_stage() == 1) { |
| if (((rdtsc() - tsc_val) >> preempt_scale) |
| > 10 * preempt_val) { |
| vmx_set_test_stage(2); |
| vmcall(); |
| } |
| } |
| tsc_val = rdtsc(); |
| asm volatile ("hlt"); |
| vmcall(); |
| vmx_set_test_stage(5); |
| vmcall(); |
| } |
| |
| int preemption_timer_exit_handler() |
| { |
| bool guest_halted; |
| u64 guest_rip; |
| ulong reason; |
| u32 insn_len; |
| u32 ctrl_exit; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| insn_len = vmcs_read(EXI_INST_LEN); |
| switch (reason) { |
| case VMX_PREEMPT: |
| switch (vmx_get_test_stage()) { |
| case 1: |
| case 2: |
| report("busy-wait for preemption timer", |
| ((rdtsc() - tsc_val) >> preempt_scale) >= |
| preempt_val); |
| vmx_set_test_stage(3); |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| return VMX_TEST_RESUME; |
| case 3: |
| guest_halted = |
| (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); |
| report("preemption timer during hlt", |
| ((rdtsc() - tsc_val) >> preempt_scale) >= |
| preempt_val && guest_halted); |
| vmx_set_test_stage(4); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| return VMX_TEST_RESUME; |
| case 4: |
| report("preemption timer with 0 value", |
| saved_rip == guest_rip); |
| break; |
| default: |
| report("Invalid stage.", false); |
| print_vmexit_info(); |
| break; |
| } |
| break; |
| case VMX_VMCALL: |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report("Keep preemption value", |
| vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val); |
| vmx_set_test_stage(1); |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| ctrl_exit = (vmcs_read(EXI_CONTROLS) | |
| EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; |
| vmcs_write(EXI_CONTROLS, ctrl_exit); |
| return VMX_TEST_RESUME; |
| case 1: |
| report("Save preemption value", |
| vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val); |
| return VMX_TEST_RESUME; |
| case 2: |
| report("busy-wait for preemption timer", 0); |
| vmx_set_test_stage(3); |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| return VMX_TEST_RESUME; |
| case 3: |
| report("preemption timer during hlt", 0); |
| vmx_set_test_stage(4); |
| /* fall through */ |
| case 4: |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); |
| vmcs_write(PREEMPT_TIMER_VALUE, 0); |
| saved_rip = guest_rip + insn_len; |
| return VMX_TEST_RESUME; |
| case 5: |
| report("preemption timer with 0 value (vmcall stage 5)", 0); |
| break; |
| default: |
| // Should not reach here |
| report("unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| break; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); |
| return VMX_TEST_VMEXIT; |
| } |
| |
| void msr_bmp_init() |
| { |
| void *msr_bitmap; |
| u32 ctrl_cpu0; |
| |
| msr_bitmap = alloc_page(); |
| memset(msr_bitmap, 0x0, PAGE_SIZE); |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 |= CPU_MSR_BITMAP; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| vmcs_write(MSR_BITMAP, (u64)msr_bitmap); |
| } |
| |
| static int test_ctrl_pat_init() |
| { |
| u64 ctrl_ent; |
| u64 ctrl_exi; |
| |
| msr_bmp_init(); |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && |
| !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && |
| !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { |
| printf("\tSave/load PAT is not supported\n"); |
| return 1; |
| } |
| |
| ctrl_ent = vmcs_read(ENT_CONTROLS); |
| ctrl_exi = vmcs_read(EXI_CONTROLS); |
| ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; |
| ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); |
| vmcs_write(ENT_CONTROLS, ctrl_ent); |
| vmcs_write(EXI_CONTROLS, ctrl_exi); |
| ia32_pat = rdmsr(MSR_IA32_CR_PAT); |
| vmcs_write(GUEST_PAT, 0x0); |
| vmcs_write(HOST_PAT, ia32_pat); |
| return VMX_TEST_START; |
| } |
| |
| static void test_ctrl_pat_main() |
| { |
| u64 guest_ia32_pat; |
| |
| guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) |
| printf("\tENT_LOAD_PAT is not supported.\n"); |
| else { |
| if (guest_ia32_pat != 0) { |
| report("Entry load PAT", 0); |
| return; |
| } |
| } |
| wrmsr(MSR_IA32_CR_PAT, 0x6); |
| vmcall(); |
| guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); |
| if (ctrl_enter_rev.clr & ENT_LOAD_PAT) |
| report("Entry load PAT", guest_ia32_pat == ia32_pat); |
| } |
| |
| static int test_ctrl_pat_exit_handler() |
| { |
| u64 guest_rip; |
| ulong reason; |
| u64 guest_pat; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| switch (reason) { |
| case VMX_VMCALL: |
| guest_pat = vmcs_read(GUEST_PAT); |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { |
| printf("\tEXI_SAVE_PAT is not supported\n"); |
| vmcs_write(GUEST_PAT, 0x6); |
| } else { |
| report("Exit save PAT", guest_pat == 0x6); |
| } |
| if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) |
| printf("\tEXI_LOAD_PAT is not supported\n"); |
| else |
| report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat); |
| vmcs_write(GUEST_PAT, ia32_pat); |
| vmcs_write(GUEST_RIP, guest_rip + 3); |
| return VMX_TEST_RESUME; |
| default: |
| printf("ERROR : Undefined exit reason, reason = %ld.\n", reason); |
| break; |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int test_ctrl_efer_init() |
| { |
| u64 ctrl_ent; |
| u64 ctrl_exi; |
| |
| msr_bmp_init(); |
| ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; |
| ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; |
| vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); |
| vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); |
| ia32_efer = rdmsr(MSR_EFER); |
| vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); |
| vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); |
| return VMX_TEST_START; |
| } |
| |
| static void test_ctrl_efer_main() |
| { |
| u64 guest_ia32_efer; |
| |
| guest_ia32_efer = rdmsr(MSR_EFER); |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) |
| printf("\tENT_LOAD_EFER is not supported.\n"); |
| else { |
| if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { |
| report("Entry load EFER", 0); |
| return; |
| } |
| } |
| wrmsr(MSR_EFER, ia32_efer); |
| vmcall(); |
| guest_ia32_efer = rdmsr(MSR_EFER); |
| if (ctrl_enter_rev.clr & ENT_LOAD_EFER) |
| report("Entry load EFER", guest_ia32_efer == ia32_efer); |
| } |
| |
| static int test_ctrl_efer_exit_handler() |
| { |
| u64 guest_rip; |
| ulong reason; |
| u64 guest_efer; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| switch (reason) { |
| case VMX_VMCALL: |
| guest_efer = vmcs_read(GUEST_EFER); |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { |
| printf("\tEXI_SAVE_EFER is not supported\n"); |
| vmcs_write(GUEST_EFER, ia32_efer); |
| } else { |
| report("Exit save EFER", guest_efer == ia32_efer); |
| } |
| if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { |
| printf("\tEXI_LOAD_EFER is not supported\n"); |
| wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); |
| } else { |
| report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX)); |
| } |
| vmcs_write(GUEST_PAT, ia32_efer); |
| vmcs_write(GUEST_RIP, guest_rip + 3); |
| return VMX_TEST_RESUME; |
| default: |
| printf("ERROR : Undefined exit reason, reason = %ld.\n", reason); |
| break; |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| u32 guest_cr0, guest_cr4; |
| |
| static void cr_shadowing_main() |
| { |
| u32 cr0, cr4, tmp; |
| |
| // Test read through |
| vmx_set_test_stage(0); |
| guest_cr0 = read_cr0(); |
| if (vmx_get_test_stage() == 1) |
| report("Read through CR0", 0); |
| else |
| vmcall(); |
| vmx_set_test_stage(1); |
| guest_cr4 = read_cr4(); |
| if (vmx_get_test_stage() == 2) |
| report("Read through CR4", 0); |
| else |
| vmcall(); |
| // Test write through |
| guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); |
| guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); |
| vmx_set_test_stage(2); |
| write_cr0(guest_cr0); |
| if (vmx_get_test_stage() == 3) |
| report("Write throuth CR0", 0); |
| else |
| vmcall(); |
| vmx_set_test_stage(3); |
| write_cr4(guest_cr4); |
| if (vmx_get_test_stage() == 4) |
| report("Write through CR4", 0); |
| else |
| vmcall(); |
| // Test read shadow |
| vmx_set_test_stage(4); |
| vmcall(); |
| cr0 = read_cr0(); |
| if (vmx_get_test_stage() != 5) |
| report("Read shadowing CR0", cr0 == guest_cr0); |
| vmx_set_test_stage(5); |
| cr4 = read_cr4(); |
| if (vmx_get_test_stage() != 6) |
| report("Read shadowing CR4", cr4 == guest_cr4); |
| // Test write shadow (same value with shadow) |
| vmx_set_test_stage(6); |
| write_cr0(guest_cr0); |
| if (vmx_get_test_stage() == 7) |
| report("Write shadowing CR0 (same value with shadow)", 0); |
| else |
| vmcall(); |
| vmx_set_test_stage(7); |
| write_cr4(guest_cr4); |
| if (vmx_get_test_stage() == 8) |
| report("Write shadowing CR4 (same value with shadow)", 0); |
| else |
| vmcall(); |
| // Test write shadow (different value) |
| vmx_set_test_stage(8); |
| tmp = guest_cr0 ^ X86_CR0_TS; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr0\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9); |
| vmx_set_test_stage(9); |
| tmp = guest_cr0 ^ X86_CR0_MP; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr0\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10); |
| vmx_set_test_stage(10); |
| tmp = guest_cr4 ^ X86_CR4_TSD; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr4\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11); |
| vmx_set_test_stage(11); |
| tmp = guest_cr4 ^ X86_CR4_DE; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr4\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12); |
| } |
| |
| static int cr_shadowing_exit_handler() |
| { |
| u64 guest_rip; |
| ulong reason; |
| u32 insn_len; |
| u32 exit_qual; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| insn_len = vmcs_read(EXI_INST_LEN); |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| switch (reason) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0)); |
| break; |
| case 1: |
| report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4)); |
| break; |
| case 2: |
| report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0)); |
| break; |
| case 3: |
| report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4)); |
| break; |
| case 4: |
| guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); |
| guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); |
| vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); |
| vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); |
| vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); |
| vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); |
| break; |
| case 6: |
| report("Write shadowing CR0 (same value)", |
| guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP))); |
| break; |
| case 7: |
| report("Write shadowing CR4 (same value)", |
| guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE))); |
| break; |
| default: |
| // Should not reach here |
| report("unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_CR: |
| switch (vmx_get_test_stage()) { |
| case 4: |
| report("Read shadowing CR0", 0); |
| vmx_inc_test_stage(); |
| break; |
| case 5: |
| report("Read shadowing CR4", 0); |
| vmx_inc_test_stage(); |
| break; |
| case 6: |
| report("Write shadowing CR0 (same value)", 0); |
| vmx_inc_test_stage(); |
| break; |
| case 7: |
| report("Write shadowing CR4 (same value)", 0); |
| vmx_inc_test_stage(); |
| break; |
| case 8: |
| case 9: |
| // 0x600 encodes "mov %esi, %cr0" |
| if (exit_qual == 0x600) |
| vmx_inc_test_stage(); |
| break; |
| case 10: |
| case 11: |
| // 0x604 encodes "mov %esi, %cr4" |
| if (exit_qual == 0x604) |
| vmx_inc_test_stage(); |
| break; |
| default: |
| // Should not reach here |
| report("unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int iobmp_init() |
| { |
| u32 ctrl_cpu0; |
| |
| io_bitmap_a = alloc_page(); |
| io_bitmap_b = alloc_page(); |
| memset(io_bitmap_a, 0x0, PAGE_SIZE); |
| memset(io_bitmap_b, 0x0, PAGE_SIZE); |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 |= CPU_IO_BITMAP; |
| ctrl_cpu0 &= (~CPU_IO); |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); |
| vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); |
| return VMX_TEST_START; |
| } |
| |
| static void iobmp_main() |
| { |
| // stage 0, test IO pass |
| vmx_set_test_stage(0); |
| inb(0x5000); |
| outb(0x0, 0x5000); |
| report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0); |
| // test IO width, in/out |
| ((u8 *)io_bitmap_a)[0] = 0xFF; |
| vmx_set_test_stage(2); |
| inb(0x0); |
| report("I/O bitmap - trap in", vmx_get_test_stage() == 3); |
| vmx_set_test_stage(3); |
| outw(0x0, 0x0); |
| report("I/O bitmap - trap out", vmx_get_test_stage() == 4); |
| vmx_set_test_stage(4); |
| inl(0x0); |
| report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5); |
| // test low/high IO port |
| vmx_set_test_stage(5); |
| ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); |
| inb(0x5000); |
| report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6); |
| vmx_set_test_stage(6); |
| ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); |
| inb(0x9000); |
| report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7); |
| // test partial pass |
| vmx_set_test_stage(7); |
| inl(0x4FFF); |
| report("I/O bitmap - partial pass", vmx_get_test_stage() == 8); |
| // test overrun |
| vmx_set_test_stage(8); |
| memset(io_bitmap_a, 0x0, PAGE_SIZE); |
| memset(io_bitmap_b, 0x0, PAGE_SIZE); |
| inl(0xFFFF); |
| report("I/O bitmap - overrun", vmx_get_test_stage() == 9); |
| vmx_set_test_stage(9); |
| vmcall(); |
| outb(0x0, 0x0); |
| report("I/O bitmap - ignore unconditional exiting", |
| vmx_get_test_stage() == 9); |
| vmx_set_test_stage(10); |
| vmcall(); |
| outb(0x0, 0x0); |
| report("I/O bitmap - unconditional exiting", |
| vmx_get_test_stage() == 11); |
| } |
| |
| static int iobmp_exit_handler() |
| { |
| u64 guest_rip; |
| ulong reason, exit_qual; |
| u32 insn_len, ctrl_cpu0; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| switch (reason) { |
| case VMX_IO: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| case 1: |
| vmx_inc_test_stage(); |
| break; |
| case 2: |
| report("I/O bitmap - I/O width, byte", |
| (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE); |
| report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN); |
| vmx_inc_test_stage(); |
| break; |
| case 3: |
| report("I/O bitmap - I/O width, word", |
| (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD); |
| report("I/O bitmap - I/O direction, out", |
| !(exit_qual & VMX_IO_IN)); |
| vmx_inc_test_stage(); |
| break; |
| case 4: |
| report("I/O bitmap - I/O width, long", |
| (exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG); |
| vmx_inc_test_stage(); |
| break; |
| case 5: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) |
| vmx_inc_test_stage(); |
| break; |
| case 6: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) |
| vmx_inc_test_stage(); |
| break; |
| case 7: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) |
| vmx_inc_test_stage(); |
| break; |
| case 8: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) |
| vmx_inc_test_stage(); |
| break; |
| case 9: |
| case 10: |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); |
| vmx_inc_test_stage(); |
| break; |
| default: |
| // Should not reach here |
| report("unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 9: |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| break; |
| case 10: |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| break; |
| default: |
| // Should not reach here |
| report("unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| printf("guest_rip = %#lx\n", guest_rip); |
| printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason); |
| break; |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| #define INSN_CPU0 0 |
| #define INSN_CPU1 1 |
| #define INSN_ALWAYS_TRAP 2 |
| |
| #define FIELD_EXIT_QUAL (1 << 0) |
| #define FIELD_INSN_INFO (1 << 1) |
| |
| asm( |
| "insn_hlt: hlt;ret\n\t" |
| "insn_invlpg: invlpg 0x12345678;ret\n\t" |
| "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" |
| "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" |
| "insn_rdtsc: rdtsc;ret\n\t" |
| "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" |
| "insn_cr3_store: mov %cr3,%rax;ret\n\t" |
| #ifdef __x86_64__ |
| "insn_cr8_load: mov %rax,%cr8;ret\n\t" |
| "insn_cr8_store: mov %cr8,%rax;ret\n\t" |
| #endif |
| "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" |
| "insn_pause: pause;ret\n\t" |
| "insn_wbinvd: wbinvd;ret\n\t" |
| "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" |
| "insn_invd: invd;ret\n\t" |
| "insn_sgdt: sgdt gdt64_desc;ret\n\t" |
| "insn_lgdt: lgdt gdt64_desc;ret\n\t" |
| "insn_sidt: sidt idt_descr;ret\n\t" |
| "insn_lidt: lidt idt_descr;ret\n\t" |
| "insn_sldt: sldt %ax;ret\n\t" |
| "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" |
| "insn_str: str %ax;ret\n\t" |
| "insn_rdrand: rdrand %rax;ret\n\t" |
| "insn_rdseed: rdseed %rax;ret\n\t" |
| ); |
| extern void insn_hlt(); |
| extern void insn_invlpg(); |
| extern void insn_mwait(); |
| extern void insn_rdpmc(); |
| extern void insn_rdtsc(); |
| extern void insn_cr3_load(); |
| extern void insn_cr3_store(); |
| #ifdef __x86_64__ |
| extern void insn_cr8_load(); |
| extern void insn_cr8_store(); |
| #endif |
| extern void insn_monitor(); |
| extern void insn_pause(); |
| extern void insn_wbinvd(); |
| extern void insn_sgdt(); |
| extern void insn_lgdt(); |
| extern void insn_sidt(); |
| extern void insn_lidt(); |
| extern void insn_sldt(); |
| extern void insn_lldt(); |
| extern void insn_str(); |
| extern void insn_cpuid(); |
| extern void insn_invd(); |
| extern void insn_rdrand(); |
| extern void insn_rdseed(); |
| |
| u32 cur_insn; |
| u64 cr3; |
| |
| struct insn_table { |
| const char *name; |
| u32 flag; |
| void (*insn_func)(); |
| u32 type; |
| u32 reason; |
| ulong exit_qual; |
| u32 insn_info; |
| // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define |
| // which field need to be tested, reason is always tested |
| u32 test_field; |
| }; |
| |
| /* |
| * Add more test cases of instruction intercept here. Elements in this |
| * table is: |
| * name/control flag/insn function/type/exit reason/exit qulification/ |
| * instruction info/field to test |
| * The last field defines which fields (exit_qual and insn_info) need to be |
| * tested in exit handler. If set to 0, only "reason" is checked. |
| */ |
| static struct insn_table insn_table[] = { |
| // Flags for Primary Processor-Based VM-Execution Controls |
| {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, |
| {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, |
| 0x12345678, 0, FIELD_EXIT_QUAL}, |
| {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0}, |
| {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0}, |
| {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, |
| {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, |
| FIELD_EXIT_QUAL}, |
| {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, |
| FIELD_EXIT_QUAL}, |
| #ifdef __x86_64__ |
| {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, |
| FIELD_EXIT_QUAL}, |
| {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, |
| FIELD_EXIT_QUAL}, |
| #endif |
| {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0}, |
| {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, |
| // Flags for Secondary Processor-Based VM-Execution Controls |
| {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, |
| {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, |
| {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, |
| {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, |
| /* LTR causes a #GP if done with a busy selector, so it is not tested. */ |
| {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, |
| {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, |
| // Instructions always trap |
| {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, |
| {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, |
| // Instructions never trap |
| {NULL}, |
| }; |
| |
| static int insn_intercept_init() |
| { |
| u32 ctrl_cpu; |
| |
| ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; |
| ctrl_cpu &= ctrl_cpu_rev[0].clr; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); |
| cr3 = read_cr3(); |
| return VMX_TEST_START; |
| } |
| |
| static void insn_intercept_main() |
| { |
| for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { |
| vmx_set_test_stage(cur_insn * 2); |
| if ((insn_table[cur_insn].type == INSN_CPU0 && |
| !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || |
| (insn_table[cur_insn].type == INSN_CPU1 && |
| !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { |
| printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", |
| insn_table[cur_insn].type - INSN_CPU0, |
| insn_table[cur_insn].name); |
| continue; |
| } |
| |
| if ((insn_table[cur_insn].type == INSN_CPU0 && |
| !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || |
| (insn_table[cur_insn].type == INSN_CPU1 && |
| !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { |
| /* skip hlt, it stalls the guest and is tested below */ |
| if (insn_table[cur_insn].insn_func != insn_hlt) |
| insn_table[cur_insn].insn_func(); |
| report("execute %s", vmx_get_test_stage() == cur_insn * 2, |
| insn_table[cur_insn].name); |
| } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) |
| printf("\tCPU_CTRL%d.CPU_%s always traps.\n", |
| insn_table[cur_insn].type - INSN_CPU0, |
| insn_table[cur_insn].name); |
| |
| vmcall(); |
| |
| insn_table[cur_insn].insn_func(); |
| report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1, |
| insn_table[cur_insn].name); |
| |
| vmx_set_test_stage(cur_insn * 2 + 1); |
| vmcall(); |
| } |
| } |
| |
| static int insn_intercept_exit_handler() |
| { |
| u64 guest_rip; |
| u32 reason; |
| ulong exit_qual; |
| u32 insn_len; |
| u32 insn_info; |
| bool pass; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| insn_info = vmcs_read(EXI_INST_INFO); |
| |
| if (reason == VMX_VMCALL) { |
| u32 val = 0; |
| |
| if (insn_table[cur_insn].type == INSN_CPU0) |
| val = vmcs_read(CPU_EXEC_CTRL0); |
| else if (insn_table[cur_insn].type == INSN_CPU1) |
| val = vmcs_read(CPU_EXEC_CTRL1); |
| |
| if (vmx_get_test_stage() & 1) |
| val &= ~insn_table[cur_insn].flag; |
| else |
| val |= insn_table[cur_insn].flag; |
| |
| if (insn_table[cur_insn].type == INSN_CPU0) |
| vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); |
| else if (insn_table[cur_insn].type == INSN_CPU1) |
| vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); |
| } else { |
| pass = (cur_insn * 2 == vmx_get_test_stage()) && |
| insn_table[cur_insn].reason == reason; |
| if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && |
| insn_table[cur_insn].exit_qual != exit_qual) |
| pass = false; |
| if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && |
| insn_table[cur_insn].insn_info != insn_info) |
| pass = false; |
| if (pass) |
| vmx_inc_test_stage(); |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| } |
| |
| |
| /* Enables EPT and sets up the identity map. */ |
| static int setup_ept(bool enable_ad) |
| { |
| unsigned long end_of_memory; |
| u32 ctrl_cpu[2]; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_EPT)) { |
| printf("\tEPT is not supported"); |
| return 1; |
| } |
| |
| |
| if (!(ept_vpid.val & EPT_CAP_UC) && |
| !(ept_vpid.val & EPT_CAP_WB)) { |
| printf("\tEPT paging-structure memory type " |
| "UC&WB are not supported\n"); |
| return 1; |
| } |
| if (ept_vpid.val & EPT_CAP_UC) |
| eptp = EPT_MEM_TYPE_UC; |
| else |
| eptp = EPT_MEM_TYPE_WB; |
| if (!(ept_vpid.val & EPT_CAP_PWL4)) { |
| printf("\tPWL4 is not supported\n"); |
| return 1; |
| } |
| ctrl_cpu[0] = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu[1] = vmcs_read(CPU_EXEC_CTRL1); |
| ctrl_cpu[0] = (ctrl_cpu[0] | CPU_SECONDARY) |
| & ctrl_cpu_rev[0].clr; |
| ctrl_cpu[1] = (ctrl_cpu[1] | CPU_EPT) |
| & ctrl_cpu_rev[1].clr; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]); |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]); |
| eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); |
| pml4 = alloc_page(); |
| memset(pml4, 0, PAGE_SIZE); |
| eptp |= virt_to_phys(pml4); |
| if (enable_ad) |
| eptp |= EPTP_AD_FLAG; |
| vmcs_write(EPTP, eptp); |
| end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); |
| if (end_of_memory < (1ul << 32)) |
| end_of_memory = (1ul << 32); |
| /* Cannot use large EPT pages if we need to track EPT |
| * accessed/dirty bits at 4K granularity. |
| */ |
| setup_ept_range(pml4, 0, end_of_memory, 0, |
| !enable_ad && ept_2m_supported(), |
| EPT_WA | EPT_RA | EPT_EA); |
| return 0; |
| } |
| |
| static void ept_enable_ad_bits(void) |
| { |
| eptp |= EPTP_AD_FLAG; |
| vmcs_write(EPTP, eptp); |
| } |
| |
| static void ept_disable_ad_bits(void) |
| { |
| eptp &= ~EPTP_AD_FLAG; |
| vmcs_write(EPTP, eptp); |
| } |
| |
| static void ept_enable_ad_bits_or_skip_test(void) |
| { |
| if (!ept_ad_bits_supported()) |
| test_skip("EPT AD bits not supported."); |
| ept_enable_ad_bits(); |
| } |
| |
| static int apic_version; |
| |
| static int ept_init_common(bool have_ad) |
| { |
| if (setup_ept(have_ad)) |
| return VMX_TEST_EXIT; |
| data_page1 = alloc_page(); |
| data_page2 = alloc_page(); |
| memset(data_page1, 0x0, PAGE_SIZE); |
| memset(data_page2, 0x0, PAGE_SIZE); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| *((u32 *)data_page2) = MAGIC_VAL_2; |
| install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, |
| EPT_RA | EPT_WA | EPT_EA); |
| |
| apic_version = apic_read(APIC_LVR); |
| return VMX_TEST_START; |
| } |
| |
| static int ept_init() |
| { |
| return ept_init_common(false); |
| } |
| |
| static void ept_common() |
| { |
| vmx_set_test_stage(0); |
| if (*((u32 *)data_page2) != MAGIC_VAL_1 || |
| *((u32 *)data_page1) != MAGIC_VAL_1) |
| report("EPT basic framework - read", 0); |
| else { |
| *((u32 *)data_page2) = MAGIC_VAL_3; |
| vmcall(); |
| if (vmx_get_test_stage() == 1) { |
| if (*((u32 *)data_page1) == MAGIC_VAL_3 && |
| *((u32 *)data_page2) == MAGIC_VAL_2) |
| report("EPT basic framework", 1); |
| else |
| report("EPT basic framework - remap", 1); |
| } |
| } |
| // Test EPT Misconfigurations |
| vmx_set_test_stage(1); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| if (vmx_get_test_stage() != 2) { |
| report("EPT misconfigurations", 0); |
| goto t1; |
| } |
| vmx_set_test_stage(2); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| report("EPT misconfigurations", vmx_get_test_stage() == 3); |
| t1: |
| // Test EPT violation |
| vmx_set_test_stage(3); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| report("EPT violation - page permission", vmx_get_test_stage() == 4); |
| // Violation caused by EPT paging structure |
| vmx_set_test_stage(4); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_2; |
| report("EPT violation - paging structure", vmx_get_test_stage() == 5); |
| } |
| |
| static void ept_main() |
| { |
| ept_common(); |
| |
| // Test EPT access to L1 MMIO |
| vmx_set_test_stage(6); |
| report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version); |
| |
| // Test invalid operand for INVEPT |
| vmcall(); |
| report("EPT - unsupported INVEPT", vmx_get_test_stage() == 7); |
| } |
| |
| bool invept_test(int type, u64 eptp) |
| { |
| bool ret, supported; |
| |
| supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); |
| ret = invept(type, eptp); |
| |
| if (ret == !supported) |
| return false; |
| |
| if (!supported) |
| printf("WARNING: unsupported invept passed!\n"); |
| else |
| printf("WARNING: invept failed!\n"); |
| |
| return true; |
| } |
| |
| static int pml_exit_handler(void) |
| { |
| u16 index, count; |
| ulong reason = vmcs_read(EXI_REASON) & 0xff; |
| u64 *pmlbuf = pml_log; |
| u64 guest_rip = vmcs_read(GUEST_RIP);; |
| u64 guest_cr3 = vmcs_read(GUEST_CR3); |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| |
| switch (reason) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| index = vmcs_read(GUEST_PML_INDEX); |
| for (count = index + 1; count < PML_INDEX; count++) { |
| if (pmlbuf[count] == (u64)data_page2) { |
| vmx_inc_test_stage(); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); |
| break; |
| } |
| } |
| break; |
| case 1: |
| index = vmcs_read(GUEST_PML_INDEX); |
| /* Keep clearing the dirty bit till a overflow */ |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); |
| break; |
| default: |
| report("unexpected stage, %d.", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_PML_FULL: |
| vmx_inc_test_stage(); |
| vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); |
| return VMX_TEST_RESUME; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int ept_exit_handler_common(bool have_ad) |
| { |
| u64 guest_rip; |
| u64 guest_cr3; |
| ulong reason; |
| u32 insn_len; |
| u32 exit_qual; |
| static unsigned long data_page1_pte, data_page1_pte_pte; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| guest_cr3 = vmcs_read(GUEST_CR3); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| insn_len = vmcs_read(EXI_INST_LEN); |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| switch (reason) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| check_ept_ad(pml4, guest_cr3, |
| (unsigned long)data_page1, |
| have_ad ? EPT_ACCESS_FLAG : 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| check_ept_ad(pml4, guest_cr3, |
| (unsigned long)data_page2, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); |
| if (have_ad) |
| ept_sync(INVEPT_SINGLE, eptp);; |
| if (*((u32 *)data_page1) == MAGIC_VAL_3 && |
| *((u32 *)data_page2) == MAGIC_VAL_2) { |
| vmx_inc_test_stage(); |
| install_ept(pml4, (unsigned long)data_page2, |
| (unsigned long)data_page2, |
| EPT_RA | EPT_WA | EPT_EA); |
| } else |
| report("EPT basic framework - write", 0); |
| break; |
| case 1: |
| install_ept(pml4, (unsigned long)data_page1, |
| (unsigned long)data_page1, EPT_WA); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| case 2: |
| install_ept(pml4, (unsigned long)data_page1, |
| (unsigned long)data_page1, |
| EPT_RA | EPT_WA | EPT_EA | |
| (2 << EPT_MEM_TYPE_SHIFT)); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| case 3: |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, |
| 1, &data_page1_pte)); |
| set_ept_pte(pml4, (unsigned long)data_page1, |
| 1, data_page1_pte & ~EPT_PRESENT); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| case 4: |
| TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, |
| 2, &data_page1_pte)); |
| data_page1_pte &= PAGE_MASK; |
| TEST_ASSERT(get_ept_pte(pml4, data_page1_pte, |
| 2, &data_page1_pte_pte)); |
| set_ept_pte(pml4, data_page1_pte, 2, |
| data_page1_pte_pte & ~EPT_PRESENT); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| case 6: |
| if (!invept_test(0, eptp)) |
| vmx_inc_test_stage(); |
| break; |
| // Should not reach here |
| default: |
| report("ERROR - unexpected stage, %d.", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_EPT_MISCONFIG: |
| switch (vmx_get_test_stage()) { |
| case 1: |
| case 2: |
| vmx_inc_test_stage(); |
| install_ept(pml4, (unsigned long)data_page1, |
| (unsigned long)data_page1, |
| EPT_RA | EPT_WA | EPT_EA); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| // Should not reach here |
| default: |
| report("ERROR - unexpected stage, %d.", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| return VMX_TEST_RESUME; |
| case VMX_EPT_VIOLATION: |
| switch(vmx_get_test_stage()) { |
| case 3: |
| check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | |
| EPT_VLT_PADDR)) |
| vmx_inc_test_stage(); |
| set_ept_pte(pml4, (unsigned long)data_page1, |
| 1, data_page1_pte | (EPT_PRESENT)); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| case 4: |
| check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| if (exit_qual == (EPT_VLT_RD | |
| (have_ad ? EPT_VLT_WR : 0) | |
| EPT_VLT_LADDR_VLD)) |
| vmx_inc_test_stage(); |
| set_ept_pte(pml4, data_page1_pte, 2, |
| data_page1_pte_pte | (EPT_PRESENT)); |
| ept_sync(INVEPT_SINGLE, eptp); |
| break; |
| default: |
| // Should not reach here |
| report("ERROR : unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| return VMX_TEST_RESUME; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int ept_exit_handler() |
| { |
| return ept_exit_handler_common(false); |
| } |
| |
| static int eptad_init() |
| { |
| int r = ept_init_common(true); |
| |
| if (r == VMX_TEST_EXIT) |
| return r; |
| |
| if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) { |
| printf("\tEPT A/D bits are not supported"); |
| return VMX_TEST_EXIT; |
| } |
| |
| return r; |
| } |
| |
| static int pml_init() |
| { |
| u32 ctrl_cpu; |
| int r = eptad_init(); |
| |
| if (r == VMX_TEST_EXIT) |
| return r; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_PML)) { |
| printf("\tPML is not supported"); |
| return VMX_TEST_EXIT; |
| } |
| |
| pml_log = alloc_page(); |
| memset(pml_log, 0x0, PAGE_SIZE); |
| vmcs_write(PMLADDR, (u64)pml_log); |
| vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); |
| |
| ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); |
| |
| return VMX_TEST_START; |
| } |
| |
| static void pml_main() |
| { |
| int count = 0; |
| |
| vmx_set_test_stage(0); |
| *((u32 *)data_page2) = 0x1; |
| vmcall(); |
| report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1); |
| |
| while (vmx_get_test_stage() == 1) { |
| vmcall(); |
| *((u32 *)data_page2) = 0x1; |
| if (count++ > PML_INDEX) |
| break; |
| } |
| report("PML Full Event", vmx_get_test_stage() == 2); |
| } |
| |
| static void eptad_main() |
| { |
| ept_common(); |
| } |
| |
| static int eptad_exit_handler() |
| { |
| return ept_exit_handler_common(true); |
| } |
| |
| bool invvpid_test(int type, u16 vpid) |
| { |
| bool ret, supported; |
| |
| supported = ept_vpid.val & |
| (VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type); |
| ret = invvpid(type, vpid, 0); |
| |
| if (ret == !supported) |
| return false; |
| |
| if (!supported) |
| printf("WARNING: unsupported invvpid passed!\n"); |
| else |
| printf("WARNING: invvpid failed!\n"); |
| |
| return true; |
| } |
| |
| static int vpid_init() |
| { |
| u32 ctrl_cpu1; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_VPID)) { |
| printf("\tVPID is not supported"); |
| return VMX_TEST_EXIT; |
| } |
| |
| ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); |
| ctrl_cpu1 |= CPU_VPID; |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); |
| return VMX_TEST_START; |
| } |
| |
| static void vpid_main() |
| { |
| vmx_set_test_stage(0); |
| vmcall(); |
| report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1); |
| vmx_set_test_stage(2); |
| vmcall(); |
| report("INVVPID SINGLE", vmx_get_test_stage() == 3); |
| vmx_set_test_stage(4); |
| vmcall(); |
| report("INVVPID ALL", vmx_get_test_stage() == 5); |
| } |
| |
| static int vpid_exit_handler() |
| { |
| u64 guest_rip; |
| ulong reason; |
| u32 insn_len; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| reason = vmcs_read(EXI_REASON) & 0xff; |
| insn_len = vmcs_read(EXI_INST_LEN); |
| |
| switch (reason) { |
| case VMX_VMCALL: |
| switch(vmx_get_test_stage()) { |
| case 0: |
| if (!invvpid_test(INVVPID_ADDR, 1)) |
| vmx_inc_test_stage(); |
| break; |
| case 2: |
| if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1)) |
| vmx_inc_test_stage(); |
| break; |
| case 4: |
| if (!invvpid_test(INVVPID_ALL, 1)) |
| vmx_inc_test_stage(); |
| break; |
| default: |
| report("ERROR: unexpected stage, %d", false, |
| vmx_get_test_stage()); |
| print_vmexit_info(); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| #define TIMER_VECTOR 222 |
| |
| static volatile bool timer_fired; |
| |
| static void timer_isr(isr_regs_t *regs) |
| { |
| timer_fired = true; |
| apic_write(APIC_EOI, 0); |
| } |
| |
| static int interrupt_init(struct vmcs *vmcs) |
| { |
| msr_bmp_init(); |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| handle_irq(TIMER_VECTOR, timer_isr); |
| return VMX_TEST_START; |
| } |
| |
| static void interrupt_main(void) |
| { |
| long long start, loops; |
| |
| vmx_set_test_stage(0); |
| |
| apic_write(APIC_LVTT, TIMER_VECTOR); |
| irq_enable(); |
| |
| apic_write(APIC_TMICT, 1); |
| for (loops = 0; loops < 10000000 && !timer_fired; loops++) |
| asm volatile ("nop"); |
| report("direct interrupt while running guest", timer_fired); |
| |
| apic_write(APIC_TMICT, 0); |
| irq_disable(); |
| vmcall(); |
| timer_fired = false; |
| apic_write(APIC_TMICT, 1); |
| for (loops = 0; loops < 10000000 && !timer_fired; loops++) |
| asm volatile ("nop"); |
| report("intercepted interrupt while running guest", timer_fired); |
| |
| irq_enable(); |
| apic_write(APIC_TMICT, 0); |
| irq_disable(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| asm volatile ("sti; hlt"); |
| |
| report("direct interrupt + hlt", |
| rdtsc() - start > 1000000 && timer_fired); |
| |
| apic_write(APIC_TMICT, 0); |
| irq_disable(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| asm volatile ("sti; hlt"); |
| |
| report("intercepted interrupt + hlt", |
| rdtsc() - start > 10000 && timer_fired); |
| |
| apic_write(APIC_TMICT, 0); |
| irq_disable(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| irq_enable(); |
| asm volatile ("nop"); |
| vmcall(); |
| |
| report("direct interrupt + activity state hlt", |
| rdtsc() - start > 10000 && timer_fired); |
| |
| apic_write(APIC_TMICT, 0); |
| irq_disable(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| irq_enable(); |
| asm volatile ("nop"); |
| vmcall(); |
| |
| report("intercepted interrupt + activity state hlt", |
| rdtsc() - start > 10000 && timer_fired); |
| |
| apic_write(APIC_TMICT, 0); |
| irq_disable(); |
| vmx_set_test_stage(7); |
| vmcall(); |
| timer_fired = false; |
| apic_write(APIC_TMICT, 1); |
| for (loops = 0; loops < 10000000 && !timer_fired; loops++) |
| asm volatile ("nop"); |
| report("running a guest with interrupt acknowledgement set", timer_fired); |
| } |
| |
| static int interrupt_exit_handler(void) |
| { |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| ulong reason = vmcs_read(EXI_REASON) & 0xff; |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| |
| switch (reason) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| case 2: |
| case 5: |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_EXTINT); |
| break; |
| case 7: |
| vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_EXTINT); |
| break; |
| case 1: |
| case 3: |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| break; |
| case 4: |
| case 6: |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| break; |
| } |
| vmx_inc_test_stage(); |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_EXTINT: |
| if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { |
| int vector = vmcs_read(EXI_INTR_INFO) & 0xff; |
| handle_external_interrupt(vector); |
| } else { |
| irq_enable(); |
| asm volatile ("nop"); |
| irq_disable(); |
| } |
| if (vmx_get_test_stage() >= 2) |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| return VMX_TEST_RESUME; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int dbgctls_init(struct vmcs *vmcs) |
| { |
| u64 dr7 = 0x402; |
| u64 zero = 0; |
| |
| msr_bmp_init(); |
| asm volatile( |
| "mov %0,%%dr0\n\t" |
| "mov %0,%%dr1\n\t" |
| "mov %0,%%dr2\n\t" |
| "mov %1,%%dr7\n\t" |
| : : "r" (zero), "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); |
| vmcs_write(GUEST_DR7, 0x404); |
| vmcs_write(GUEST_DEBUGCTL, 0x2); |
| |
| vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); |
| vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); |
| |
| return VMX_TEST_START; |
| } |
| |
| static void dbgctls_main(void) |
| { |
| u64 dr7, debugctl; |
| |
| asm volatile("mov %%dr7,%0" : "=r" (dr7)); |
| debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); |
| /* Commented out: KVM does not support DEBUGCTL so far */ |
| (void)debugctl; |
| report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */); |
| |
| dr7 = 0x408; |
| asm volatile("mov %0,%%dr7" : : "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); |
| |
| vmx_set_test_stage(0); |
| vmcall(); |
| report("Save debug controls", vmx_get_test_stage() == 1); |
| |
| if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || |
| ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { |
| printf("\tDebug controls are always loaded/saved\n"); |
| return; |
| } |
| vmx_set_test_stage(2); |
| vmcall(); |
| |
| asm volatile("mov %%dr7,%0" : "=r" (dr7)); |
| debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); |
| /* Commented out: KVM does not support DEBUGCTL so far */ |
| (void)debugctl; |
| report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */); |
| |
| dr7 = 0x408; |
| asm volatile("mov %0,%%dr7" : : "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); |
| |
| vmx_set_test_stage(3); |
| vmcall(); |
| report("Don't save debug controls", vmx_get_test_stage() == 4); |
| } |
| |
| static int dbgctls_exit_handler(void) |
| { |
| unsigned int reason = vmcs_read(EXI_REASON) & 0xff; |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u64 dr7, debugctl; |
| |
| asm volatile("mov %%dr7,%0" : "=r" (dr7)); |
| debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); |
| |
| switch (reason) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| if (dr7 == 0x400 && debugctl == 0 && |
| vmcs_read(GUEST_DR7) == 0x408 /* && |
| Commented out: KVM does not support DEBUGCTL so far |
| vmcs_read(GUEST_DEBUGCTL) == 0x3 */) |
| vmx_inc_test_stage(); |
| break; |
| case 2: |
| dr7 = 0x402; |
| asm volatile("mov %0,%%dr7" : : "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); |
| vmcs_write(GUEST_DR7, 0x404); |
| vmcs_write(GUEST_DEBUGCTL, 0x2); |
| |
| vmcs_write(ENT_CONTROLS, |
| vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); |
| vmcs_write(EXI_CONTROLS, |
| vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); |
| break; |
| case 3: |
| if (dr7 == 0x400 && debugctl == 0 && |
| vmcs_read(GUEST_DR7) == 0x404 /* && |
| Commented out: KVM does not support DEBUGCTL so far |
| vmcs_read(GUEST_DEBUGCTL) == 0x2 */) |
| vmx_inc_test_stage(); |
| break; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| report("Unknown exit reason, %d", false, reason); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| struct vmx_msr_entry { |
| u32 index; |
| u32 reserved; |
| u64 value; |
| } __attribute__((packed)); |
| |
| #define MSR_MAGIC 0x31415926 |
| struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; |
| |
| static int msr_switch_init(struct vmcs *vmcs) |
| { |
| msr_bmp_init(); |
| exit_msr_store = alloc_page(); |
| exit_msr_load = alloc_page(); |
| entry_msr_load = alloc_page(); |
| memset(exit_msr_store, 0, PAGE_SIZE); |
| memset(exit_msr_load, 0, PAGE_SIZE); |
| memset(entry_msr_load, 0, PAGE_SIZE); |
| entry_msr_load[0].index = MSR_KERNEL_GS_BASE; |
| entry_msr_load[0].value = MSR_MAGIC; |
| |
| vmx_set_test_stage(1); |
| vmcs_write(ENT_MSR_LD_CNT, 1); |
| vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); |
| vmcs_write(EXI_MSR_ST_CNT, 1); |
| vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); |
| vmcs_write(EXI_MSR_LD_CNT, 1); |
| vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); |
| return VMX_TEST_START; |
| } |
| |
| static void msr_switch_main() |
| { |
| if (vmx_get_test_stage() == 1) { |
| report("VM entry MSR load", |
| rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC); |
| vmx_set_test_stage(2); |
| wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); |
| exit_msr_store[0].index = MSR_KERNEL_GS_BASE; |
| exit_msr_load[0].index = MSR_KERNEL_GS_BASE; |
| exit_msr_load[0].value = MSR_MAGIC + 2; |
| } |
| vmcall(); |
| } |
| |
| static int msr_switch_exit_handler() |
| { |
| ulong reason; |
| |
| reason = vmcs_read(EXI_REASON); |
| if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) { |
| report("VM exit MSR store", |
| exit_msr_store[0].value == MSR_MAGIC + 1); |
| report("VM exit MSR load", |
| rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2); |
| vmx_set_test_stage(3); |
| entry_msr_load[0].index = MSR_FS_BASE; |
| return VMX_TEST_RESUME; |
| } |
| printf("ERROR %s: unexpected stage=%u or reason=%lu\n", |
| __func__, vmx_get_test_stage(), reason); |
| return VMX_TEST_EXIT; |
| } |
| |
| static int msr_switch_entry_failure(struct vmentry_failure *failure) |
| { |
| ulong reason; |
| |
| if (failure->early) { |
| printf("ERROR %s: early exit\n", __func__); |
| return VMX_TEST_EXIT; |
| } |
| |
| reason = vmcs_read(EXI_REASON); |
| if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) && |
| vmx_get_test_stage() == 3) { |
| report("VM entry MSR load: try to load FS_BASE", |
| vmcs_read(EXI_QUALIFICATION) == 1); |
| return VMX_TEST_VMEXIT; |
| } |
| printf("ERROR %s: unexpected stage=%u or reason=%lu\n", |
| __func__, vmx_get_test_stage(), reason); |
| return VMX_TEST_EXIT; |
| } |
| |
| static int vmmcall_init(struct vmcs *vmcs ) |
| { |
| vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); |
| return VMX_TEST_START; |
| } |
| |
| static void vmmcall_main(void) |
| { |
| asm volatile( |
| "mov $0xABCD, %%rax\n\t" |
| "vmmcall\n\t" |
| ::: "rax"); |
| |
| report("VMMCALL", 0); |
| } |
| |
| static int vmmcall_exit_handler() |
| { |
| ulong reason; |
| |
| reason = vmcs_read(EXI_REASON); |
| switch (reason) { |
| case VMX_VMCALL: |
| printf("here\n"); |
| report("VMMCALL triggers #UD", 0); |
| break; |
| case VMX_EXC_NMI: |
| report("VMMCALL triggers #UD", |
| (vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR); |
| break; |
| default: |
| report("Unknown exit reason, %ld", false, reason); |
| print_vmexit_info(); |
| } |
| |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int disable_rdtscp_init(struct vmcs *vmcs) |
| { |
| u32 ctrl_cpu1; |
| |
| if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { |
| ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); |
| ctrl_cpu1 &= ~CPU_RDTSCP; |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); |
| } |
| |
| return VMX_TEST_START; |
| } |
| |
| static void disable_rdtscp_ud_handler(struct ex_regs *regs) |
| { |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report("RDTSCP triggers #UD", true); |
| vmx_inc_test_stage(); |
| regs->rip += 3; |
| break; |
| case 2: |
| report("RDPID triggers #UD", true); |
| vmx_inc_test_stage(); |
| regs->rip += 4; |
| break; |
| } |
| return; |
| |
| } |
| |
| static void disable_rdtscp_main(void) |
| { |
| /* Test that #UD is properly injected in L2. */ |
| handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); |
| |
| vmx_set_test_stage(0); |
| asm volatile("rdtscp" : : : "eax", "ecx", "edx"); |
| vmcall(); |
| asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); |
| vmcall(); |
| } |
| |
| static int disable_rdtscp_exit_handler(void) |
| { |
| unsigned int reason = vmcs_read(EXI_REASON) & 0xff; |
| |
| switch (reason) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report("RDTSCP triggers #UD", false); |
| vmx_inc_test_stage(); |
| /* fallthrough */ |
| case 1: |
| vmx_inc_test_stage(); |
| vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); |
| return VMX_TEST_RESUME; |
| case 2: |
| report("RDPID triggers #UD", false); |
| break; |
| } |
| break; |
| |
| default: |
| report("Unknown exit reason, %d", false, reason); |
| print_vmexit_info(); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| int int3_init() |
| { |
| vmcs_write(EXC_BITMAP, ~0u); |
| return VMX_TEST_START; |
| } |
| |
| void int3_guest_main() |
| { |
| asm volatile ("int3"); |
| } |
| |
| int int3_exit_handler() |
| { |
| u32 reason = vmcs_read(EXI_REASON); |
| u32 intr_info = vmcs_read(EXI_INTR_INFO); |
| |
| report("L1 intercepts #BP", reason == VMX_EXC_NMI && |
| (intr_info & INTR_INFO_VALID_MASK) && |
| (intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR && |
| ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> |
| INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION); |
| |
| return VMX_TEST_VMEXIT; |
| } |
| |
| int into_init() |
| { |
| vmcs_write(EXC_BITMAP, ~0u); |
| return VMX_TEST_START; |
| } |
| |
| void into_guest_main() |
| { |
| struct far_pointer32 fp = { |
| .offset = (uintptr_t)&&into, |
| .selector = KERNEL_CS32, |
| }; |
| register uintptr_t rsp asm("rsp"); |
| |
| if (fp.offset != (uintptr_t)&&into) { |
| printf("Code address too high.\n"); |
| return; |
| } |
| if ((u32)rsp != rsp) { |
| printf("Stack address too high.\n"); |
| return; |
| } |
| |
| asm goto ("lcall *%0" : : "m" (fp) : "rax" : into); |
| return; |
| into: |
| asm volatile (".code32;" |
| "movl $0x7fffffff, %eax;" |
| "addl %eax, %eax;" |
| "into;" |
| "lret;" |
| ".code64"); |
| __builtin_unreachable(); |
| } |
| |
| int into_exit_handler() |
| { |
| u32 reason = vmcs_read(EXI_REASON); |
| u32 intr_info = vmcs_read(EXI_INTR_INFO); |
| |
| report("L1 intercepts #OF", reason == VMX_EXC_NMI && |
| (intr_info & INTR_INFO_VALID_MASK) && |
| (intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR && |
| ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> |
| INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION); |
| |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static void exit_monitor_from_l2_main(void) |
| { |
| printf("Calling exit(0) from l2...\n"); |
| exit(0); |
| } |
| |
| static int exit_monitor_from_l2_handler(void) |
| { |
| report("The guest should have killed the VMM", false); |
| return VMX_TEST_EXIT; |
| } |
| |
| static void assert_exit_reason(u64 expected) |
| { |
| u64 actual = vmcs_read(EXI_REASON); |
| |
| TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", |
| exit_reason_description(expected), |
| exit_reason_description(actual)); |
| } |
| |
| static void skip_exit_vmcall() |
| { |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| |
| assert_exit_reason(VMX_VMCALL); |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| } |
| |
| static void v2_null_test_guest(void) |
| { |
| } |
| |
| static void v2_null_test(void) |
| { |
| test_set_guest(v2_null_test_guest); |
| enter_guest(); |
| report(__func__, 1); |
| } |
| |
| static void v2_multiple_entries_test_guest(void) |
| { |
| vmx_set_test_stage(1); |
| vmcall(); |
| vmx_set_test_stage(2); |
| } |
| |
| static void v2_multiple_entries_test(void) |
| { |
| test_set_guest(v2_multiple_entries_test_guest); |
| enter_guest(); |
| TEST_ASSERT_EQ(vmx_get_test_stage(), 1); |
| skip_exit_vmcall(); |
| enter_guest(); |
| TEST_ASSERT_EQ(vmx_get_test_stage(), 2); |
| report(__func__, 1); |
| } |
| |
| static int fixture_test_data = 1; |
| |
| static void fixture_test_teardown(void *data) |
| { |
| *((int *) data) = 1; |
| } |
| |
| static void fixture_test_guest(void) |
| { |
| fixture_test_data++; |
| } |
| |
| |
| static void fixture_test_setup(void) |
| { |
| TEST_ASSERT_EQ_MSG(1, fixture_test_data, |
| "fixture_test_teardown didn't run?!"); |
| fixture_test_data = 2; |
| test_add_teardown(fixture_test_teardown, &fixture_test_data); |
| test_set_guest(fixture_test_guest); |
| } |
| |
| static void fixture_test_case1(void) |
| { |
| fixture_test_setup(); |
| TEST_ASSERT_EQ(2, fixture_test_data); |
| enter_guest(); |
| TEST_ASSERT_EQ(3, fixture_test_data); |
| report(__func__, 1); |
| } |
| |
| static void fixture_test_case2(void) |
| { |
| fixture_test_setup(); |
| TEST_ASSERT_EQ(2, fixture_test_data); |
| enter_guest(); |
| TEST_ASSERT_EQ(3, fixture_test_data); |
| report(__func__, 1); |
| } |
| |
| enum ept_access_op { |
| OP_READ, |
| OP_WRITE, |
| OP_EXEC, |
| OP_FLUSH_TLB, |
| OP_EXIT, |
| }; |
| |
| static struct ept_access_test_data { |
| unsigned long gpa; |
| unsigned long *gva; |
| unsigned long hpa; |
| unsigned long *hva; |
| enum ept_access_op op; |
| } ept_access_test_data; |
| |
| extern unsigned char ret42_start; |
| extern unsigned char ret42_end; |
| |
| /* Returns 42. */ |
| asm( |
| ".align 64\n" |
| "ret42_start:\n" |
| "mov $42, %eax\n" |
| "ret\n" |
| "ret42_end:\n" |
| ); |
| |
| static void |
| diagnose_ept_violation_qual(u64 expected, u64 actual) |
| { |
| |
| #define DIAGNOSE(flag) \ |
| do { \ |
| if ((expected & flag) != (actual & flag)) \ |
| printf(#flag " %sexpected\n", \ |
| (expected & flag) ? "" : "un"); \ |
| } while (0) |
| |
| DIAGNOSE(EPT_VLT_RD); |
| DIAGNOSE(EPT_VLT_WR); |
| DIAGNOSE(EPT_VLT_FETCH); |
| DIAGNOSE(EPT_VLT_PERM_RD); |
| DIAGNOSE(EPT_VLT_PERM_WR); |
| DIAGNOSE(EPT_VLT_PERM_EX); |
| DIAGNOSE(EPT_VLT_LADDR_VLD); |
| DIAGNOSE(EPT_VLT_PADDR); |
| |
| #undef DIAGNOSE |
| } |
| |
| static void do_ept_access_op(enum ept_access_op op) |
| { |
| ept_access_test_data.op = op; |
| enter_guest(); |
| } |
| |
| /* |
| * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only |
| * needed by tests that modify guest PTEs. |
| */ |
| static void ept_access_test_guest_flush_tlb(void) |
| { |
| do_ept_access_op(OP_FLUSH_TLB); |
| skip_exit_vmcall(); |
| } |
| |
| /* |
| * Modifies the EPT entry at @level in the mapping of @gpa. First clears the |
| * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into |
| * a huge page. |
| */ |
| static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, |
| unsigned long clear, unsigned long set) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| unsigned long pte; |
| |
| /* Screw with the mapping at the requested level. */ |
| TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); |
| pte = orig_pte; |
| if (mkhuge) |
| pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; |
| else |
| pte = orig_pte; |
| pte = (pte & ~clear) | set; |
| set_ept_pte(pml4, gpa, level, pte); |
| ept_sync(INVEPT_SINGLE, eptp); |
| |
| return orig_pte; |
| } |
| |
| static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) |
| { |
| set_ept_pte(pml4, gpa, level, orig_pte); |
| } |
| |
| static void do_ept_violation(bool leaf, enum ept_access_op op, |
| u64 expected_qual, u64 expected_paddr) |
| { |
| u64 qual; |
| |
| /* Try the access and observe the violation. */ |
| do_ept_access_op(op); |
| |
| assert_exit_reason(VMX_EPT_VIOLATION); |
| |
| qual = vmcs_read(EXI_QUALIFICATION); |
| |
| diagnose_ept_violation_qual(expected_qual, qual); |
| TEST_EXPECT_EQ(expected_qual, qual); |
| |
| #if 0 |
| /* Disable for now otherwise every test will fail */ |
| TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), |
| (unsigned long) ( |
| op == OP_EXEC ? data->gva + 1 : data->gva)); |
| #endif |
| /* |
| * TODO: tests that probe expected_paddr in pages other than the one at |
| * the beginning of the 1g region. |
| */ |
| TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); |
| } |
| |
| static void |
| ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, |
| unsigned long set, enum ept_access_op op, |
| u64 expected_qual) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| |
| orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); |
| |
| do_ept_violation(level == 1 || mkhuge, op, expected_qual, |
| op == OP_EXEC ? data->gpa + sizeof(unsigned long) : |
| data->gpa); |
| |
| /* Fix the violation and resume the op loop. */ |
| ept_untwiddle(data->gpa, level, orig_pte); |
| enter_guest(); |
| skip_exit_vmcall(); |
| } |
| |
| static void |
| ept_violation_at_level(int level, unsigned long clear, unsigned long set, |
| enum ept_access_op op, u64 expected_qual) |
| { |
| ept_violation_at_level_mkhuge(false, level, clear, set, op, |
| expected_qual); |
| if (ept_huge_pages_supported(level)) |
| ept_violation_at_level_mkhuge(true, level, clear, set, op, |
| expected_qual); |
| } |
| |
| static void ept_violation(unsigned long clear, unsigned long set, |
| enum ept_access_op op, u64 expected_qual) |
| { |
| ept_violation_at_level(1, clear, set, op, expected_qual); |
| ept_violation_at_level(2, clear, set, op, expected_qual); |
| ept_violation_at_level(3, clear, set, op, expected_qual); |
| ept_violation_at_level(4, clear, set, op, expected_qual); |
| } |
| |
| static void ept_access_violation(unsigned long access, enum ept_access_op op, |
| u64 expected_qual) |
| { |
| ept_violation(EPT_PRESENT, access, op, |
| expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| /* |
| * For translations that don't involve a GVA, that is physical address (paddr) |
| * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical |
| * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain |
| * translations don't involve GVAs, such as when the hardware does the guest |
| * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU |
| * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides |
| * on isn't present in the EPT, then the EPT violation will be for GPA_2 and |
| * the EPT_VLT_PADDR bit will be clear in the exit qualification. |
| * |
| * Note that paddr violations can also be triggered by loading PAE page tables |
| * with wonky addresses. We don't test that yet. |
| * |
| * This function modifies the EPT entry that maps the GPA that the guest page |
| * table entry mapping ept_access_data.gva resides on. |
| * |
| * @ept_access EPT permissions to set. Other permissions are cleared. |
| * |
| * @pte_ad Set the A/D bits on the guest PTE accordingly. |
| * |
| * @op Guest operation to perform with ept_access_data.gva. |
| * |
| * @expect_violation |
| * Is a violation expected during the paddr access? |
| * |
| * @expected_qual Expected qualification for the EPT violation. |
| * EPT_VLT_PADDR should be clear. |
| */ |
| static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, |
| enum ept_access_op op, bool expect_violation, |
| u64 expected_qual) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long *ptep; |
| unsigned long gpa; |
| unsigned long orig_epte; |
| |
| /* Modify the guest PTE mapping data->gva according to @pte_ad. */ |
| ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); |
| TEST_ASSERT(ptep); |
| TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); |
| *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; |
| ept_access_test_guest_flush_tlb(); |
| |
| /* |
| * Now modify the access bits on the EPT entry for the GPA that the |
| * guest PTE resides on. Note that by modifying a single EPT entry, |
| * we're potentially affecting 512 guest PTEs. However, we've carefully |
| * constructed our test such that those other 511 PTEs aren't used by |
| * the guest: data->gva is at the beginning of a 1G huge page, thus the |
| * PTE we're modifying is at the beginning of a 4K page and the |
| * following 511 entires are also under our control (and not touched by |
| * the guest). |
| */ |
| gpa = virt_to_phys(ptep); |
| TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); |
| /* |
| * Make sure the guest page table page is mapped with a 4K EPT entry, |
| * otherwise our level=1 twiddling below will fail. We use the |
| * identity map (gpa = gpa) since page tables are shared with the host. |
| */ |
| install_ept(pml4, gpa, gpa, EPT_PRESENT); |
| orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, |
| /*clear=*/EPT_PRESENT, /*set=*/ept_access); |
| |
| if (expect_violation) { |
| do_ept_violation(/*leaf=*/true, op, |
| expected_qual | EPT_VLT_LADDR_VLD, gpa); |
| ept_untwiddle(gpa, /*level=*/1, orig_epte); |
| do_ept_access_op(op); |
| } else { |
| do_ept_access_op(op); |
| ept_untwiddle(gpa, /*level=*/1, orig_epte); |
| } |
| |
| TEST_ASSERT(*ptep & PT_ACCESSED_MASK); |
| if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) |
| TEST_ASSERT(*ptep & PT_DIRTY_MASK); |
| |
| skip_exit_vmcall(); |
| } |
| |
| static void ept_access_allowed_paddr(unsigned long ept_access, |
| unsigned long pte_ad, |
| enum ept_access_op op) |
| { |
| ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, |
| /*expected_qual=*/-1); |
| } |
| |
| static void ept_access_violation_paddr(unsigned long ept_access, |
| unsigned long pte_ad, |
| enum ept_access_op op, |
| u64 expected_qual) |
| { |
| ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, |
| expected_qual); |
| } |
| |
| |
| static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, |
| unsigned long clear, |
| unsigned long set, |
| enum ept_access_op op) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| |
| orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); |
| |
| /* No violation. Should proceed to vmcall. */ |
| do_ept_access_op(op); |
| skip_exit_vmcall(); |
| |
| ept_untwiddle(data->gpa, level, orig_pte); |
| } |
| |
| static void ept_allowed_at_level(int level, unsigned long clear, |
| unsigned long set, enum ept_access_op op) |
| { |
| ept_allowed_at_level_mkhuge(false, level, clear, set, op); |
| if (ept_huge_pages_supported(level)) |
| ept_allowed_at_level_mkhuge(true, level, clear, set, op); |
| } |
| |
| static void ept_allowed(unsigned long clear, unsigned long set, |
| enum ept_access_op op) |
| { |
| ept_allowed_at_level(1, clear, set, op); |
| ept_allowed_at_level(2, clear, set, op); |
| ept_allowed_at_level(3, clear, set, op); |
| ept_allowed_at_level(4, clear, set, op); |
| } |
| |
| static void ept_ignored_bit(int bit) |
| { |
| /* Set the bit. */ |
| ept_allowed(0, 1ul << bit, OP_READ); |
| ept_allowed(0, 1ul << bit, OP_WRITE); |
| ept_allowed(0, 1ul << bit, OP_EXEC); |
| |
| /* Clear the bit. */ |
| ept_allowed(1ul << bit, 0, OP_READ); |
| ept_allowed(1ul << bit, 0, OP_WRITE); |
| ept_allowed(1ul << bit, 0, OP_EXEC); |
| } |
| |
| static void ept_access_allowed(unsigned long access, enum ept_access_op op) |
| { |
| ept_allowed(EPT_PRESENT, access, op); |
| } |
| |
| |
| static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, |
| unsigned long clear, |
| unsigned long set, |
| enum ept_access_op op) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| |
| orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); |
| |
| do_ept_access_op(op); |
| assert_exit_reason(VMX_EPT_MISCONFIG); |
| |
| /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ |
| #if 0 |
| /* broken: */ |
| TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); |
| #endif |
| #if 0 |
| /* |
| * broken: |
| * According to description of exit qual for EPT violation, |
| * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. |
| * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought |
| * to be set for msiconfig. |
| */ |
| TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), |
| (unsigned long) ( |
| op == OP_EXEC ? data->gva + 1 : data->gva)); |
| #endif |
| |
| /* Fix the violation and resume the op loop. */ |
| ept_untwiddle(data->gpa, level, orig_pte); |
| enter_guest(); |
| skip_exit_vmcall(); |
| } |
| |
| static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, |
| unsigned long clear, |
| unsigned long set) |
| { |
| /* The op shouldn't matter (read, write, exec), so try them all! */ |
| ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); |
| ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); |
| ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); |
| } |
| |
| static void ept_misconfig_at_level(int level, unsigned long clear, |
| unsigned long set) |
| { |
| ept_misconfig_at_level_mkhuge(false, level, clear, set); |
| if (ept_huge_pages_supported(level)) |
| ept_misconfig_at_level_mkhuge(true, level, clear, set); |
| } |
| |
| static void ept_misconfig(unsigned long clear, unsigned long set) |
| { |
| ept_misconfig_at_level(1, clear, set); |
| ept_misconfig_at_level(2, clear, set); |
| ept_misconfig_at_level(3, clear, set); |
| ept_misconfig_at_level(4, clear, set); |
| } |
| |
| static void ept_access_misconfig(unsigned long access) |
| { |
| ept_misconfig(EPT_PRESENT, access); |
| } |
| |
| static void ept_reserved_bit_at_level_nohuge(int level, int bit) |
| { |
| /* Setting the bit causes a misconfig. */ |
| ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); |
| |
| /* Making the entry non-present turns reserved bits into ignored. */ |
| ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, |
| EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| static void ept_reserved_bit_at_level_huge(int level, int bit) |
| { |
| /* Setting the bit causes a misconfig. */ |
| ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); |
| |
| /* Making the entry non-present turns reserved bits into ignored. */ |
| ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, |
| EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| static void ept_reserved_bit_at_level(int level, int bit) |
| { |
| /* Setting the bit causes a misconfig. */ |
| ept_misconfig_at_level(level, 0, 1ul << bit); |
| |
| /* Making the entry non-present turns reserved bits into ignored. */ |
| ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, |
| EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| static void ept_reserved_bit(int bit) |
| { |
| ept_reserved_bit_at_level(1, bit); |
| ept_reserved_bit_at_level(2, bit); |
| ept_reserved_bit_at_level(3, bit); |
| ept_reserved_bit_at_level(4, bit); |
| } |
| |
| #define PAGE_2M_ORDER 9 |
| #define PAGE_1G_ORDER 18 |
| |
| static void *get_1g_page(void) |
| { |
| static void *alloc; |
| |
| if (!alloc) |
| alloc = alloc_pages(PAGE_1G_ORDER); |
| return alloc; |
| } |
| |
| static void ept_access_test_teardown(void *unused) |
| { |
| /* Exit the guest cleanly. */ |
| do_ept_access_op(OP_EXIT); |
| } |
| |
| static void ept_access_test_guest(void) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| int (*code)(void) = (int (*)(void)) &data->gva[1]; |
| |
| while (true) { |
| switch (data->op) { |
| case OP_READ: |
| TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); |
| break; |
| case OP_WRITE: |
| *data->gva = MAGIC_VAL_2; |
| TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); |
| *data->gva = MAGIC_VAL_1; |
| break; |
| case OP_EXEC: |
| TEST_ASSERT_EQ(42, code()); |
| break; |
| case OP_FLUSH_TLB: |
| write_cr3(read_cr3()); |
| break; |
| case OP_EXIT: |
| return; |
| default: |
| TEST_ASSERT_MSG(false, "Unknown op %d", data->op); |
| } |
| vmcall(); |
| } |
| } |
| |
| static void ept_access_test_setup(void) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long npages = 1ul << PAGE_1G_ORDER; |
| unsigned long size = npages * PAGE_SIZE; |
| unsigned long *page_table = current_page_table(); |
| unsigned long pte; |
| |
| if (setup_ept(false)) |
| test_skip("EPT not supported"); |
| |
| test_set_guest(ept_access_test_guest); |
| test_add_teardown(ept_access_test_teardown, NULL); |
| |
| data->hva = get_1g_page(); |
| TEST_ASSERT(data->hva); |
| data->hpa = virt_to_phys(data->hva); |
| |
| data->gpa = 1ul << 40; |
| data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), |
| size); |
| TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); |
| install_pages(page_table, data->gpa, size, data->gva); |
| |
| /* |
| * Make sure nothing's mapped here so the tests that screw with the |
| * pml4 entry don't inadvertently break something. |
| */ |
| TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); |
| TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); |
| install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); |
| |
| data->hva[0] = MAGIC_VAL_1; |
| memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); |
| } |
| |
| static void ept_access_test_not_present(void) |
| { |
| ept_access_test_setup(); |
| /* --- */ |
| ept_access_violation(0, OP_READ, EPT_VLT_RD); |
| ept_access_violation(0, OP_WRITE, EPT_VLT_WR); |
| ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); |
| } |
| |
| static void ept_access_test_read_only(void) |
| { |
| ept_access_test_setup(); |
| |
| /* r-- */ |
| ept_access_allowed(EPT_RA, OP_READ); |
| ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); |
| ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); |
| } |
| |
| static void ept_access_test_write_only(void) |
| { |
| ept_access_test_setup(); |
| /* -w- */ |
| ept_access_misconfig(EPT_WA); |
| } |
| |
| static void ept_access_test_read_write(void) |
| { |
| ept_access_test_setup(); |
| /* rw- */ |
| ept_access_allowed(EPT_RA | EPT_WA, OP_READ); |
| ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); |
| ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, |
| EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); |
| } |
| |
| |
| static void ept_access_test_execute_only(void) |
| { |
| ept_access_test_setup(); |
| /* --x */ |
| if (ept_execute_only_supported()) { |
| ept_access_violation(EPT_EA, OP_READ, |
| EPT_VLT_RD | EPT_VLT_PERM_EX); |
| ept_access_violation(EPT_EA, OP_WRITE, |
| EPT_VLT_WR | EPT_VLT_PERM_EX); |
| ept_access_allowed(EPT_EA, OP_EXEC); |
| } else { |
| ept_access_misconfig(EPT_EA); |
| } |
| } |
| |
| static void ept_access_test_read_execute(void) |
| { |
| ept_access_test_setup(); |
| /* r-x */ |
| ept_access_allowed(EPT_RA | EPT_EA, OP_READ); |
| ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, |
| EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); |
| ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); |
| } |
| |
| static void ept_access_test_write_execute(void) |
| { |
| ept_access_test_setup(); |
| /* -wx */ |
| ept_access_misconfig(EPT_WA | EPT_EA); |
| } |
| |
| static void ept_access_test_read_write_execute(void) |
| { |
| ept_access_test_setup(); |
| /* rwx */ |
| ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); |
| ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); |
| ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); |
| } |
| |
| static void ept_access_test_reserved_bits(void) |
| { |
| int i; |
| int maxphyaddr; |
| |
| ept_access_test_setup(); |
| |
| /* Reserved bits above maxphyaddr. */ |
| maxphyaddr = cpuid_maxphyaddr(); |
| for (i = maxphyaddr; i <= 51; i++) { |
| report_prefix_pushf("reserved_bit=%d", i); |
| ept_reserved_bit(i); |
| report_prefix_pop(); |
| } |
| |
| /* Level-specific reserved bits. */ |
| ept_reserved_bit_at_level_nohuge(2, 3); |
| ept_reserved_bit_at_level_nohuge(2, 4); |
| ept_reserved_bit_at_level_nohuge(2, 5); |
| ept_reserved_bit_at_level_nohuge(2, 6); |
| /* 2M alignment. */ |
| for (i = 12; i < 20; i++) { |
| report_prefix_pushf("reserved_bit=%d", i); |
| ept_reserved_bit_at_level_huge(2, i); |
| report_prefix_pop(); |
| } |
| ept_reserved_bit_at_level_nohuge(3, 3); |
| ept_reserved_bit_at_level_nohuge(3, 4); |
| ept_reserved_bit_at_level_nohuge(3, 5); |
| ept_reserved_bit_at_level_nohuge(3, 6); |
| /* 1G alignment. */ |
| for (i = 12; i < 29; i++) { |
| report_prefix_pushf("reserved_bit=%d", i); |
| ept_reserved_bit_at_level_huge(3, i); |
| report_prefix_pop(); |
| } |
| ept_reserved_bit_at_level(4, 3); |
| ept_reserved_bit_at_level(4, 4); |
| ept_reserved_bit_at_level(4, 5); |
| ept_reserved_bit_at_level(4, 6); |
| ept_reserved_bit_at_level(4, 7); |
| } |
| |
| static void ept_access_test_ignored_bits(void) |
| { |
| ept_access_test_setup(); |
| /* |
| * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as |
| * far as translation is concerned even if AD bits are enabled in the |
| * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution |
| * control is 0. |
| */ |
| ept_ignored_bit(8); |
| ept_ignored_bit(9); |
| ept_ignored_bit(10); |
| ept_ignored_bit(11); |
| ept_ignored_bit(52); |
| ept_ignored_bit(53); |
| ept_ignored_bit(54); |
| ept_ignored_bit(55); |
| ept_ignored_bit(56); |
| ept_ignored_bit(57); |
| ept_ignored_bit(58); |
| ept_ignored_bit(59); |
| ept_ignored_bit(60); |
| ept_ignored_bit(61); |
| ept_ignored_bit(62); |
| ept_ignored_bit(63); |
| } |
| |
| static void ept_access_test_paddr_not_present_ad_disabled(void) |
| { |
| ept_access_test_setup(); |
| ept_disable_ad_bits(); |
| |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); |
| } |
| |
| static void ept_access_test_paddr_not_present_ad_enabled(void) |
| { |
| u64 qual = EPT_VLT_RD | EPT_VLT_WR; |
| |
| ept_access_test_setup(); |
| ept_enable_ad_bits_or_skip_test(); |
| |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); |
| } |
| |
| static void ept_access_test_paddr_read_only_ad_disabled(void) |
| { |
| /* |
| * When EPT AD bits are disabled, all accesses to guest paging |
| * structures are reported separately as a read and (after |
| * translation of the GPA to host physical address) a read+write |
| * if the A/D bits have to be set. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; |
| |
| ept_access_test_setup(); |
| ept_disable_ad_bits(); |
| |
| /* Can't update A bit, so all accesses fail. */ |
| ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); |
| /* AD bits disabled, so only writes try to update the D bit. */ |
| ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); |
| /* Both A and D already set, so read-only is OK. */ |
| ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); |
| ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); |
| ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_only_ad_enabled(void) |
| { |
| /* |
| * When EPT AD bits are enabled, all accesses to guest paging |
| * structures are considered writes as far as EPT translation |
| * is concerned. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; |
| |
| ept_access_test_setup(); |
| ept_enable_ad_bits_or_skip_test(); |
| |
| ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); |
| } |
| |
| static void ept_access_test_paddr_read_write(void) |
| { |
| ept_access_test_setup(); |
| /* Read-write access to paging structure. */ |
| ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); |
| ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); |
| ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_write_execute(void) |
| { |
| ept_access_test_setup(); |
| /* RWX access to paging structure. */ |
| ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); |
| ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); |
| ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_execute_ad_disabled(void) |
| { |
| /* |
| * When EPT AD bits are disabled, all accesses to guest paging |
| * structures are reported separately as a read and (after |
| * translation of the GPA to host physical address) a read+write |
| * if the A/D bits have to be set. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; |
| |
| ept_access_test_setup(); |
| ept_disable_ad_bits(); |
| |
| /* Can't update A bit, so all accesses fail. */ |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); |
| /* AD bits disabled, so only writes try to update the D bit. */ |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); |
| /* Both A and D already set, so read-only is OK. */ |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_execute_ad_enabled(void) |
| { |
| /* |
| * When EPT AD bits are enabled, all accesses to guest paging |
| * structures are considered writes as far as EPT translation |
| * is concerned. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; |
| |
| ept_access_test_setup(); |
| ept_enable_ad_bits_or_skip_test(); |
| |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); |
| } |
| |
| static void ept_access_test_paddr_not_present_page_fault(void) |
| { |
| ept_access_test_setup(); |
| /* |
| * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is |
| * page is read-only in EPT but GVA is also mapped read only in PT. |
| * Thus guest page fault before host takes EPT violation for trying to |
| * update A bit. |
| */ |
| } |
| |
| static void ept_access_test_force_2m_page(void) |
| { |
| ept_access_test_setup(); |
| |
| TEST_ASSERT_EQ(ept_2m_supported(), true); |
| ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); |
| ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, |
| EPT_VLT_WR | EPT_VLT_PERM_RD | |
| EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); |
| } |
| |
| static bool invvpid_valid(u64 type, u64 vpid, u64 gla) |
| { |
| u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); |
| |
| TEST_ASSERT(msr & VPID_CAP_INVVPID); |
| |
| if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL) |
| return false; |
| |
| if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT)))) |
| return false; |
| |
| if (vpid >> 16) |
| return false; |
| |
| if (type != INVVPID_ALL && !vpid) |
| return false; |
| |
| if (type == INVVPID_ADDR && !is_canonical(gla)) |
| return false; |
| |
| return true; |
| } |
| |
| static void try_invvpid(u64 type, u64 vpid, u64 gla) |
| { |
| int rc; |
| bool valid = invvpid_valid(type, vpid, gla); |
| u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT |
| : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; |
| /* |
| * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so |
| * that we can tell if it is updated by INVVPID. |
| */ |
| vmcs_read(~0); |
| rc = invvpid(type, vpid, gla); |
| report("INVVPID type %ld VPID %lx GLA %lx %s", |
| !rc == valid, type, vpid, gla, |
| valid ? "passes" : "fails"); |
| report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", |
| vmcs_read(VMX_INST_ERROR) == expected, |
| rc ? "failed" : "successful", |
| expected, vmcs_read(VMX_INST_ERROR)); |
| } |
| |
| static void ds_invvpid(void *data) |
| { |
| u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); |
| u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; |
| |
| TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); |
| asm volatile("invvpid %0, %1" |
| : |
| : "m"(*(struct invvpid_operand *)data), |
| "r"(type)); |
| } |
| |
| /* |
| * The SS override is ignored in 64-bit mode, so we use an addressing |
| * mode with %rsp as the base register to generate an implicit SS |
| * reference. |
| */ |
| static void ss_invvpid(void *data) |
| { |
| u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); |
| u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; |
| |
| TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); |
| asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" |
| : "+r"(data) |
| : "r"(type)); |
| } |
| |
| static void invvpid_test_gp(void) |
| { |
| bool fault; |
| |
| fault = test_for_exception(GP_VECTOR, &ds_invvpid, |
| (void *)NONCANONICAL); |
| report("INVVPID with non-canonical DS operand raises #GP", fault); |
| } |
| |
| static void invvpid_test_ss(void) |
| { |
| bool fault; |
| |
| fault = test_for_exception(SS_VECTOR, &ss_invvpid, |
| (void *)NONCANONICAL); |
| report("INVVPID with non-canonical SS operand raises #SS", fault); |
| } |
| |
| static void invvpid_test_pf(void) |
| { |
| void *vpage = alloc_vpage(); |
| bool fault; |
| |
| fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); |
| report("INVVPID with unmapped operand raises #PF", fault); |
| } |
| |
| static void try_compat_invvpid(void *unused) |
| { |
| struct far_pointer32 fp = { |
| .offset = (uintptr_t)&&invvpid, |
| .selector = KERNEL_CS32, |
| }; |
| register uintptr_t rsp asm("rsp"); |
| |
| TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, |
| "Code address too high."); |
| TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); |
| |
| asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); |
| return; |
| invvpid: |
| asm volatile (".code32;" |
| "invvpid (%eax), %eax;" |
| "lret;" |
| ".code64"); |
| __builtin_unreachable(); |
| } |
| |
| static void invvpid_test_compatibility_mode(void) |
| { |
| bool fault; |
| |
| fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); |
| report("Compatibility mode INVVPID raises #UD", fault); |
| } |
| |
| static void invvpid_test_not_in_vmx_operation(void) |
| { |
| bool fault; |
| |
| TEST_ASSERT(!vmx_off()); |
| fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); |
| report("INVVPID outside of VMX operation raises #UD", fault); |
| TEST_ASSERT(!vmx_on()); |
| } |
| |
| /* |
| * This does not test real-address mode, virtual-8086 mode, protected mode, |
| * or CPL > 0. |
| */ |
| static void invvpid_test_v2(void) |
| { |
| u64 msr; |
| int i; |
| unsigned types = 0; |
| unsigned type; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_VPID)) |
| test_skip("VPID not supported"); |
| |
| msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP); |
| |
| if (!(msr & VPID_CAP_INVVPID)) |
| test_skip("INVVPID not supported.\n"); |
| |
| if (msr & VPID_CAP_INVVPID_ADDR) |
| types |= 1u << INVVPID_ADDR; |
| if (msr & VPID_CAP_INVVPID_CXTGLB) |
| types |= 1u << INVVPID_CONTEXT_GLOBAL; |
| if (msr & VPID_CAP_INVVPID_ALL) |
| types |= 1u << INVVPID_ALL; |
| if (msr & VPID_CAP_INVVPID_CXTLOC) |
| types |= 1u << INVVPID_CONTEXT_LOCAL; |
| |
| if (!types) |
| test_skip("No INVVPID types supported.\n"); |
| |
| for (i = -127; i < 128; i++) |
| try_invvpid(i, 0xffff, 0); |
| |
| /* |
| * VPID must not be more than 16 bits. |
| */ |
| for (i = 0; i < 64; i++) |
| for (type = 0; type < 4; type++) |
| if (types & (1u << type)) |
| try_invvpid(type, 1ul << i, 0); |
| |
| /* |
| * VPID must not be zero, except for "all contexts." |
| */ |
| for (type = 0; type < 4; type++) |
| if (types & (1u << type)) |
| try_invvpid(type, 0, 0); |
| |
| /* |
| * The gla operand is only validated for single-address INVVPID. |
| */ |
| if (types & (1u << INVVPID_ADDR)) |
| try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); |
| |
| invvpid_test_gp(); |
| invvpid_test_ss(); |
| invvpid_test_pf(); |
| invvpid_test_compatibility_mode(); |
| invvpid_test_not_in_vmx_operation(); |
| } |
| |
| /* |
| * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it |
| * at least as far as the guest-state checks. Returns false if the |
| * VMLAUNCH fails early and execution falls through to the next |
| * instruction. |
| */ |
| static bool vmlaunch_succeeds(void) |
| { |
| /* |
| * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to |
| * unsupported VMCS component"). The caller can then check |
| * to see if a failed VM-entry sets VMX_INST_ERR as expected. |
| */ |
| vmcs_write(~0u, 0); |
| |
| vmcs_write(HOST_RIP, (uintptr_t)&&success); |
| __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" |
| : |
| : "r" ((u64)HOST_RSP) |
| : "cc", "memory" |
| : success); |
| return false; |
| success: |
| TEST_ASSERT(vmcs_read(EXI_REASON) == |
| (VMX_FAIL_STATE | VMX_ENTRY_FAILURE)); |
| return true; |
| } |
| |
| /* |
| * Try to launch the current VMCS. |
| */ |
| static void test_vmx_controls(bool controls_valid, bool xfail) |
| { |
| bool success = vmlaunch_succeeds(); |
| u32 vmx_inst_err; |
| |
| report_xfail("vmlaunch %s", xfail, success == controls_valid, |
| controls_valid ? "succeeds" : "fails"); |
| if (!success) { |
| vmx_inst_err = vmcs_read(VMX_INST_ERROR); |
| report("VMX inst error is %d (actual %d)", |
| vmx_inst_err == VMXERR_ENTRY_INVALID_CONTROL_FIELD, |
| VMXERR_ENTRY_INVALID_CONTROL_FIELD, vmx_inst_err); |
| } |
| } |
| |
| /* |
| * Test a particular value of a VM-execution control bit, if the value |
| * is required or if the value is zero. |
| */ |
| static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, |
| enum Encoding encoding, unsigned bit, |
| unsigned val) |
| { |
| u32 mask = 1u << bit; |
| bool expected; |
| u32 controls; |
| |
| if (msr.set & mask) |
| TEST_ASSERT(msr.clr & mask); |
| |
| /* |
| * We can't arbitrarily turn on a control bit, because it may |
| * introduce dependencies on other VMCS fields. So, we only |
| * test turning on bits that have a required setting. |
| */ |
| if (val && (msr.clr & mask) && !(msr.set & mask)) |
| return; |
| |
| report_prefix_pushf("%s %s bit %d", |
| val ? "Set" : "Clear", name, bit); |
| |
| controls = vmcs_read(encoding); |
| if (val) { |
| vmcs_write(encoding, msr.set | mask); |
| expected = (msr.clr & mask); |
| } else { |
| vmcs_write(encoding, msr.set & ~mask); |
| expected = !(msr.set & mask); |
| } |
| test_vmx_controls(expected, false); |
| vmcs_write(encoding, controls); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * Test reserved values of a VM-execution control bit, based on the |
| * allowed bit settings from the corresponding VMX capability MSR. |
| */ |
| static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, |
| enum Encoding encoding, unsigned bit) |
| { |
| test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); |
| test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); |
| } |
| |
| /* |
| * Reserved bits in the pin-based VM-execution controls must be set |
| * properly. Software may consult the VMX capability MSRs to determine |
| * the proper settings. |
| * [Intel SDM] |
| */ |
| static void test_pin_based_ctls(void) |
| { |
| unsigned bit; |
| |
| printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : |
| "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); |
| for (bit = 0; bit < 32; bit++) |
| test_rsvd_ctl_bit("pin-based controls", |
| ctrl_pin_rev, PIN_CONTROLS, bit); |
| } |
| |
| /* |
| * Reserved bits in the primary processor-based VM-execution controls |
| * must be set properly. Software may consult the VMX capability MSRs |
| * to determine the proper settings. |
| * [Intel SDM] |
| */ |
| static void test_primary_processor_based_ctls(void) |
| { |
| unsigned bit; |
| |
| printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : |
| "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); |
| for (bit = 0; bit < 32; bit++) |
| test_rsvd_ctl_bit("primary processor-based controls", |
| ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); |
| } |
| |
| /* |
| * If the "activate secondary controls" primary processor-based |
| * VM-execution control is 1, reserved bits in the secondary |
| * processor-based VM-execution controls must be cleared. Software may |
| * consult the VMX capability MSRs to determine which bits are |
| * reserved. |
| * If the "activate secondary controls" primary processor-based |
| * VM-execution control is 0 (or if the processor does not support the |
| * 1-setting of that control), no checks are performed on the |
| * secondary processor-based VM-execution controls. |
| * [Intel SDM] |
| */ |
| static void test_secondary_processor_based_ctls(void) |
| { |
| u32 primary; |
| u32 secondary; |
| unsigned bit; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) |
| return; |
| |
| primary = vmcs_read(CPU_EXEC_CTRL0); |
| secondary = vmcs_read(CPU_EXEC_CTRL1); |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); |
| printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); |
| for (bit = 0; bit < 32; bit++) |
| test_rsvd_ctl_bit("secondary processor-based controls", |
| ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); |
| |
| /* |
| * When the "activate secondary controls" VM-execution control |
| * is clear, there are no checks on the secondary controls. |
| */ |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, ~0); |
| report("Secondary processor-based controls ignored", |
| vmlaunch_succeeds()); |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| } |
| |
| static void try_cr3_target_count(unsigned i, unsigned max) |
| { |
| report_prefix_pushf("CR3 target count 0x%x", i); |
| vmcs_write(CR3_TARGET_COUNT, i); |
| test_vmx_controls(i <= max, false); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * The CR3-target count must not be greater than 4. Future processors |
| * may support a different number of CR3-target values. Software |
| * should read the VMX capability MSR IA32_VMX_MISC to determine the |
| * number of values supported. |
| * [Intel SDM] |
| */ |
| static void test_cr3_targets(void) |
| { |
| unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; |
| u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); |
| unsigned i; |
| |
| printf("\nSupported CR3 targets: %d\n", supported_targets); |
| TEST_ASSERT(supported_targets <= 256); |
| |
| try_cr3_target_count(-1u, supported_targets); |
| try_cr3_target_count(0x80000000, supported_targets); |
| try_cr3_target_count(0x7fffffff, supported_targets); |
| for (i = 0; i <= supported_targets + 1; i++) |
| try_cr3_target_count(i, supported_targets); |
| vmcs_write(CR3_TARGET_COUNT, cr3_targets); |
| } |
| |
| /* |
| * Test a particular address setting for a physical page reference in |
| * the VMCS. |
| */ |
| static void test_vmcs_page_addr(const char *name, |
| enum Encoding encoding, |
| bool ignored, |
| bool xfail_beyond_mapped_ram, |
| u64 addr) |
| { |
| bool xfail = |
| (xfail_beyond_mapped_ram && |
| addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - PAGE_SIZE && |
| addr < (1ul << cpuid_maxphyaddr())); |
| |
| report_prefix_pushf("%s = %lx", name, addr); |
| vmcs_write(encoding, addr); |
| test_vmx_controls(ignored || (IS_ALIGNED(addr, PAGE_SIZE) && |
| addr < (1ul << cpuid_maxphyaddr())), |
| xfail); |
| report_prefix_pop(); |
| xfail = false; |
| } |
| |
| /* |
| * Test interesting values for a physical page reference in the VMCS. |
| */ |
| static void test_vmcs_page_values(const char *name, |
| enum Encoding encoding, |
| bool ignored, |
| bool xfail_beyond_mapped_ram) |
| { |
| unsigned i; |
| u64 orig_val = vmcs_read(encoding); |
| |
| for (i = 0; i < 64; i++) |
| test_vmcs_page_addr(name, encoding, ignored, |
| xfail_beyond_mapped_ram, 1ul << i); |
| |
| test_vmcs_page_addr(name, encoding, ignored, |
| xfail_beyond_mapped_ram, PAGE_SIZE - 1); |
| test_vmcs_page_addr(name, encoding, ignored, |
| xfail_beyond_mapped_ram, PAGE_SIZE); |
| test_vmcs_page_addr(name, encoding, ignored, |
| xfail_beyond_mapped_ram, |
| (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); |
| test_vmcs_page_addr(name, encoding, ignored, |
| xfail_beyond_mapped_ram, |
| -1ul); |
| |
| vmcs_write(encoding, orig_val); |
| } |
| |
| /* |
| * Test a physical page reference in the VMCS, when the corresponding |
| * feature is enabled and when the corresponding feature is disabled. |
| */ |
| static void test_vmcs_page_reference(u32 control_bit, enum Encoding field, |
| const char *field_name, |
| const char *control_name, |
| bool xfail_beyond_mapped_ram) |
| { |
| u32 primary = vmcs_read(CPU_EXEC_CTRL0); |
| u64 page_addr; |
| |
| if (!(ctrl_cpu_rev[0].clr & control_bit)) |
| return; |
| |
| page_addr = vmcs_read(field); |
| |
| report_prefix_pushf("%s enabled", control_name); |
| vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); |
| test_vmcs_page_values(field_name, field, false, xfail_beyond_mapped_ram); |
| report_prefix_pop(); |
| |
| report_prefix_pushf("%s disabled", control_name); |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); |
| test_vmcs_page_values(field_name, field, true, false); |
| report_prefix_pop(); |
| |
| vmcs_write(field, page_addr); |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| } |
| |
| /* |
| * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of |
| * each I/O-bitmap address must be 0. Neither address should set any |
| * bits beyond the processor's physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_io_bitmaps(void) |
| { |
| test_vmcs_page_reference(CPU_IO_BITMAP, IO_BITMAP_A, |
| "I/O bitmap A", "Use I/O bitmaps", false); |
| test_vmcs_page_reference(CPU_IO_BITMAP, IO_BITMAP_B, |
| "I/O bitmap B", "Use I/O bitmaps", false); |
| } |
| |
| /* |
| * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of |
| * the MSR-bitmap address must be 0. The address should not set any |
| * bits beyond the processor's physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_msr_bitmap(void) |
| { |
| test_vmcs_page_reference(CPU_MSR_BITMAP, MSR_BITMAP, |
| "MSR bitmap", "Use MSR bitmaps", false); |
| } |
| |
| /* |
| * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC |
| * address must satisfy the following checks: |
| * - Bits 11:0 of the address must be 0. |
| * - The address should not set any bits beyond the processor's |
| * physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_apic_virt_addr(void) |
| { |
| test_vmcs_page_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, |
| "virtual-APIC address", "Use TPR shadow", true); |
| } |
| |
| static void try_tpr_threshold(unsigned val) |
| { |
| bool valid = true; |
| |
| if ((vmcs_read(CPU_EXEC_CTRL0) & CPU_TPR_SHADOW) && |
| !((vmcs_read(CPU_EXEC_CTRL0) & CPU_SECONDARY) && |
| (vmcs_read(CPU_EXEC_CTRL1) & CPU_VINTD))) |
| valid = !(val >> 4); |
| report_prefix_pushf("TPR threshold 0x%x", val); |
| vmcs_write(TPR_THRESHOLD, val); |
| test_vmx_controls(valid, false); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * Test interesting TPR threshold values. |
| */ |
| static void test_tpr_threshold_values(void) |
| { |
| unsigned i; |
| |
| for (i = 0; i < 0x10; i++) |
| try_tpr_threshold(i); |
| for (i = 4; i < 32; i++) |
| try_tpr_threshold(1u << i); |
| try_tpr_threshold(-1u); |
| try_tpr_threshold(0x7fffffff); |
| } |
| |
| /* |
| * If the "use TPR shadow" VM-execution control is 1 and the |
| * "virtual-interrupt delivery" VM-execution control is 0, bits 31:4 |
| * of the TPR threshold VM-execution control field must be 0. |
| * [Intel SDM] |
| */ |
| static void test_tpr_threshold(void) |
| { |
| u32 primary = vmcs_read(CPU_EXEC_CTRL0); |
| void *virtual_apic_page; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) |
| return; |
| |
| virtual_apic_page = alloc_page(); |
| memset(virtual_apic_page, 0xff, PAGE_SIZE); |
| vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); |
| report_prefix_pushf("Use TPR shadow disabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); |
| report_prefix_pushf("Use TPR shadow enabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| |
| if ((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && |
| (ctrl_cpu_rev[1].clr & CPU_VINTD)) { |
| u32 secondary = vmcs_read(CPU_EXEC_CTRL1); |
| |
| vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| vmcs_write(CPU_EXEC_CTRL0, |
| vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); |
| report_prefix_pushf("Use TPR shadow enabled; virtual-interrupt delivery enabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| } |
| |
| /* |
| * Check that the virtual CPU checks all of the VMX controls as |
| * documented in the Intel SDM. |
| */ |
| static void vmx_controls_test(void) |
| { |
| /* |
| * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will |
| * fail due to invalid guest state, should we make it that |
| * far. |
| */ |
| vmcs_write(GUEST_RFLAGS, 0); |
| |
| test_pin_based_ctls(); |
| test_primary_processor_based_ctls(); |
| test_secondary_processor_based_ctls(); |
| test_cr3_targets(); |
| test_io_bitmaps(); |
| test_msr_bitmap(); |
| test_apic_virt_addr(); |
| test_tpr_threshold(); |
| } |
| |
| static bool valid_vmcs_for_vmentry(void) |
| { |
| struct vmcs *current_vmcs = NULL; |
| |
| if (vmcs_save(¤t_vmcs)) |
| return false; |
| |
| return current_vmcs && !(current_vmcs->revision_id >> 31); |
| } |
| |
| static void try_vmentry_in_movss_shadow(void) |
| { |
| u32 vm_inst_err; |
| u32 flags; |
| bool early_failure = false; |
| u32 expected_flags = X86_EFLAGS_FIXED; |
| bool valid_vmcs = valid_vmcs_for_vmentry(); |
| |
| expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; |
| |
| /* |
| * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to |
| * unsupported VMCS component"). |
| */ |
| vmcs_write(~0u, 0); |
| |
| __asm__ __volatile__ ("mov %[host_rsp], %%edx;" |
| "vmwrite %%rsp, %%rdx;" |
| "mov 0f, %%rax;" |
| "mov %[host_rip], %%edx;" |
| "vmwrite %%rax, %%rdx;" |
| "mov $-1, %%ah;" |
| "sahf;" |
| "mov %%ss, %%ax;" |
| "mov %%ax, %%ss;" |
| "vmlaunch;" |
| "mov $1, %[early_failure];" |
| "0: lahf;" |
| "movzbl %%ah, %[flags]" |
| : [early_failure] "+r" (early_failure), |
| [flags] "=&a" (flags) |
| : [host_rsp] "i" (HOST_RSP), |
| [host_rip] "i" (HOST_RIP) |
| : "rdx", "cc", "memory"); |
| vm_inst_err = vmcs_read(VMX_INST_ERROR); |
| |
| report("Early VM-entry failure", early_failure); |
| report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags, |
| expected_flags, flags); |
| if (valid_vmcs) |
| report("VM-instruction error is %d (actual %d)", |
| vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, |
| VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); |
| } |
| |
| static void vmentry_movss_shadow_test(void) |
| { |
| struct vmcs *orig_vmcs; |
| |
| TEST_ASSERT(!vmcs_save(&orig_vmcs)); |
| |
| /* |
| * Set the launched flag on the current VMCS to verify the correct |
| * error priority, below. |
| */ |
| test_set_guest(v2_null_test_guest); |
| enter_guest(); |
| |
| /* |
| * With bit 1 of the guest's RFLAGS clear, VM-entry should |
| * fail due to invalid guest state (if we make it that far). |
| */ |
| vmcs_write(GUEST_RFLAGS, 0); |
| |
| /* |
| * "VM entry with events blocked by MOV SS" takes precedence over |
| * "VMLAUNCH with non-clear VMCS." |
| */ |
| report_prefix_push("valid current-VMCS"); |
| try_vmentry_in_movss_shadow(); |
| report_prefix_pop(); |
| |
| /* |
| * VMfailInvalid takes precedence over "VM entry with events |
| * blocked by MOV SS." |
| */ |
| TEST_ASSERT(!vmcs_clear(orig_vmcs)); |
| report_prefix_push("no current-VMCS"); |
| try_vmentry_in_movss_shadow(); |
| report_prefix_pop(); |
| |
| TEST_ASSERT(!make_vmcs_current(orig_vmcs)); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); |
| } |
| |
| #define X86_FEATURE_PCID (1 << 17) |
| #define X86_FEATURE_MCE (1 << 7) |
| |
| static int write_cr4_checking(unsigned long val) |
| { |
| asm volatile(ASM_TRY("1f") |
| "mov %0, %%cr4\n\t" |
| "1:": : "r" (val)); |
| return exception_vector(); |
| } |
| |
| static void vmx_cr_load_test(void) |
| { |
| struct cpuid _cpuid = cpuid(1); |
| unsigned long cr4 = read_cr4(), cr3 = read_cr3(); |
| |
| if (!(_cpuid.c & X86_FEATURE_PCID)) { |
| report_skip("PCID not detected"); |
| return; |
| } |
| if (!(_cpuid.d & X86_FEATURE_MCE)) { |
| report_skip("MCE not detected"); |
| return; |
| } |
| |
| TEST_ASSERT(!(cr4 & (X86_CR4_PCIDE | X86_CR4_MCE))); |
| TEST_ASSERT(!(cr3 & X86_CR3_PCID_MASK)); |
| |
| /* Enable PCID for L1. */ |
| cr4 |= X86_CR4_PCIDE; |
| cr3 |= 0x1; |
| TEST_ASSERT(!write_cr4_checking(cr4)); |
| write_cr3(cr3); |
| |
| test_set_guest(v2_null_test_guest); |
| vmcs_write(HOST_CR4, cr4); |
| vmcs_write(HOST_CR3, cr3); |
| enter_guest(); |
| |
| /* |
| * No exception is expected. |
| * |
| * NB. KVM loads the last guest write to CR4 into CR4 read |
| * shadow. In order to trigger an exit to KVM, we can set a |
| * bit that was zero in the above CR4 write and is owned by |
| * KVM. We choose to set CR4.MCE, which shall have no side |
| * effect because normally no guest MCE (e.g., as the result |
| * of bad memory) would happen during this test. |
| */ |
| TEST_ASSERT(!write_cr4_checking(cr4 | X86_CR4_MCE)); |
| |
| /* Cleanup L1 state: disable PCID. */ |
| write_cr3(cr3 & ~X86_CR3_PCID_MASK); |
| TEST_ASSERT(!write_cr4_checking(cr4 & ~X86_CR4_PCIDE)); |
| } |
| |
| #define TEST(name) { #name, .v2 = name } |
| |
| /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ |
| struct vmx_test vmx_tests[] = { |
| { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, |
| { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, |
| { "preemption timer", preemption_timer_init, preemption_timer_main, |
| preemption_timer_exit_handler, NULL, {0} }, |
| { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, |
| test_ctrl_pat_exit_handler, NULL, {0} }, |
| { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, |
| test_ctrl_efer_exit_handler, NULL, {0} }, |
| { "CR shadowing", NULL, cr_shadowing_main, |
| cr_shadowing_exit_handler, NULL, {0} }, |
| { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, |
| NULL, {0} }, |
| { "instruction intercept", insn_intercept_init, insn_intercept_main, |
| insn_intercept_exit_handler, NULL, {0} }, |
| { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, |
| { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, |
| { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, |
| { "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} }, |
| { "interrupt", interrupt_init, interrupt_main, |
| interrupt_exit_handler, NULL, {0} }, |
| { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, |
| NULL, {0} }, |
| { "MSR switch", msr_switch_init, msr_switch_main, |
| msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, |
| { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, |
| { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, |
| disable_rdtscp_exit_handler, NULL, {0} }, |
| { "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} }, |
| { "into", into_init, into_guest_main, into_exit_handler, NULL, {0} }, |
| { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, |
| exit_monitor_from_l2_handler, NULL, {0} }, |
| /* Basic V2 tests. */ |
| TEST(v2_null_test), |
| TEST(v2_multiple_entries_test), |
| TEST(fixture_test_case1), |
| TEST(fixture_test_case2), |
| /* EPT access tests. */ |
| TEST(ept_access_test_not_present), |
| TEST(ept_access_test_read_only), |
| TEST(ept_access_test_write_only), |
| TEST(ept_access_test_read_write), |
| TEST(ept_access_test_execute_only), |
| TEST(ept_access_test_read_execute), |
| TEST(ept_access_test_write_execute), |
| TEST(ept_access_test_read_write_execute), |
| TEST(ept_access_test_reserved_bits), |
| TEST(ept_access_test_ignored_bits), |
| TEST(ept_access_test_paddr_not_present_ad_disabled), |
| TEST(ept_access_test_paddr_not_present_ad_enabled), |
| TEST(ept_access_test_paddr_read_only_ad_disabled), |
| TEST(ept_access_test_paddr_read_only_ad_enabled), |
| TEST(ept_access_test_paddr_read_write), |
| TEST(ept_access_test_paddr_read_write_execute), |
| TEST(ept_access_test_paddr_read_execute_ad_disabled), |
| TEST(ept_access_test_paddr_read_execute_ad_enabled), |
| TEST(ept_access_test_paddr_not_present_page_fault), |
| TEST(ept_access_test_force_2m_page), |
| /* Opcode tests. */ |
| TEST(invvpid_test_v2), |
| /* VM-entry tests */ |
| TEST(vmx_controls_test), |
| TEST(vmentry_movss_shadow_test), |
| /* Regression tests */ |
| TEST(vmx_cr_load_test), |
| { NULL, NULL, NULL, NULL, NULL, {0} }, |
| }; |