blob: e8c97f236536d3aabf2cacbc504ab43a34e9b033 [file] [log] [blame]
/*
* All test cases of nested virtualization should be in this file
*
* Author : Arthur Chunqi Li <yzt356@gmail.com>
*/
#include "vmx.h"
#include "msr.h"
#include "processor.h"
#include "vm.h"
#include "fwcfg.h"
#include "isr.h"
#include "desc.h"
#include "apic.h"
#include "types.h"
#include "vmalloc.h"
#include "alloc_page.h"
#define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
#define VPID_CAP_INVVPID_TYPES_SHIFT 40
u64 ia32_pat;
u64 ia32_efer;
void *io_bitmap_a, *io_bitmap_b;
u16 ioport;
unsigned long *pml4;
u64 eptp;
void *data_page1, *data_page2;
void *pml_log;
#define PML_INDEX 512
static inline unsigned ffs(unsigned x)
{
int pos = -1;
__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
: "+r"(pos) : "rm"(x) : "eax");
return pos + 1;
}
static inline void vmcall()
{
asm volatile("vmcall");
}
void basic_guest_main()
{
report("Basic VMX test", 1);
}
int basic_exit_handler()
{
report("Basic VMX test", 0);
print_vmexit_info();
return VMX_TEST_EXIT;
}
void vmenter_main()
{
u64 rax;
u64 rsp, resume_rsp;
report("test vmlaunch", 1);
asm volatile(
"mov %%rsp, %0\n\t"
"mov %3, %%rax\n\t"
"vmcall\n\t"
"mov %%rax, %1\n\t"
"mov %%rsp, %2\n\t"
: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
: "g"(0xABCD));
report("test vmresume", (rax == 0xFFFF) && (rsp == resume_rsp));
}
int vmenter_exit_handler()
{
u64 guest_rip;
ulong reason;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
switch (reason) {
case VMX_VMCALL:
if (regs.rax != 0xABCD) {
report("test vmresume", 0);
return VMX_TEST_VMEXIT;
}
regs.rax = 0xFFFF;
vmcs_write(GUEST_RIP, guest_rip + 3);
return VMX_TEST_RESUME;
default:
report("test vmresume", 0);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
u32 preempt_scale;
volatile unsigned long long tsc_val;
volatile u32 preempt_val;
u64 saved_rip;
int preemption_timer_init()
{
if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
printf("\tPreemption timer is not supported\n");
return VMX_TEST_EXIT;
}
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
preempt_val = 10000000;
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
printf("\tSave preemption value is not supported\n");
return VMX_TEST_START;
}
void preemption_timer_main()
{
tsc_val = rdtsc();
if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
vmx_set_test_stage(0);
vmcall();
if (vmx_get_test_stage() == 1)
vmcall();
}
vmx_set_test_stage(1);
while (vmx_get_test_stage() == 1) {
if (((rdtsc() - tsc_val) >> preempt_scale)
> 10 * preempt_val) {
vmx_set_test_stage(2);
vmcall();
}
}
tsc_val = rdtsc();
asm volatile ("hlt");
vmcall();
vmx_set_test_stage(5);
vmcall();
}
int preemption_timer_exit_handler()
{
bool guest_halted;
u64 guest_rip;
ulong reason;
u32 insn_len;
u32 ctrl_exit;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
insn_len = vmcs_read(EXI_INST_LEN);
switch (reason) {
case VMX_PREEMPT:
switch (vmx_get_test_stage()) {
case 1:
case 2:
report("busy-wait for preemption timer",
((rdtsc() - tsc_val) >> preempt_scale) >=
preempt_val);
vmx_set_test_stage(3);
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
return VMX_TEST_RESUME;
case 3:
guest_halted =
(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
report("preemption timer during hlt",
((rdtsc() - tsc_val) >> preempt_scale) >=
preempt_val && guest_halted);
vmx_set_test_stage(4);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
return VMX_TEST_RESUME;
case 4:
report("preemption timer with 0 value",
saved_rip == guest_rip);
break;
default:
report("Invalid stage.", false);
print_vmexit_info();
break;
}
break;
case VMX_VMCALL:
vmcs_write(GUEST_RIP, guest_rip + insn_len);
switch (vmx_get_test_stage()) {
case 0:
report("Keep preemption value",
vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val);
vmx_set_test_stage(1);
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
ctrl_exit = (vmcs_read(EXI_CONTROLS) |
EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
vmcs_write(EXI_CONTROLS, ctrl_exit);
return VMX_TEST_RESUME;
case 1:
report("Save preemption value",
vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val);
return VMX_TEST_RESUME;
case 2:
report("busy-wait for preemption timer", 0);
vmx_set_test_stage(3);
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
return VMX_TEST_RESUME;
case 3:
report("preemption timer during hlt", 0);
vmx_set_test_stage(4);
/* fall through */
case 4:
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
vmcs_write(PREEMPT_TIMER_VALUE, 0);
saved_rip = guest_rip + insn_len;
return VMX_TEST_RESUME;
case 5:
report("preemption timer with 0 value (vmcall stage 5)", 0);
break;
default:
// Should not reach here
report("unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
break;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
return VMX_TEST_VMEXIT;
}
void msr_bmp_init()
{
void *msr_bitmap;
u32 ctrl_cpu0;
msr_bitmap = alloc_page();
memset(msr_bitmap, 0x0, PAGE_SIZE);
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 |= CPU_MSR_BITMAP;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
}
static int test_ctrl_pat_init()
{
u64 ctrl_ent;
u64 ctrl_exi;
msr_bmp_init();
if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
!(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
printf("\tSave/load PAT is not supported\n");
return 1;
}
ctrl_ent = vmcs_read(ENT_CONTROLS);
ctrl_exi = vmcs_read(EXI_CONTROLS);
ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
vmcs_write(ENT_CONTROLS, ctrl_ent);
vmcs_write(EXI_CONTROLS, ctrl_exi);
ia32_pat = rdmsr(MSR_IA32_CR_PAT);
vmcs_write(GUEST_PAT, 0x0);
vmcs_write(HOST_PAT, ia32_pat);
return VMX_TEST_START;
}
static void test_ctrl_pat_main()
{
u64 guest_ia32_pat;
guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
printf("\tENT_LOAD_PAT is not supported.\n");
else {
if (guest_ia32_pat != 0) {
report("Entry load PAT", 0);
return;
}
}
wrmsr(MSR_IA32_CR_PAT, 0x6);
vmcall();
guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
report("Entry load PAT", guest_ia32_pat == ia32_pat);
}
static int test_ctrl_pat_exit_handler()
{
u64 guest_rip;
ulong reason;
u64 guest_pat;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
switch (reason) {
case VMX_VMCALL:
guest_pat = vmcs_read(GUEST_PAT);
if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
printf("\tEXI_SAVE_PAT is not supported\n");
vmcs_write(GUEST_PAT, 0x6);
} else {
report("Exit save PAT", guest_pat == 0x6);
}
if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
printf("\tEXI_LOAD_PAT is not supported\n");
else
report("Exit load PAT", rdmsr(MSR_IA32_CR_PAT) == ia32_pat);
vmcs_write(GUEST_PAT, ia32_pat);
vmcs_write(GUEST_RIP, guest_rip + 3);
return VMX_TEST_RESUME;
default:
printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
break;
}
return VMX_TEST_VMEXIT;
}
static int test_ctrl_efer_init()
{
u64 ctrl_ent;
u64 ctrl_exi;
msr_bmp_init();
ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
ia32_efer = rdmsr(MSR_EFER);
vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
return VMX_TEST_START;
}
static void test_ctrl_efer_main()
{
u64 guest_ia32_efer;
guest_ia32_efer = rdmsr(MSR_EFER);
if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
printf("\tENT_LOAD_EFER is not supported.\n");
else {
if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
report("Entry load EFER", 0);
return;
}
}
wrmsr(MSR_EFER, ia32_efer);
vmcall();
guest_ia32_efer = rdmsr(MSR_EFER);
if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
report("Entry load EFER", guest_ia32_efer == ia32_efer);
}
static int test_ctrl_efer_exit_handler()
{
u64 guest_rip;
ulong reason;
u64 guest_efer;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
switch (reason) {
case VMX_VMCALL:
guest_efer = vmcs_read(GUEST_EFER);
if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
printf("\tEXI_SAVE_EFER is not supported\n");
vmcs_write(GUEST_EFER, ia32_efer);
} else {
report("Exit save EFER", guest_efer == ia32_efer);
}
if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
printf("\tEXI_LOAD_EFER is not supported\n");
wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
} else {
report("Exit load EFER", rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX));
}
vmcs_write(GUEST_PAT, ia32_efer);
vmcs_write(GUEST_RIP, guest_rip + 3);
return VMX_TEST_RESUME;
default:
printf("ERROR : Undefined exit reason, reason = %ld.\n", reason);
break;
}
return VMX_TEST_VMEXIT;
}
u32 guest_cr0, guest_cr4;
static void cr_shadowing_main()
{
u32 cr0, cr4, tmp;
// Test read through
vmx_set_test_stage(0);
guest_cr0 = read_cr0();
if (vmx_get_test_stage() == 1)
report("Read through CR0", 0);
else
vmcall();
vmx_set_test_stage(1);
guest_cr4 = read_cr4();
if (vmx_get_test_stage() == 2)
report("Read through CR4", 0);
else
vmcall();
// Test write through
guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
vmx_set_test_stage(2);
write_cr0(guest_cr0);
if (vmx_get_test_stage() == 3)
report("Write throuth CR0", 0);
else
vmcall();
vmx_set_test_stage(3);
write_cr4(guest_cr4);
if (vmx_get_test_stage() == 4)
report("Write through CR4", 0);
else
vmcall();
// Test read shadow
vmx_set_test_stage(4);
vmcall();
cr0 = read_cr0();
if (vmx_get_test_stage() != 5)
report("Read shadowing CR0", cr0 == guest_cr0);
vmx_set_test_stage(5);
cr4 = read_cr4();
if (vmx_get_test_stage() != 6)
report("Read shadowing CR4", cr4 == guest_cr4);
// Test write shadow (same value with shadow)
vmx_set_test_stage(6);
write_cr0(guest_cr0);
if (vmx_get_test_stage() == 7)
report("Write shadowing CR0 (same value with shadow)", 0);
else
vmcall();
vmx_set_test_stage(7);
write_cr4(guest_cr4);
if (vmx_get_test_stage() == 8)
report("Write shadowing CR4 (same value with shadow)", 0);
else
vmcall();
// Test write shadow (different value)
vmx_set_test_stage(8);
tmp = guest_cr0 ^ X86_CR0_TS;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr0\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report("Write shadowing different X86_CR0_TS", vmx_get_test_stage() == 9);
vmx_set_test_stage(9);
tmp = guest_cr0 ^ X86_CR0_MP;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr0\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report("Write shadowing different X86_CR0_MP", vmx_get_test_stage() == 10);
vmx_set_test_stage(10);
tmp = guest_cr4 ^ X86_CR4_TSD;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr4\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report("Write shadowing different X86_CR4_TSD", vmx_get_test_stage() == 11);
vmx_set_test_stage(11);
tmp = guest_cr4 ^ X86_CR4_DE;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr4\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report("Write shadowing different X86_CR4_DE", vmx_get_test_stage() == 12);
}
static int cr_shadowing_exit_handler()
{
u64 guest_rip;
ulong reason;
u32 insn_len;
u32 exit_qual;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
insn_len = vmcs_read(EXI_INST_LEN);
exit_qual = vmcs_read(EXI_QUALIFICATION);
switch (reason) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
report("Read through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
break;
case 1:
report("Read through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
break;
case 2:
report("Write through CR0", guest_cr0 == vmcs_read(GUEST_CR0));
break;
case 3:
report("Write through CR4", guest_cr4 == vmcs_read(GUEST_CR4));
break;
case 4:
guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
break;
case 6:
report("Write shadowing CR0 (same value)",
guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)));
break;
case 7:
report("Write shadowing CR4 (same value)",
guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)));
break;
default:
// Should not reach here
report("unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_CR:
switch (vmx_get_test_stage()) {
case 4:
report("Read shadowing CR0", 0);
vmx_inc_test_stage();
break;
case 5:
report("Read shadowing CR4", 0);
vmx_inc_test_stage();
break;
case 6:
report("Write shadowing CR0 (same value)", 0);
vmx_inc_test_stage();
break;
case 7:
report("Write shadowing CR4 (same value)", 0);
vmx_inc_test_stage();
break;
case 8:
case 9:
// 0x600 encodes "mov %esi, %cr0"
if (exit_qual == 0x600)
vmx_inc_test_stage();
break;
case 10:
case 11:
// 0x604 encodes "mov %esi, %cr4"
if (exit_qual == 0x604)
vmx_inc_test_stage();
break;
default:
// Should not reach here
report("unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
static int iobmp_init()
{
u32 ctrl_cpu0;
io_bitmap_a = alloc_page();
io_bitmap_b = alloc_page();
memset(io_bitmap_a, 0x0, PAGE_SIZE);
memset(io_bitmap_b, 0x0, PAGE_SIZE);
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 |= CPU_IO_BITMAP;
ctrl_cpu0 &= (~CPU_IO);
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
return VMX_TEST_START;
}
static void iobmp_main()
{
// stage 0, test IO pass
vmx_set_test_stage(0);
inb(0x5000);
outb(0x0, 0x5000);
report("I/O bitmap - I/O pass", vmx_get_test_stage() == 0);
// test IO width, in/out
((u8 *)io_bitmap_a)[0] = 0xFF;
vmx_set_test_stage(2);
inb(0x0);
report("I/O bitmap - trap in", vmx_get_test_stage() == 3);
vmx_set_test_stage(3);
outw(0x0, 0x0);
report("I/O bitmap - trap out", vmx_get_test_stage() == 4);
vmx_set_test_stage(4);
inl(0x0);
report("I/O bitmap - I/O width, long", vmx_get_test_stage() == 5);
// test low/high IO port
vmx_set_test_stage(5);
((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
inb(0x5000);
report("I/O bitmap - I/O port, low part", vmx_get_test_stage() == 6);
vmx_set_test_stage(6);
((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
inb(0x9000);
report("I/O bitmap - I/O port, high part", vmx_get_test_stage() == 7);
// test partial pass
vmx_set_test_stage(7);
inl(0x4FFF);
report("I/O bitmap - partial pass", vmx_get_test_stage() == 8);
// test overrun
vmx_set_test_stage(8);
memset(io_bitmap_a, 0x0, PAGE_SIZE);
memset(io_bitmap_b, 0x0, PAGE_SIZE);
inl(0xFFFF);
report("I/O bitmap - overrun", vmx_get_test_stage() == 9);
vmx_set_test_stage(9);
vmcall();
outb(0x0, 0x0);
report("I/O bitmap - ignore unconditional exiting",
vmx_get_test_stage() == 9);
vmx_set_test_stage(10);
vmcall();
outb(0x0, 0x0);
report("I/O bitmap - unconditional exiting",
vmx_get_test_stage() == 11);
}
static int iobmp_exit_handler()
{
u64 guest_rip;
ulong reason, exit_qual;
u32 insn_len, ctrl_cpu0;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
exit_qual = vmcs_read(EXI_QUALIFICATION);
insn_len = vmcs_read(EXI_INST_LEN);
switch (reason) {
case VMX_IO:
switch (vmx_get_test_stage()) {
case 0:
case 1:
vmx_inc_test_stage();
break;
case 2:
report("I/O bitmap - I/O width, byte",
(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE);
report("I/O bitmap - I/O direction, in", exit_qual & VMX_IO_IN);
vmx_inc_test_stage();
break;
case 3:
report("I/O bitmap - I/O width, word",
(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD);
report("I/O bitmap - I/O direction, out",
!(exit_qual & VMX_IO_IN));
vmx_inc_test_stage();
break;
case 4:
report("I/O bitmap - I/O width, long",
(exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG);
vmx_inc_test_stage();
break;
case 5:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
vmx_inc_test_stage();
break;
case 6:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
vmx_inc_test_stage();
break;
case 7:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
vmx_inc_test_stage();
break;
case 8:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
vmx_inc_test_stage();
break;
case 9:
case 10:
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
vmx_inc_test_stage();
break;
default:
// Should not reach here
report("unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 9:
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
break;
case 10:
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
break;
default:
// Should not reach here
report("unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
printf("guest_rip = %#lx\n", guest_rip);
printf("\tERROR : Undefined exit reason, reason = %ld.\n", reason);
break;
}
return VMX_TEST_VMEXIT;
}
#define INSN_CPU0 0
#define INSN_CPU1 1
#define INSN_ALWAYS_TRAP 2
#define FIELD_EXIT_QUAL (1 << 0)
#define FIELD_INSN_INFO (1 << 1)
asm(
"insn_hlt: hlt;ret\n\t"
"insn_invlpg: invlpg 0x12345678;ret\n\t"
"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
"insn_rdtsc: rdtsc;ret\n\t"
"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
"insn_cr3_store: mov %cr3,%rax;ret\n\t"
#ifdef __x86_64__
"insn_cr8_load: mov %rax,%cr8;ret\n\t"
"insn_cr8_store: mov %cr8,%rax;ret\n\t"
#endif
"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
"insn_pause: pause;ret\n\t"
"insn_wbinvd: wbinvd;ret\n\t"
"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
"insn_invd: invd;ret\n\t"
"insn_sgdt: sgdt gdt64_desc;ret\n\t"
"insn_lgdt: lgdt gdt64_desc;ret\n\t"
"insn_sidt: sidt idt_descr;ret\n\t"
"insn_lidt: lidt idt_descr;ret\n\t"
"insn_sldt: sldt %ax;ret\n\t"
"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
"insn_str: str %ax;ret\n\t"
"insn_rdrand: rdrand %rax;ret\n\t"
"insn_rdseed: rdseed %rax;ret\n\t"
);
extern void insn_hlt();
extern void insn_invlpg();
extern void insn_mwait();
extern void insn_rdpmc();
extern void insn_rdtsc();
extern void insn_cr3_load();
extern void insn_cr3_store();
#ifdef __x86_64__
extern void insn_cr8_load();
extern void insn_cr8_store();
#endif
extern void insn_monitor();
extern void insn_pause();
extern void insn_wbinvd();
extern void insn_sgdt();
extern void insn_lgdt();
extern void insn_sidt();
extern void insn_lidt();
extern void insn_sldt();
extern void insn_lldt();
extern void insn_str();
extern void insn_cpuid();
extern void insn_invd();
extern void insn_rdrand();
extern void insn_rdseed();
u32 cur_insn;
u64 cr3;
struct insn_table {
const char *name;
u32 flag;
void (*insn_func)();
u32 type;
u32 reason;
ulong exit_qual;
u32 insn_info;
// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
// which field need to be tested, reason is always tested
u32 test_field;
};
/*
* Add more test cases of instruction intercept here. Elements in this
* table is:
* name/control flag/insn function/type/exit reason/exit qulification/
* instruction info/field to test
* The last field defines which fields (exit_qual and insn_info) need to be
* tested in exit handler. If set to 0, only "reason" is checked.
*/
static struct insn_table insn_table[] = {
// Flags for Primary Processor-Based VM-Execution Controls
{"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
0x12345678, 0, FIELD_EXIT_QUAL},
{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0},
{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0},
{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
FIELD_EXIT_QUAL},
{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
FIELD_EXIT_QUAL},
#ifdef __x86_64__
{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
FIELD_EXIT_QUAL},
{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
FIELD_EXIT_QUAL},
#endif
{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0},
{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
// Flags for Secondary Processor-Based VM-Execution Controls
{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
/* LTR causes a #GP if done with a busy selector, so it is not tested. */
{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
// Instructions always trap
{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
// Instructions never trap
{NULL},
};
static int insn_intercept_init()
{
u32 ctrl_cpu;
ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
ctrl_cpu &= ctrl_cpu_rev[0].clr;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
cr3 = read_cr3();
return VMX_TEST_START;
}
static void insn_intercept_main()
{
for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
vmx_set_test_stage(cur_insn * 2);
if ((insn_table[cur_insn].type == INSN_CPU0 &&
!(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
(insn_table[cur_insn].type == INSN_CPU1 &&
!(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
insn_table[cur_insn].type - INSN_CPU0,
insn_table[cur_insn].name);
continue;
}
if ((insn_table[cur_insn].type == INSN_CPU0 &&
!(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
(insn_table[cur_insn].type == INSN_CPU1 &&
!(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
/* skip hlt, it stalls the guest and is tested below */
if (insn_table[cur_insn].insn_func != insn_hlt)
insn_table[cur_insn].insn_func();
report("execute %s", vmx_get_test_stage() == cur_insn * 2,
insn_table[cur_insn].name);
} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
insn_table[cur_insn].type - INSN_CPU0,
insn_table[cur_insn].name);
vmcall();
insn_table[cur_insn].insn_func();
report("intercept %s", vmx_get_test_stage() == cur_insn * 2 + 1,
insn_table[cur_insn].name);
vmx_set_test_stage(cur_insn * 2 + 1);
vmcall();
}
}
static int insn_intercept_exit_handler()
{
u64 guest_rip;
u32 reason;
ulong exit_qual;
u32 insn_len;
u32 insn_info;
bool pass;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
exit_qual = vmcs_read(EXI_QUALIFICATION);
insn_len = vmcs_read(EXI_INST_LEN);
insn_info = vmcs_read(EXI_INST_INFO);
if (reason == VMX_VMCALL) {
u32 val = 0;
if (insn_table[cur_insn].type == INSN_CPU0)
val = vmcs_read(CPU_EXEC_CTRL0);
else if (insn_table[cur_insn].type == INSN_CPU1)
val = vmcs_read(CPU_EXEC_CTRL1);
if (vmx_get_test_stage() & 1)
val &= ~insn_table[cur_insn].flag;
else
val |= insn_table[cur_insn].flag;
if (insn_table[cur_insn].type == INSN_CPU0)
vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
else if (insn_table[cur_insn].type == INSN_CPU1)
vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
} else {
pass = (cur_insn * 2 == vmx_get_test_stage()) &&
insn_table[cur_insn].reason == reason;
if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
insn_table[cur_insn].exit_qual != exit_qual)
pass = false;
if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
insn_table[cur_insn].insn_info != insn_info)
pass = false;
if (pass)
vmx_inc_test_stage();
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
}
/* Enables EPT and sets up the identity map. */
static int setup_ept(bool enable_ad)
{
unsigned long end_of_memory;
u32 ctrl_cpu[2];
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_EPT)) {
printf("\tEPT is not supported");
return 1;
}
if (!(ept_vpid.val & EPT_CAP_UC) &&
!(ept_vpid.val & EPT_CAP_WB)) {
printf("\tEPT paging-structure memory type "
"UC&WB are not supported\n");
return 1;
}
if (ept_vpid.val & EPT_CAP_UC)
eptp = EPT_MEM_TYPE_UC;
else
eptp = EPT_MEM_TYPE_WB;
if (!(ept_vpid.val & EPT_CAP_PWL4)) {
printf("\tPWL4 is not supported\n");
return 1;
}
ctrl_cpu[0] = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu[1] = vmcs_read(CPU_EXEC_CTRL1);
ctrl_cpu[0] = (ctrl_cpu[0] | CPU_SECONDARY)
& ctrl_cpu_rev[0].clr;
ctrl_cpu[1] = (ctrl_cpu[1] | CPU_EPT)
& ctrl_cpu_rev[1].clr;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu[0]);
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu[1]);
eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
pml4 = alloc_page();
memset(pml4, 0, PAGE_SIZE);
eptp |= virt_to_phys(pml4);
if (enable_ad)
eptp |= EPTP_AD_FLAG;
vmcs_write(EPTP, eptp);
end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
if (end_of_memory < (1ul << 32))
end_of_memory = (1ul << 32);
/* Cannot use large EPT pages if we need to track EPT
* accessed/dirty bits at 4K granularity.
*/
setup_ept_range(pml4, 0, end_of_memory, 0,
!enable_ad && ept_2m_supported(),
EPT_WA | EPT_RA | EPT_EA);
return 0;
}
static void ept_enable_ad_bits(void)
{
eptp |= EPTP_AD_FLAG;
vmcs_write(EPTP, eptp);
}
static void ept_disable_ad_bits(void)
{
eptp &= ~EPTP_AD_FLAG;
vmcs_write(EPTP, eptp);
}
static void ept_enable_ad_bits_or_skip_test(void)
{
if (!ept_ad_bits_supported())
test_skip("EPT AD bits not supported.");
ept_enable_ad_bits();
}
static int apic_version;
static int ept_init_common(bool have_ad)
{
if (setup_ept(have_ad))
return VMX_TEST_EXIT;
data_page1 = alloc_page();
data_page2 = alloc_page();
memset(data_page1, 0x0, PAGE_SIZE);
memset(data_page2, 0x0, PAGE_SIZE);
*((u32 *)data_page1) = MAGIC_VAL_1;
*((u32 *)data_page2) = MAGIC_VAL_2;
install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
EPT_RA | EPT_WA | EPT_EA);
apic_version = apic_read(APIC_LVR);
return VMX_TEST_START;
}
static int ept_init()
{
return ept_init_common(false);
}
static void ept_common()
{
vmx_set_test_stage(0);
if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
*((u32 *)data_page1) != MAGIC_VAL_1)
report("EPT basic framework - read", 0);
else {
*((u32 *)data_page2) = MAGIC_VAL_3;
vmcall();
if (vmx_get_test_stage() == 1) {
if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
*((u32 *)data_page2) == MAGIC_VAL_2)
report("EPT basic framework", 1);
else
report("EPT basic framework - remap", 1);
}
}
// Test EPT Misconfigurations
vmx_set_test_stage(1);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_1;
if (vmx_get_test_stage() != 2) {
report("EPT misconfigurations", 0);
goto t1;
}
vmx_set_test_stage(2);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_1;
report("EPT misconfigurations", vmx_get_test_stage() == 3);
t1:
// Test EPT violation
vmx_set_test_stage(3);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_1;
report("EPT violation - page permission", vmx_get_test_stage() == 4);
// Violation caused by EPT paging structure
vmx_set_test_stage(4);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_2;
report("EPT violation - paging structure", vmx_get_test_stage() == 5);
}
static void ept_main()
{
ept_common();
// Test EPT access to L1 MMIO
vmx_set_test_stage(6);
report("EPT - MMIO access", *((u32 *)0xfee00030UL) == apic_version);
// Test invalid operand for INVEPT
vmcall();
report("EPT - unsupported INVEPT", vmx_get_test_stage() == 7);
}
bool invept_test(int type, u64 eptp)
{
bool ret, supported;
supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
ret = invept(type, eptp);
if (ret == !supported)
return false;
if (!supported)
printf("WARNING: unsupported invept passed!\n");
else
printf("WARNING: invept failed!\n");
return true;
}
static int pml_exit_handler(void)
{
u16 index, count;
ulong reason = vmcs_read(EXI_REASON) & 0xff;
u64 *pmlbuf = pml_log;
u64 guest_rip = vmcs_read(GUEST_RIP);;
u64 guest_cr3 = vmcs_read(GUEST_CR3);
u32 insn_len = vmcs_read(EXI_INST_LEN);
switch (reason) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
index = vmcs_read(GUEST_PML_INDEX);
for (count = index + 1; count < PML_INDEX; count++) {
if (pmlbuf[count] == (u64)data_page2) {
vmx_inc_test_stage();
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
break;
}
}
break;
case 1:
index = vmcs_read(GUEST_PML_INDEX);
/* Keep clearing the dirty bit till a overflow */
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
break;
default:
report("unexpected stage, %d.", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_PML_FULL:
vmx_inc_test_stage();
vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
return VMX_TEST_RESUME;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
static int ept_exit_handler_common(bool have_ad)
{
u64 guest_rip;
u64 guest_cr3;
ulong reason;
u32 insn_len;
u32 exit_qual;
static unsigned long data_page1_pte, data_page1_pte_pte;
guest_rip = vmcs_read(GUEST_RIP);
guest_cr3 = vmcs_read(GUEST_CR3);
reason = vmcs_read(EXI_REASON) & 0xff;
insn_len = vmcs_read(EXI_INST_LEN);
exit_qual = vmcs_read(EXI_QUALIFICATION);
switch (reason) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
check_ept_ad(pml4, guest_cr3,
(unsigned long)data_page1,
have_ad ? EPT_ACCESS_FLAG : 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
check_ept_ad(pml4, guest_cr3,
(unsigned long)data_page2,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
if (have_ad)
ept_sync(INVEPT_SINGLE, eptp);;
if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
*((u32 *)data_page2) == MAGIC_VAL_2) {
vmx_inc_test_stage();
install_ept(pml4, (unsigned long)data_page2,
(unsigned long)data_page2,
EPT_RA | EPT_WA | EPT_EA);
} else
report("EPT basic framework - write", 0);
break;
case 1:
install_ept(pml4, (unsigned long)data_page1,
(unsigned long)data_page1, EPT_WA);
ept_sync(INVEPT_SINGLE, eptp);
break;
case 2:
install_ept(pml4, (unsigned long)data_page1,
(unsigned long)data_page1,
EPT_RA | EPT_WA | EPT_EA |
(2 << EPT_MEM_TYPE_SHIFT));
ept_sync(INVEPT_SINGLE, eptp);
break;
case 3:
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1, &data_page1_pte));
set_ept_pte(pml4, (unsigned long)data_page1,
1, data_page1_pte & ~EPT_PRESENT);
ept_sync(INVEPT_SINGLE, eptp);
break;
case 4:
TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
2, &data_page1_pte));
data_page1_pte &= PAGE_MASK;
TEST_ASSERT(get_ept_pte(pml4, data_page1_pte,
2, &data_page1_pte_pte));
set_ept_pte(pml4, data_page1_pte, 2,
data_page1_pte_pte & ~EPT_PRESENT);
ept_sync(INVEPT_SINGLE, eptp);
break;
case 6:
if (!invept_test(0, eptp))
vmx_inc_test_stage();
break;
// Should not reach here
default:
report("ERROR - unexpected stage, %d.", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_EPT_MISCONFIG:
switch (vmx_get_test_stage()) {
case 1:
case 2:
vmx_inc_test_stage();
install_ept(pml4, (unsigned long)data_page1,
(unsigned long)data_page1,
EPT_RA | EPT_WA | EPT_EA);
ept_sync(INVEPT_SINGLE, eptp);
break;
// Should not reach here
default:
report("ERROR - unexpected stage, %d.", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
return VMX_TEST_RESUME;
case VMX_EPT_VIOLATION:
switch(vmx_get_test_stage()) {
case 3:
check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
EPT_VLT_PADDR))
vmx_inc_test_stage();
set_ept_pte(pml4, (unsigned long)data_page1,
1, data_page1_pte | (EPT_PRESENT));
ept_sync(INVEPT_SINGLE, eptp);
break;
case 4:
check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
if (exit_qual == (EPT_VLT_RD |
(have_ad ? EPT_VLT_WR : 0) |
EPT_VLT_LADDR_VLD))
vmx_inc_test_stage();
set_ept_pte(pml4, data_page1_pte, 2,
data_page1_pte_pte | (EPT_PRESENT));
ept_sync(INVEPT_SINGLE, eptp);
break;
default:
// Should not reach here
report("ERROR : unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
return VMX_TEST_RESUME;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
static int ept_exit_handler()
{
return ept_exit_handler_common(false);
}
static int eptad_init()
{
int r = ept_init_common(true);
if (r == VMX_TEST_EXIT)
return r;
if ((rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & EPT_CAP_AD_FLAG) == 0) {
printf("\tEPT A/D bits are not supported");
return VMX_TEST_EXIT;
}
return r;
}
static int pml_init()
{
u32 ctrl_cpu;
int r = eptad_init();
if (r == VMX_TEST_EXIT)
return r;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_PML)) {
printf("\tPML is not supported");
return VMX_TEST_EXIT;
}
pml_log = alloc_page();
memset(pml_log, 0x0, PAGE_SIZE);
vmcs_write(PMLADDR, (u64)pml_log);
vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
return VMX_TEST_START;
}
static void pml_main()
{
int count = 0;
vmx_set_test_stage(0);
*((u32 *)data_page2) = 0x1;
vmcall();
report("PML - Dirty GPA Logging", vmx_get_test_stage() == 1);
while (vmx_get_test_stage() == 1) {
vmcall();
*((u32 *)data_page2) = 0x1;
if (count++ > PML_INDEX)
break;
}
report("PML Full Event", vmx_get_test_stage() == 2);
}
static void eptad_main()
{
ept_common();
}
static int eptad_exit_handler()
{
return ept_exit_handler_common(true);
}
bool invvpid_test(int type, u16 vpid)
{
bool ret, supported;
supported = ept_vpid.val &
(VPID_CAP_INVVPID_ADDR >> INVVPID_ADDR << type);
ret = invvpid(type, vpid, 0);
if (ret == !supported)
return false;
if (!supported)
printf("WARNING: unsupported invvpid passed!\n");
else
printf("WARNING: invvpid failed!\n");
return true;
}
static int vpid_init()
{
u32 ctrl_cpu1;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_VPID)) {
printf("\tVPID is not supported");
return VMX_TEST_EXIT;
}
ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
ctrl_cpu1 |= CPU_VPID;
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
return VMX_TEST_START;
}
static void vpid_main()
{
vmx_set_test_stage(0);
vmcall();
report("INVVPID SINGLE ADDRESS", vmx_get_test_stage() == 1);
vmx_set_test_stage(2);
vmcall();
report("INVVPID SINGLE", vmx_get_test_stage() == 3);
vmx_set_test_stage(4);
vmcall();
report("INVVPID ALL", vmx_get_test_stage() == 5);
}
static int vpid_exit_handler()
{
u64 guest_rip;
ulong reason;
u32 insn_len;
guest_rip = vmcs_read(GUEST_RIP);
reason = vmcs_read(EXI_REASON) & 0xff;
insn_len = vmcs_read(EXI_INST_LEN);
switch (reason) {
case VMX_VMCALL:
switch(vmx_get_test_stage()) {
case 0:
if (!invvpid_test(INVVPID_ADDR, 1))
vmx_inc_test_stage();
break;
case 2:
if (!invvpid_test(INVVPID_CONTEXT_GLOBAL, 1))
vmx_inc_test_stage();
break;
case 4:
if (!invvpid_test(INVVPID_ALL, 1))
vmx_inc_test_stage();
break;
default:
report("ERROR: unexpected stage, %d", false,
vmx_get_test_stage());
print_vmexit_info();
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
#define TIMER_VECTOR 222
static volatile bool timer_fired;
static void timer_isr(isr_regs_t *regs)
{
timer_fired = true;
apic_write(APIC_EOI, 0);
}
static int interrupt_init(struct vmcs *vmcs)
{
msr_bmp_init();
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
handle_irq(TIMER_VECTOR, timer_isr);
return VMX_TEST_START;
}
static void interrupt_main(void)
{
long long start, loops;
vmx_set_test_stage(0);
apic_write(APIC_LVTT, TIMER_VECTOR);
irq_enable();
apic_write(APIC_TMICT, 1);
for (loops = 0; loops < 10000000 && !timer_fired; loops++)
asm volatile ("nop");
report("direct interrupt while running guest", timer_fired);
apic_write(APIC_TMICT, 0);
irq_disable();
vmcall();
timer_fired = false;
apic_write(APIC_TMICT, 1);
for (loops = 0; loops < 10000000 && !timer_fired; loops++)
asm volatile ("nop");
report("intercepted interrupt while running guest", timer_fired);
irq_enable();
apic_write(APIC_TMICT, 0);
irq_disable();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
asm volatile ("sti; hlt");
report("direct interrupt + hlt",
rdtsc() - start > 1000000 && timer_fired);
apic_write(APIC_TMICT, 0);
irq_disable();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
asm volatile ("sti; hlt");
report("intercepted interrupt + hlt",
rdtsc() - start > 10000 && timer_fired);
apic_write(APIC_TMICT, 0);
irq_disable();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
irq_enable();
asm volatile ("nop");
vmcall();
report("direct interrupt + activity state hlt",
rdtsc() - start > 10000 && timer_fired);
apic_write(APIC_TMICT, 0);
irq_disable();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
irq_enable();
asm volatile ("nop");
vmcall();
report("intercepted interrupt + activity state hlt",
rdtsc() - start > 10000 && timer_fired);
apic_write(APIC_TMICT, 0);
irq_disable();
vmx_set_test_stage(7);
vmcall();
timer_fired = false;
apic_write(APIC_TMICT, 1);
for (loops = 0; loops < 10000000 && !timer_fired; loops++)
asm volatile ("nop");
report("running a guest with interrupt acknowledgement set", timer_fired);
}
static int interrupt_exit_handler(void)
{
u64 guest_rip = vmcs_read(GUEST_RIP);
ulong reason = vmcs_read(EXI_REASON) & 0xff;
u32 insn_len = vmcs_read(EXI_INST_LEN);
switch (reason) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
case 2:
case 5:
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
break;
case 7:
vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
break;
case 1:
case 3:
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
break;
case 4:
case 6:
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
break;
}
vmx_inc_test_stage();
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_EXTINT:
if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
handle_external_interrupt(vector);
} else {
irq_enable();
asm volatile ("nop");
irq_disable();
}
if (vmx_get_test_stage() >= 2)
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
return VMX_TEST_RESUME;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
static int dbgctls_init(struct vmcs *vmcs)
{
u64 dr7 = 0x402;
u64 zero = 0;
msr_bmp_init();
asm volatile(
"mov %0,%%dr0\n\t"
"mov %0,%%dr1\n\t"
"mov %0,%%dr2\n\t"
"mov %1,%%dr7\n\t"
: : "r" (zero), "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
vmcs_write(GUEST_DR7, 0x404);
vmcs_write(GUEST_DEBUGCTL, 0x2);
vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
return VMX_TEST_START;
}
static void dbgctls_main(void)
{
u64 dr7, debugctl;
asm volatile("mov %%dr7,%0" : "=r" (dr7));
debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
/* Commented out: KVM does not support DEBUGCTL so far */
(void)debugctl;
report("Load debug controls", dr7 == 0x404 /* && debugctl == 0x2 */);
dr7 = 0x408;
asm volatile("mov %0,%%dr7" : : "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
vmx_set_test_stage(0);
vmcall();
report("Save debug controls", vmx_get_test_stage() == 1);
if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
printf("\tDebug controls are always loaded/saved\n");
return;
}
vmx_set_test_stage(2);
vmcall();
asm volatile("mov %%dr7,%0" : "=r" (dr7));
debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
/* Commented out: KVM does not support DEBUGCTL so far */
(void)debugctl;
report("Guest=host debug controls", dr7 == 0x402 /* && debugctl == 0x1 */);
dr7 = 0x408;
asm volatile("mov %0,%%dr7" : : "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
vmx_set_test_stage(3);
vmcall();
report("Don't save debug controls", vmx_get_test_stage() == 4);
}
static int dbgctls_exit_handler(void)
{
unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
u32 insn_len = vmcs_read(EXI_INST_LEN);
u64 guest_rip = vmcs_read(GUEST_RIP);
u64 dr7, debugctl;
asm volatile("mov %%dr7,%0" : "=r" (dr7));
debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
switch (reason) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
if (dr7 == 0x400 && debugctl == 0 &&
vmcs_read(GUEST_DR7) == 0x408 /* &&
Commented out: KVM does not support DEBUGCTL so far
vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
vmx_inc_test_stage();
break;
case 2:
dr7 = 0x402;
asm volatile("mov %0,%%dr7" : : "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
vmcs_write(GUEST_DR7, 0x404);
vmcs_write(GUEST_DEBUGCTL, 0x2);
vmcs_write(ENT_CONTROLS,
vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
vmcs_write(EXI_CONTROLS,
vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
break;
case 3:
if (dr7 == 0x400 && debugctl == 0 &&
vmcs_read(GUEST_DR7) == 0x404 /* &&
Commented out: KVM does not support DEBUGCTL so far
vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
vmx_inc_test_stage();
break;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
report("Unknown exit reason, %d", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
struct vmx_msr_entry {
u32 index;
u32 reserved;
u64 value;
} __attribute__((packed));
#define MSR_MAGIC 0x31415926
struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
static int msr_switch_init(struct vmcs *vmcs)
{
msr_bmp_init();
exit_msr_store = alloc_page();
exit_msr_load = alloc_page();
entry_msr_load = alloc_page();
memset(exit_msr_store, 0, PAGE_SIZE);
memset(exit_msr_load, 0, PAGE_SIZE);
memset(entry_msr_load, 0, PAGE_SIZE);
entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
entry_msr_load[0].value = MSR_MAGIC;
vmx_set_test_stage(1);
vmcs_write(ENT_MSR_LD_CNT, 1);
vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
vmcs_write(EXI_MSR_ST_CNT, 1);
vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
vmcs_write(EXI_MSR_LD_CNT, 1);
vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
return VMX_TEST_START;
}
static void msr_switch_main()
{
if (vmx_get_test_stage() == 1) {
report("VM entry MSR load",
rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC);
vmx_set_test_stage(2);
wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
exit_msr_load[0].value = MSR_MAGIC + 2;
}
vmcall();
}
static int msr_switch_exit_handler()
{
ulong reason;
reason = vmcs_read(EXI_REASON);
if (reason == VMX_VMCALL && vmx_get_test_stage() == 2) {
report("VM exit MSR store",
exit_msr_store[0].value == MSR_MAGIC + 1);
report("VM exit MSR load",
rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2);
vmx_set_test_stage(3);
entry_msr_load[0].index = MSR_FS_BASE;
return VMX_TEST_RESUME;
}
printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
__func__, vmx_get_test_stage(), reason);
return VMX_TEST_EXIT;
}
static int msr_switch_entry_failure(struct vmentry_failure *failure)
{
ulong reason;
if (failure->early) {
printf("ERROR %s: early exit\n", __func__);
return VMX_TEST_EXIT;
}
reason = vmcs_read(EXI_REASON);
if (reason == (VMX_ENTRY_FAILURE | VMX_FAIL_MSR) &&
vmx_get_test_stage() == 3) {
report("VM entry MSR load: try to load FS_BASE",
vmcs_read(EXI_QUALIFICATION) == 1);
return VMX_TEST_VMEXIT;
}
printf("ERROR %s: unexpected stage=%u or reason=%lu\n",
__func__, vmx_get_test_stage(), reason);
return VMX_TEST_EXIT;
}
static int vmmcall_init(struct vmcs *vmcs )
{
vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
return VMX_TEST_START;
}
static void vmmcall_main(void)
{
asm volatile(
"mov $0xABCD, %%rax\n\t"
"vmmcall\n\t"
::: "rax");
report("VMMCALL", 0);
}
static int vmmcall_exit_handler()
{
ulong reason;
reason = vmcs_read(EXI_REASON);
switch (reason) {
case VMX_VMCALL:
printf("here\n");
report("VMMCALL triggers #UD", 0);
break;
case VMX_EXC_NMI:
report("VMMCALL triggers #UD",
(vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR);
break;
default:
report("Unknown exit reason, %ld", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
static int disable_rdtscp_init(struct vmcs *vmcs)
{
u32 ctrl_cpu1;
if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
ctrl_cpu1 &= ~CPU_RDTSCP;
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
}
return VMX_TEST_START;
}
static void disable_rdtscp_ud_handler(struct ex_regs *regs)
{
switch (vmx_get_test_stage()) {
case 0:
report("RDTSCP triggers #UD", true);
vmx_inc_test_stage();
regs->rip += 3;
break;
case 2:
report("RDPID triggers #UD", true);
vmx_inc_test_stage();
regs->rip += 4;
break;
}
return;
}
static void disable_rdtscp_main(void)
{
/* Test that #UD is properly injected in L2. */
handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
vmx_set_test_stage(0);
asm volatile("rdtscp" : : : "eax", "ecx", "edx");
vmcall();
asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
vmcall();
}
static int disable_rdtscp_exit_handler(void)
{
unsigned int reason = vmcs_read(EXI_REASON) & 0xff;
switch (reason) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
report("RDTSCP triggers #UD", false);
vmx_inc_test_stage();
/* fallthrough */
case 1:
vmx_inc_test_stage();
vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
return VMX_TEST_RESUME;
case 2:
report("RDPID triggers #UD", false);
break;
}
break;
default:
report("Unknown exit reason, %d", false, reason);
print_vmexit_info();
}
return VMX_TEST_VMEXIT;
}
int int3_init()
{
vmcs_write(EXC_BITMAP, ~0u);
return VMX_TEST_START;
}
void int3_guest_main()
{
asm volatile ("int3");
}
int int3_exit_handler()
{
u32 reason = vmcs_read(EXI_REASON);
u32 intr_info = vmcs_read(EXI_INTR_INFO);
report("L1 intercepts #BP", reason == VMX_EXC_NMI &&
(intr_info & INTR_INFO_VALID_MASK) &&
(intr_info & INTR_INFO_VECTOR_MASK) == BP_VECTOR &&
((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
return VMX_TEST_VMEXIT;
}
int into_init()
{
vmcs_write(EXC_BITMAP, ~0u);
return VMX_TEST_START;
}
void into_guest_main()
{
struct far_pointer32 fp = {
.offset = (uintptr_t)&&into,
.selector = KERNEL_CS32,
};
register uintptr_t rsp asm("rsp");
if (fp.offset != (uintptr_t)&&into) {
printf("Code address too high.\n");
return;
}
if ((u32)rsp != rsp) {
printf("Stack address too high.\n");
return;
}
asm goto ("lcall *%0" : : "m" (fp) : "rax" : into);
return;
into:
asm volatile (".code32;"
"movl $0x7fffffff, %eax;"
"addl %eax, %eax;"
"into;"
"lret;"
".code64");
__builtin_unreachable();
}
int into_exit_handler()
{
u32 reason = vmcs_read(EXI_REASON);
u32 intr_info = vmcs_read(EXI_INTR_INFO);
report("L1 intercepts #OF", reason == VMX_EXC_NMI &&
(intr_info & INTR_INFO_VALID_MASK) &&
(intr_info & INTR_INFO_VECTOR_MASK) == OF_VECTOR &&
((intr_info & INTR_INFO_INTR_TYPE_MASK) >>
INTR_INFO_INTR_TYPE_SHIFT) == VMX_INTR_TYPE_SOFT_EXCEPTION);
return VMX_TEST_VMEXIT;
}
static void exit_monitor_from_l2_main(void)
{
printf("Calling exit(0) from l2...\n");
exit(0);
}
static int exit_monitor_from_l2_handler(void)
{
report("The guest should have killed the VMM", false);
return VMX_TEST_EXIT;
}
static void assert_exit_reason(u64 expected)
{
u64 actual = vmcs_read(EXI_REASON);
TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
exit_reason_description(expected),
exit_reason_description(actual));
}
static void skip_exit_vmcall()
{
u64 guest_rip = vmcs_read(GUEST_RIP);
u32 insn_len = vmcs_read(EXI_INST_LEN);
assert_exit_reason(VMX_VMCALL);
vmcs_write(GUEST_RIP, guest_rip + insn_len);
}
static void v2_null_test_guest(void)
{
}
static void v2_null_test(void)
{
test_set_guest(v2_null_test_guest);
enter_guest();
report(__func__, 1);
}
static void v2_multiple_entries_test_guest(void)
{
vmx_set_test_stage(1);
vmcall();
vmx_set_test_stage(2);
}
static void v2_multiple_entries_test(void)
{
test_set_guest(v2_multiple_entries_test_guest);
enter_guest();
TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
skip_exit_vmcall();
enter_guest();
TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
report(__func__, 1);
}
static int fixture_test_data = 1;
static void fixture_test_teardown(void *data)
{
*((int *) data) = 1;
}
static void fixture_test_guest(void)
{
fixture_test_data++;
}
static void fixture_test_setup(void)
{
TEST_ASSERT_EQ_MSG(1, fixture_test_data,
"fixture_test_teardown didn't run?!");
fixture_test_data = 2;
test_add_teardown(fixture_test_teardown, &fixture_test_data);
test_set_guest(fixture_test_guest);
}
static void fixture_test_case1(void)
{
fixture_test_setup();
TEST_ASSERT_EQ(2, fixture_test_data);
enter_guest();
TEST_ASSERT_EQ(3, fixture_test_data);
report(__func__, 1);
}
static void fixture_test_case2(void)
{
fixture_test_setup();
TEST_ASSERT_EQ(2, fixture_test_data);
enter_guest();
TEST_ASSERT_EQ(3, fixture_test_data);
report(__func__, 1);
}
enum ept_access_op {
OP_READ,
OP_WRITE,
OP_EXEC,
OP_FLUSH_TLB,
OP_EXIT,
};
static struct ept_access_test_data {
unsigned long gpa;
unsigned long *gva;
unsigned long hpa;
unsigned long *hva;
enum ept_access_op op;
} ept_access_test_data;
extern unsigned char ret42_start;
extern unsigned char ret42_end;
/* Returns 42. */
asm(
".align 64\n"
"ret42_start:\n"
"mov $42, %eax\n"
"ret\n"
"ret42_end:\n"
);
static void
diagnose_ept_violation_qual(u64 expected, u64 actual)
{
#define DIAGNOSE(flag) \
do { \
if ((expected & flag) != (actual & flag)) \
printf(#flag " %sexpected\n", \
(expected & flag) ? "" : "un"); \
} while (0)
DIAGNOSE(EPT_VLT_RD);
DIAGNOSE(EPT_VLT_WR);
DIAGNOSE(EPT_VLT_FETCH);
DIAGNOSE(EPT_VLT_PERM_RD);
DIAGNOSE(EPT_VLT_PERM_WR);
DIAGNOSE(EPT_VLT_PERM_EX);
DIAGNOSE(EPT_VLT_LADDR_VLD);
DIAGNOSE(EPT_VLT_PADDR);
#undef DIAGNOSE
}
static void do_ept_access_op(enum ept_access_op op)
{
ept_access_test_data.op = op;
enter_guest();
}
/*
* Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
* needed by tests that modify guest PTEs.
*/
static void ept_access_test_guest_flush_tlb(void)
{
do_ept_access_op(OP_FLUSH_TLB);
skip_exit_vmcall();
}
/*
* Modifies the EPT entry at @level in the mapping of @gpa. First clears the
* bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
* a huge page.
*/
static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
unsigned long clear, unsigned long set)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
unsigned long pte;
/* Screw with the mapping at the requested level. */
TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
pte = orig_pte;
if (mkhuge)
pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
else
pte = orig_pte;
pte = (pte & ~clear) | set;
set_ept_pte(pml4, gpa, level, pte);
ept_sync(INVEPT_SINGLE, eptp);
return orig_pte;
}
static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
{
set_ept_pte(pml4, gpa, level, orig_pte);
}
static void do_ept_violation(bool leaf, enum ept_access_op op,
u64 expected_qual, u64 expected_paddr)
{
u64 qual;
/* Try the access and observe the violation. */
do_ept_access_op(op);
assert_exit_reason(VMX_EPT_VIOLATION);
qual = vmcs_read(EXI_QUALIFICATION);
diagnose_ept_violation_qual(expected_qual, qual);
TEST_EXPECT_EQ(expected_qual, qual);
#if 0
/* Disable for now otherwise every test will fail */
TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
(unsigned long) (
op == OP_EXEC ? data->gva + 1 : data->gva));
#endif
/*
* TODO: tests that probe expected_paddr in pages other than the one at
* the beginning of the 1g region.
*/
TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
}
static void
ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
unsigned long set, enum ept_access_op op,
u64 expected_qual)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
do_ept_violation(level == 1 || mkhuge, op, expected_qual,
op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
data->gpa);
/* Fix the violation and resume the op loop. */
ept_untwiddle(data->gpa, level, orig_pte);
enter_guest();
skip_exit_vmcall();
}
static void
ept_violation_at_level(int level, unsigned long clear, unsigned long set,
enum ept_access_op op, u64 expected_qual)
{
ept_violation_at_level_mkhuge(false, level, clear, set, op,
expected_qual);
if (ept_huge_pages_supported(level))
ept_violation_at_level_mkhuge(true, level, clear, set, op,
expected_qual);
}
static void ept_violation(unsigned long clear, unsigned long set,
enum ept_access_op op, u64 expected_qual)
{
ept_violation_at_level(1, clear, set, op, expected_qual);
ept_violation_at_level(2, clear, set, op, expected_qual);
ept_violation_at_level(3, clear, set, op, expected_qual);
ept_violation_at_level(4, clear, set, op, expected_qual);
}
static void ept_access_violation(unsigned long access, enum ept_access_op op,
u64 expected_qual)
{
ept_violation(EPT_PRESENT, access, op,
expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
/*
* For translations that don't involve a GVA, that is physical address (paddr)
* accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical
* guest memory access, the hardware does GVA -> GPA -> HPA. However, certain
* translations don't involve GVAs, such as when the hardware does the guest
* page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
* might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
* on isn't present in the EPT, then the EPT violation will be for GPA_2 and
* the EPT_VLT_PADDR bit will be clear in the exit qualification.
*
* Note that paddr violations can also be triggered by loading PAE page tables
* with wonky addresses. We don't test that yet.
*
* This function modifies the EPT entry that maps the GPA that the guest page
* table entry mapping ept_access_data.gva resides on.
*
* @ept_access EPT permissions to set. Other permissions are cleared.
*
* @pte_ad Set the A/D bits on the guest PTE accordingly.
*
* @op Guest operation to perform with ept_access_data.gva.
*
* @expect_violation
* Is a violation expected during the paddr access?
*
* @expected_qual Expected qualification for the EPT violation.
* EPT_VLT_PADDR should be clear.
*/
static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
enum ept_access_op op, bool expect_violation,
u64 expected_qual)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long *ptep;
unsigned long gpa;
unsigned long orig_epte;
/* Modify the guest PTE mapping data->gva according to @pte_ad. */
ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
TEST_ASSERT(ptep);
TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
ept_access_test_guest_flush_tlb();
/*
* Now modify the access bits on the EPT entry for the GPA that the
* guest PTE resides on. Note that by modifying a single EPT entry,
* we're potentially affecting 512 guest PTEs. However, we've carefully
* constructed our test such that those other 511 PTEs aren't used by
* the guest: data->gva is at the beginning of a 1G huge page, thus the
* PTE we're modifying is at the beginning of a 4K page and the
* following 511 entires are also under our control (and not touched by
* the guest).
*/
gpa = virt_to_phys(ptep);
TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
/*
* Make sure the guest page table page is mapped with a 4K EPT entry,
* otherwise our level=1 twiddling below will fail. We use the
* identity map (gpa = gpa) since page tables are shared with the host.
*/
install_ept(pml4, gpa, gpa, EPT_PRESENT);
orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
/*clear=*/EPT_PRESENT, /*set=*/ept_access);
if (expect_violation) {
do_ept_violation(/*leaf=*/true, op,
expected_qual | EPT_VLT_LADDR_VLD, gpa);
ept_untwiddle(gpa, /*level=*/1, orig_epte);
do_ept_access_op(op);
} else {
do_ept_access_op(op);
ept_untwiddle(gpa, /*level=*/1, orig_epte);
}
TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
TEST_ASSERT(*ptep & PT_DIRTY_MASK);
skip_exit_vmcall();
}
static void ept_access_allowed_paddr(unsigned long ept_access,
unsigned long pte_ad,
enum ept_access_op op)
{
ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
/*expected_qual=*/-1);
}
static void ept_access_violation_paddr(unsigned long ept_access,
unsigned long pte_ad,
enum ept_access_op op,
u64 expected_qual)
{
ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
expected_qual);
}
static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
unsigned long clear,
unsigned long set,
enum ept_access_op op)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
/* No violation. Should proceed to vmcall. */
do_ept_access_op(op);
skip_exit_vmcall();
ept_untwiddle(data->gpa, level, orig_pte);
}
static void ept_allowed_at_level(int level, unsigned long clear,
unsigned long set, enum ept_access_op op)
{
ept_allowed_at_level_mkhuge(false, level, clear, set, op);
if (ept_huge_pages_supported(level))
ept_allowed_at_level_mkhuge(true, level, clear, set, op);
}
static void ept_allowed(unsigned long clear, unsigned long set,
enum ept_access_op op)
{
ept_allowed_at_level(1, clear, set, op);
ept_allowed_at_level(2, clear, set, op);
ept_allowed_at_level(3, clear, set, op);
ept_allowed_at_level(4, clear, set, op);
}
static void ept_ignored_bit(int bit)
{
/* Set the bit. */
ept_allowed(0, 1ul << bit, OP_READ);
ept_allowed(0, 1ul << bit, OP_WRITE);
ept_allowed(0, 1ul << bit, OP_EXEC);
/* Clear the bit. */
ept_allowed(1ul << bit, 0, OP_READ);
ept_allowed(1ul << bit, 0, OP_WRITE);
ept_allowed(1ul << bit, 0, OP_EXEC);
}
static void ept_access_allowed(unsigned long access, enum ept_access_op op)
{
ept_allowed(EPT_PRESENT, access, op);
}
static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
unsigned long clear,
unsigned long set,
enum ept_access_op op)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
do_ept_access_op(op);
assert_exit_reason(VMX_EPT_MISCONFIG);
/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
#if 0
/* broken: */
TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
#endif
#if 0
/*
* broken:
* According to description of exit qual for EPT violation,
* EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
* However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
* to be set for msiconfig.
*/
TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
(unsigned long) (
op == OP_EXEC ? data->gva + 1 : data->gva));
#endif
/* Fix the violation and resume the op loop. */
ept_untwiddle(data->gpa, level, orig_pte);
enter_guest();
skip_exit_vmcall();
}
static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
unsigned long clear,
unsigned long set)
{
/* The op shouldn't matter (read, write, exec), so try them all! */
ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
}
static void ept_misconfig_at_level(int level, unsigned long clear,
unsigned long set)
{
ept_misconfig_at_level_mkhuge(false, level, clear, set);
if (ept_huge_pages_supported(level))
ept_misconfig_at_level_mkhuge(true, level, clear, set);
}
static void ept_misconfig(unsigned long clear, unsigned long set)
{
ept_misconfig_at_level(1, clear, set);
ept_misconfig_at_level(2, clear, set);
ept_misconfig_at_level(3, clear, set);
ept_misconfig_at_level(4, clear, set);
}
static void ept_access_misconfig(unsigned long access)
{
ept_misconfig(EPT_PRESENT, access);
}
static void ept_reserved_bit_at_level_nohuge(int level, int bit)
{
/* Setting the bit causes a misconfig. */
ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
/* Making the entry non-present turns reserved bits into ignored. */
ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
static void ept_reserved_bit_at_level_huge(int level, int bit)
{
/* Setting the bit causes a misconfig. */
ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
/* Making the entry non-present turns reserved bits into ignored. */
ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
static void ept_reserved_bit_at_level(int level, int bit)
{
/* Setting the bit causes a misconfig. */
ept_misconfig_at_level(level, 0, 1ul << bit);
/* Making the entry non-present turns reserved bits into ignored. */
ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
static void ept_reserved_bit(int bit)
{
ept_reserved_bit_at_level(1, bit);
ept_reserved_bit_at_level(2, bit);
ept_reserved_bit_at_level(3, bit);
ept_reserved_bit_at_level(4, bit);
}
#define PAGE_2M_ORDER 9
#define PAGE_1G_ORDER 18
static void *get_1g_page(void)
{
static void *alloc;
if (!alloc)
alloc = alloc_pages(PAGE_1G_ORDER);
return alloc;
}
static void ept_access_test_teardown(void *unused)
{
/* Exit the guest cleanly. */
do_ept_access_op(OP_EXIT);
}
static void ept_access_test_guest(void)
{
struct ept_access_test_data *data = &ept_access_test_data;
int (*code)(void) = (int (*)(void)) &data->gva[1];
while (true) {
switch (data->op) {
case OP_READ:
TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
break;
case OP_WRITE:
*data->gva = MAGIC_VAL_2;
TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
*data->gva = MAGIC_VAL_1;
break;
case OP_EXEC:
TEST_ASSERT_EQ(42, code());
break;
case OP_FLUSH_TLB:
write_cr3(read_cr3());
break;
case OP_EXIT:
return;
default:
TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
}
vmcall();
}
}
static void ept_access_test_setup(void)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long npages = 1ul << PAGE_1G_ORDER;
unsigned long size = npages * PAGE_SIZE;
unsigned long *page_table = current_page_table();
unsigned long pte;
if (setup_ept(false))
test_skip("EPT not supported");
test_set_guest(ept_access_test_guest);
test_add_teardown(ept_access_test_teardown, NULL);
data->hva = get_1g_page();
TEST_ASSERT(data->hva);
data->hpa = virt_to_phys(data->hva);
data->gpa = 1ul << 40;
data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
size);
TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
install_pages(page_table, data->gpa, size, data->gva);
/*
* Make sure nothing's mapped here so the tests that screw with the
* pml4 entry don't inadvertently break something.
*/
TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
data->hva[0] = MAGIC_VAL_1;
memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
}
static void ept_access_test_not_present(void)
{
ept_access_test_setup();
/* --- */
ept_access_violation(0, OP_READ, EPT_VLT_RD);
ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
}
static void ept_access_test_read_only(void)
{
ept_access_test_setup();
/* r-- */
ept_access_allowed(EPT_RA, OP_READ);
ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
}
static void ept_access_test_write_only(void)
{
ept_access_test_setup();
/* -w- */
ept_access_misconfig(EPT_WA);
}
static void ept_access_test_read_write(void)
{
ept_access_test_setup();
/* rw- */
ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
}
static void ept_access_test_execute_only(void)
{
ept_access_test_setup();
/* --x */
if (ept_execute_only_supported()) {
ept_access_violation(EPT_EA, OP_READ,
EPT_VLT_RD | EPT_VLT_PERM_EX);
ept_access_violation(EPT_EA, OP_WRITE,
EPT_VLT_WR | EPT_VLT_PERM_EX);
ept_access_allowed(EPT_EA, OP_EXEC);
} else {
ept_access_misconfig(EPT_EA);
}
}
static void ept_access_test_read_execute(void)
{
ept_access_test_setup();
/* r-x */
ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
}
static void ept_access_test_write_execute(void)
{
ept_access_test_setup();
/* -wx */
ept_access_misconfig(EPT_WA | EPT_EA);
}
static void ept_access_test_read_write_execute(void)
{
ept_access_test_setup();
/* rwx */
ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
}
static void ept_access_test_reserved_bits(void)
{
int i;
int maxphyaddr;
ept_access_test_setup();
/* Reserved bits above maxphyaddr. */
maxphyaddr = cpuid_maxphyaddr();
for (i = maxphyaddr; i <= 51; i++) {
report_prefix_pushf("reserved_bit=%d", i);
ept_reserved_bit(i);
report_prefix_pop();
}
/* Level-specific reserved bits. */
ept_reserved_bit_at_level_nohuge(2, 3);
ept_reserved_bit_at_level_nohuge(2, 4);
ept_reserved_bit_at_level_nohuge(2, 5);
ept_reserved_bit_at_level_nohuge(2, 6);
/* 2M alignment. */
for (i = 12; i < 20; i++) {
report_prefix_pushf("reserved_bit=%d", i);
ept_reserved_bit_at_level_huge(2, i);
report_prefix_pop();
}
ept_reserved_bit_at_level_nohuge(3, 3);
ept_reserved_bit_at_level_nohuge(3, 4);
ept_reserved_bit_at_level_nohuge(3, 5);
ept_reserved_bit_at_level_nohuge(3, 6);
/* 1G alignment. */
for (i = 12; i < 29; i++) {
report_prefix_pushf("reserved_bit=%d", i);
ept_reserved_bit_at_level_huge(3, i);
report_prefix_pop();
}
ept_reserved_bit_at_level(4, 3);
ept_reserved_bit_at_level(4, 4);
ept_reserved_bit_at_level(4, 5);
ept_reserved_bit_at_level(4, 6);
ept_reserved_bit_at_level(4, 7);
}
static void ept_access_test_ignored_bits(void)
{
ept_access_test_setup();
/*
* Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
* far as translation is concerned even if AD bits are enabled in the
* EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
* control is 0.
*/
ept_ignored_bit(8);
ept_ignored_bit(9);
ept_ignored_bit(10);
ept_ignored_bit(11);
ept_ignored_bit(52);
ept_ignored_bit(53);
ept_ignored_bit(54);
ept_ignored_bit(55);
ept_ignored_bit(56);
ept_ignored_bit(57);
ept_ignored_bit(58);
ept_ignored_bit(59);
ept_ignored_bit(60);
ept_ignored_bit(61);
ept_ignored_bit(62);
ept_ignored_bit(63);
}
static void ept_access_test_paddr_not_present_ad_disabled(void)
{
ept_access_test_setup();
ept_disable_ad_bits();
ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
}
static void ept_access_test_paddr_not_present_ad_enabled(void)
{
u64 qual = EPT_VLT_RD | EPT_VLT_WR;
ept_access_test_setup();
ept_enable_ad_bits_or_skip_test();
ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
}
static void ept_access_test_paddr_read_only_ad_disabled(void)
{
/*
* When EPT AD bits are disabled, all accesses to guest paging
* structures are reported separately as a read and (after
* translation of the GPA to host physical address) a read+write
* if the A/D bits have to be set.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
ept_access_test_setup();
ept_disable_ad_bits();
/* Can't update A bit, so all accesses fail. */
ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
/* AD bits disabled, so only writes try to update the D bit. */
ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
/* Both A and D already set, so read-only is OK. */
ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
}
static void ept_access_test_paddr_read_only_ad_enabled(void)
{
/*
* When EPT AD bits are enabled, all accesses to guest paging
* structures are considered writes as far as EPT translation
* is concerned.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
ept_access_test_setup();
ept_enable_ad_bits_or_skip_test();
ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
}
static void ept_access_test_paddr_read_write(void)
{
ept_access_test_setup();
/* Read-write access to paging structure. */
ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
}
static void ept_access_test_paddr_read_write_execute(void)
{
ept_access_test_setup();
/* RWX access to paging structure. */
ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
}
static void ept_access_test_paddr_read_execute_ad_disabled(void)
{
/*
* When EPT AD bits are disabled, all accesses to guest paging
* structures are reported separately as a read and (after
* translation of the GPA to host physical address) a read+write
* if the A/D bits have to be set.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
ept_access_test_setup();
ept_disable_ad_bits();
/* Can't update A bit, so all accesses fail. */
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
/* AD bits disabled, so only writes try to update the D bit. */
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
/* Both A and D already set, so read-only is OK. */
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
}
static void ept_access_test_paddr_read_execute_ad_enabled(void)
{
/*
* When EPT AD bits are enabled, all accesses to guest paging
* structures are considered writes as far as EPT translation
* is concerned.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
ept_access_test_setup();
ept_enable_ad_bits_or_skip_test();
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
}
static void ept_access_test_paddr_not_present_page_fault(void)
{
ept_access_test_setup();
/*
* TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
* page is read-only in EPT but GVA is also mapped read only in PT.
* Thus guest page fault before host takes EPT violation for trying to
* update A bit.
*/
}
static void ept_access_test_force_2m_page(void)
{
ept_access_test_setup();
TEST_ASSERT_EQ(ept_2m_supported(), true);
ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
EPT_VLT_WR | EPT_VLT_PERM_RD |
EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
}
static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
{
u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
TEST_ASSERT(msr & VPID_CAP_INVVPID);
if (type < INVVPID_ADDR || type > INVVPID_CONTEXT_LOCAL)
return false;
if (!(msr & (1ull << (type + VPID_CAP_INVVPID_TYPES_SHIFT))))
return false;
if (vpid >> 16)
return false;
if (type != INVVPID_ALL && !vpid)
return false;
if (type == INVVPID_ADDR && !is_canonical(gla))
return false;
return true;
}
static void try_invvpid(u64 type, u64 vpid, u64 gla)
{
int rc;
bool valid = invvpid_valid(type, vpid, gla);
u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
/*
* Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
* that we can tell if it is updated by INVVPID.
*/
vmcs_read(~0);
rc = invvpid(type, vpid, gla);
report("INVVPID type %ld VPID %lx GLA %lx %s",
!rc == valid, type, vpid, gla,
valid ? "passes" : "fails");
report("After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
vmcs_read(VMX_INST_ERROR) == expected,
rc ? "failed" : "successful",
expected, vmcs_read(VMX_INST_ERROR));
}
static void ds_invvpid(void *data)
{
u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
asm volatile("invvpid %0, %1"
:
: "m"(*(struct invvpid_operand *)data),
"r"(type));
}
/*
* The SS override is ignored in 64-bit mode, so we use an addressing
* mode with %rsp as the base register to generate an implicit SS
* reference.
*/
static void ss_invvpid(void *data)
{
u64 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
u64 type = ffs(msr >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
: "+r"(data)
: "r"(type));
}
static void invvpid_test_gp(void)
{
bool fault;
fault = test_for_exception(GP_VECTOR, &ds_invvpid,
(void *)NONCANONICAL);
report("INVVPID with non-canonical DS operand raises #GP", fault);
}
static void invvpid_test_ss(void)
{
bool fault;
fault = test_for_exception(SS_VECTOR, &ss_invvpid,
(void *)NONCANONICAL);
report("INVVPID with non-canonical SS operand raises #SS", fault);
}
static void invvpid_test_pf(void)
{
void *vpage = alloc_vpage();
bool fault;
fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
report("INVVPID with unmapped operand raises #PF", fault);
}
static void try_compat_invvpid(void *unused)
{
struct far_pointer32 fp = {
.offset = (uintptr_t)&&invvpid,
.selector = KERNEL_CS32,
};
register uintptr_t rsp asm("rsp");
TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
"Code address too high.");
TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
return;
invvpid:
asm volatile (".code32;"
"invvpid (%eax), %eax;"
"lret;"
".code64");
__builtin_unreachable();
}
static void invvpid_test_compatibility_mode(void)
{
bool fault;
fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
report("Compatibility mode INVVPID raises #UD", fault);
}
static void invvpid_test_not_in_vmx_operation(void)
{
bool fault;
TEST_ASSERT(!vmx_off());
fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
report("INVVPID outside of VMX operation raises #UD", fault);
TEST_ASSERT(!vmx_on());
}
/*
* This does not test real-address mode, virtual-8086 mode, protected mode,
* or CPL > 0.
*/
static void invvpid_test_v2(void)
{
u64 msr;
int i;
unsigned types = 0;
unsigned type;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_VPID))
test_skip("VPID not supported");
msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
if (!(msr & VPID_CAP_INVVPID))
test_skip("INVVPID not supported.\n");
if (msr & VPID_CAP_INVVPID_ADDR)
types |= 1u << INVVPID_ADDR;
if (msr & VPID_CAP_INVVPID_CXTGLB)
types |= 1u << INVVPID_CONTEXT_GLOBAL;
if (msr & VPID_CAP_INVVPID_ALL)
types |= 1u << INVVPID_ALL;
if (msr & VPID_CAP_INVVPID_CXTLOC)
types |= 1u << INVVPID_CONTEXT_LOCAL;
if (!types)
test_skip("No INVVPID types supported.\n");
for (i = -127; i < 128; i++)
try_invvpid(i, 0xffff, 0);
/*
* VPID must not be more than 16 bits.
*/
for (i = 0; i < 64; i++)
for (type = 0; type < 4; type++)
if (types & (1u << type))
try_invvpid(type, 1ul << i, 0);
/*
* VPID must not be zero, except for "all contexts."
*/
for (type = 0; type < 4; type++)
if (types & (1u << type))
try_invvpid(type, 0, 0);
/*
* The gla operand is only validated for single-address INVVPID.
*/
if (types & (1u << INVVPID_ADDR))
try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
invvpid_test_gp();
invvpid_test_ss();
invvpid_test_pf();
invvpid_test_compatibility_mode();
invvpid_test_not_in_vmx_operation();
}
/*
* Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
* at least as far as the guest-state checks. Returns false if the
* VMLAUNCH fails early and execution falls through to the next
* instruction.
*/
static bool vmlaunch_succeeds(void)
{
/*
* Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
* unsupported VMCS component"). The caller can then check
* to see if a failed VM-entry sets VMX_INST_ERR as expected.
*/
vmcs_write(~0u, 0);
vmcs_write(HOST_RIP, (uintptr_t)&&success);
__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
:
: "r" ((u64)HOST_RSP)
: "cc", "memory"
: success);
return false;
success:
TEST_ASSERT(vmcs_read(EXI_REASON) ==
(VMX_FAIL_STATE | VMX_ENTRY_FAILURE));
return true;
}
/*
* Try to launch the current VMCS.
*/
static void test_vmx_controls(bool controls_valid, bool xfail)
{
bool success = vmlaunch_succeeds();
u32 vmx_inst_err;
report_xfail("vmlaunch %s", xfail, success == controls_valid,
controls_valid ? "succeeds" : "fails");
if (!success) {
vmx_inst_err = vmcs_read(VMX_INST_ERROR);
report("VMX inst error is %d (actual %d)",
vmx_inst_err == VMXERR_ENTRY_INVALID_CONTROL_FIELD,
VMXERR_ENTRY_INVALID_CONTROL_FIELD, vmx_inst_err);
}
}
/*
* Test a particular value of a VM-execution control bit, if the value
* is required or if the value is zero.
*/
static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
enum Encoding encoding, unsigned bit,
unsigned val)
{
u32 mask = 1u << bit;
bool expected;
u32 controls;
if (msr.set & mask)
TEST_ASSERT(msr.clr & mask);
/*
* We can't arbitrarily turn on a control bit, because it may
* introduce dependencies on other VMCS fields. So, we only
* test turning on bits that have a required setting.
*/
if (val && (msr.clr & mask) && !(msr.set & mask))
return;
report_prefix_pushf("%s %s bit %d",
val ? "Set" : "Clear", name, bit);
controls = vmcs_read(encoding);
if (val) {
vmcs_write(encoding, msr.set | mask);
expected = (msr.clr & mask);
} else {
vmcs_write(encoding, msr.set & ~mask);
expected = !(msr.set & mask);
}
test_vmx_controls(expected, false);
vmcs_write(encoding, controls);
report_prefix_pop();
}
/*
* Test reserved values of a VM-execution control bit, based on the
* allowed bit settings from the corresponding VMX capability MSR.
*/
static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
enum Encoding encoding, unsigned bit)
{
test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
}
/*
* Reserved bits in the pin-based VM-execution controls must be set
* properly. Software may consult the VMX capability MSRs to determine
* the proper settings.
* [Intel SDM]
*/
static void test_pin_based_ctls(void)
{
unsigned bit;
printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
"MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
for (bit = 0; bit < 32; bit++)
test_rsvd_ctl_bit("pin-based controls",
ctrl_pin_rev, PIN_CONTROLS, bit);
}
/*
* Reserved bits in the primary processor-based VM-execution controls
* must be set properly. Software may consult the VMX capability MSRs
* to determine the proper settings.
* [Intel SDM]
*/
static void test_primary_processor_based_ctls(void)
{
unsigned bit;
printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
"MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
for (bit = 0; bit < 32; bit++)
test_rsvd_ctl_bit("primary processor-based controls",
ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
}
/*
* If the "activate secondary controls" primary processor-based
* VM-execution control is 1, reserved bits in the secondary
* processor-based VM-execution controls must be cleared. Software may
* consult the VMX capability MSRs to determine which bits are
* reserved.
* If the "activate secondary controls" primary processor-based
* VM-execution control is 0 (or if the processor does not support the
* 1-setting of that control), no checks are performed on the
* secondary processor-based VM-execution controls.
* [Intel SDM]
*/
static void test_secondary_processor_based_ctls(void)
{
u32 primary;
u32 secondary;
unsigned bit;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
return;
primary = vmcs_read(CPU_EXEC_CTRL0);
secondary = vmcs_read(CPU_EXEC_CTRL1);
vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
for (bit = 0; bit < 32; bit++)
test_rsvd_ctl_bit("secondary processor-based controls",
ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
/*
* When the "activate secondary controls" VM-execution control
* is clear, there are no checks on the secondary controls.
*/
vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, ~0);
report("Secondary processor-based controls ignored",
vmlaunch_succeeds());
vmcs_write(CPU_EXEC_CTRL1, secondary);
vmcs_write(CPU_EXEC_CTRL0, primary);
}
static void try_cr3_target_count(unsigned i, unsigned max)
{
report_prefix_pushf("CR3 target count 0x%x", i);
vmcs_write(CR3_TARGET_COUNT, i);
test_vmx_controls(i <= max, false);
report_prefix_pop();
}
/*
* The CR3-target count must not be greater than 4. Future processors
* may support a different number of CR3-target values. Software
* should read the VMX capability MSR IA32_VMX_MISC to determine the
* number of values supported.
* [Intel SDM]
*/
static void test_cr3_targets(void)
{
unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
unsigned i;
printf("\nSupported CR3 targets: %d\n", supported_targets);
TEST_ASSERT(supported_targets <= 256);
try_cr3_target_count(-1u, supported_targets);
try_cr3_target_count(0x80000000, supported_targets);
try_cr3_target_count(0x7fffffff, supported_targets);
for (i = 0; i <= supported_targets + 1; i++)
try_cr3_target_count(i, supported_targets);
vmcs_write(CR3_TARGET_COUNT, cr3_targets);
}
/*
* Test a particular address setting for a physical page reference in
* the VMCS.
*/
static void test_vmcs_page_addr(const char *name,
enum Encoding encoding,
bool ignored,
bool xfail_beyond_mapped_ram,
u64 addr)
{
bool xfail =
(xfail_beyond_mapped_ram &&
addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - PAGE_SIZE &&
addr < (1ul << cpuid_maxphyaddr()));
report_prefix_pushf("%s = %lx", name, addr);
vmcs_write(encoding, addr);
test_vmx_controls(ignored || (IS_ALIGNED(addr, PAGE_SIZE) &&
addr < (1ul << cpuid_maxphyaddr())),
xfail);
report_prefix_pop();
xfail = false;
}
/*
* Test interesting values for a physical page reference in the VMCS.
*/
static void test_vmcs_page_values(const char *name,
enum Encoding encoding,
bool ignored,
bool xfail_beyond_mapped_ram)
{
unsigned i;
u64 orig_val = vmcs_read(encoding);
for (i = 0; i < 64; i++)
test_vmcs_page_addr(name, encoding, ignored,
xfail_beyond_mapped_ram, 1ul << i);
test_vmcs_page_addr(name, encoding, ignored,
xfail_beyond_mapped_ram, PAGE_SIZE - 1);
test_vmcs_page_addr(name, encoding, ignored,
xfail_beyond_mapped_ram, PAGE_SIZE);
test_vmcs_page_addr(name, encoding, ignored,
xfail_beyond_mapped_ram,
(1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
test_vmcs_page_addr(name, encoding, ignored,
xfail_beyond_mapped_ram,
-1ul);
vmcs_write(encoding, orig_val);
}
/*
* Test a physical page reference in the VMCS, when the corresponding
* feature is enabled and when the corresponding feature is disabled.
*/
static void test_vmcs_page_reference(u32 control_bit, enum Encoding field,
const char *field_name,
const char *control_name,
bool xfail_beyond_mapped_ram)
{
u32 primary = vmcs_read(CPU_EXEC_CTRL0);
u64 page_addr;
if (!(ctrl_cpu_rev[0].clr & control_bit))
return;
page_addr = vmcs_read(field);
report_prefix_pushf("%s enabled", control_name);
vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
test_vmcs_page_values(field_name, field, false, xfail_beyond_mapped_ram);
report_prefix_pop();
report_prefix_pushf("%s disabled", control_name);
vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
test_vmcs_page_values(field_name, field, true, false);
report_prefix_pop();
vmcs_write(field, page_addr);
vmcs_write(CPU_EXEC_CTRL0, primary);
}
/*
* If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
* each I/O-bitmap address must be 0. Neither address should set any
* bits beyond the processor's physical-address width.
* [Intel SDM]
*/
static void test_io_bitmaps(void)
{
test_vmcs_page_reference(CPU_IO_BITMAP, IO_BITMAP_A,
"I/O bitmap A", "Use I/O bitmaps", false);
test_vmcs_page_reference(CPU_IO_BITMAP, IO_BITMAP_B,
"I/O bitmap B", "Use I/O bitmaps", false);
}
/*
* If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
* the MSR-bitmap address must be 0. The address should not set any
* bits beyond the processor's physical-address width.
* [Intel SDM]
*/
static void test_msr_bitmap(void)
{
test_vmcs_page_reference(CPU_MSR_BITMAP, MSR_BITMAP,
"MSR bitmap", "Use MSR bitmaps", false);
}
/*
* If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
* address must satisfy the following checks:
* - Bits 11:0 of the address must be 0.
* - The address should not set any bits beyond the processor's
* physical-address width.
* [Intel SDM]
*/
static void test_apic_virt_addr(void)
{
test_vmcs_page_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
"virtual-APIC address", "Use TPR shadow", true);
}
static void try_tpr_threshold(unsigned val)
{
bool valid = true;
if ((vmcs_read(CPU_EXEC_CTRL0) & CPU_TPR_SHADOW) &&
!((vmcs_read(CPU_EXEC_CTRL0) & CPU_SECONDARY) &&
(vmcs_read(CPU_EXEC_CTRL1) & CPU_VINTD)))
valid = !(val >> 4);
report_prefix_pushf("TPR threshold 0x%x", val);
vmcs_write(TPR_THRESHOLD, val);
test_vmx_controls(valid, false);
report_prefix_pop();
}
/*
* Test interesting TPR threshold values.
*/
static void test_tpr_threshold_values(void)
{
unsigned i;
for (i = 0; i < 0x10; i++)
try_tpr_threshold(i);
for (i = 4; i < 32; i++)
try_tpr_threshold(1u << i);
try_tpr_threshold(-1u);
try_tpr_threshold(0x7fffffff);
}
/*
* If the "use TPR shadow" VM-execution control is 1 and the
* "virtual-interrupt delivery" VM-execution control is 0, bits 31:4
* of the TPR threshold VM-execution control field must be 0.
* [Intel SDM]
*/
static void test_tpr_threshold(void)
{
u32 primary = vmcs_read(CPU_EXEC_CTRL0);
void *virtual_apic_page;
if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
return;
virtual_apic_page = alloc_page();
memset(virtual_apic_page, 0xff, PAGE_SIZE);
vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
report_prefix_pushf("Use TPR shadow disabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
report_prefix_pushf("Use TPR shadow enabled");
test_tpr_threshold_values();
report_prefix_pop();
if ((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0,
vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
report_prefix_pushf("Use TPR shadow enabled; virtual-interrupt delivery enabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, secondary);
}
vmcs_write(CPU_EXEC_CTRL0, primary);
}
/*
* Check that the virtual CPU checks all of the VMX controls as
* documented in the Intel SDM.
*/
static void vmx_controls_test(void)
{
/*
* Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
* fail due to invalid guest state, should we make it that
* far.
*/
vmcs_write(GUEST_RFLAGS, 0);
test_pin_based_ctls();
test_primary_processor_based_ctls();
test_secondary_processor_based_ctls();
test_cr3_targets();
test_io_bitmaps();
test_msr_bitmap();
test_apic_virt_addr();
test_tpr_threshold();
}
static bool valid_vmcs_for_vmentry(void)
{
struct vmcs *current_vmcs = NULL;
if (vmcs_save(&current_vmcs))
return false;
return current_vmcs && !(current_vmcs->revision_id >> 31);
}
static void try_vmentry_in_movss_shadow(void)
{
u32 vm_inst_err;
u32 flags;
bool early_failure = false;
u32 expected_flags = X86_EFLAGS_FIXED;
bool valid_vmcs = valid_vmcs_for_vmentry();
expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
/*
* Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
* unsupported VMCS component").
*/
vmcs_write(~0u, 0);
__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
"vmwrite %%rsp, %%rdx;"
"mov 0f, %%rax;"
"mov %[host_rip], %%edx;"
"vmwrite %%rax, %%rdx;"
"mov $-1, %%ah;"
"sahf;"
"mov %%ss, %%ax;"
"mov %%ax, %%ss;"
"vmlaunch;"
"mov $1, %[early_failure];"
"0: lahf;"
"movzbl %%ah, %[flags]"
: [early_failure] "+r" (early_failure),
[flags] "=&a" (flags)
: [host_rsp] "i" (HOST_RSP),
[host_rip] "i" (HOST_RIP)
: "rdx", "cc", "memory");
vm_inst_err = vmcs_read(VMX_INST_ERROR);
report("Early VM-entry failure", early_failure);
report("RFLAGS[8:0] is %x (actual %x)", flags == expected_flags,
expected_flags, flags);
if (valid_vmcs)
report("VM-instruction error is %d (actual %d)",
vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
}
static void vmentry_movss_shadow_test(void)
{
struct vmcs *orig_vmcs;
TEST_ASSERT(!vmcs_save(&orig_vmcs));
/*
* Set the launched flag on the current VMCS to verify the correct
* error priority, below.
*/
test_set_guest(v2_null_test_guest);
enter_guest();
/*
* With bit 1 of the guest's RFLAGS clear, VM-entry should
* fail due to invalid guest state (if we make it that far).
*/
vmcs_write(GUEST_RFLAGS, 0);
/*
* "VM entry with events blocked by MOV SS" takes precedence over
* "VMLAUNCH with non-clear VMCS."
*/
report_prefix_push("valid current-VMCS");
try_vmentry_in_movss_shadow();
report_prefix_pop();
/*
* VMfailInvalid takes precedence over "VM entry with events
* blocked by MOV SS."
*/
TEST_ASSERT(!vmcs_clear(orig_vmcs));
report_prefix_push("no current-VMCS");
try_vmentry_in_movss_shadow();
report_prefix_pop();
TEST_ASSERT(!make_vmcs_current(orig_vmcs));
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
}
#define X86_FEATURE_PCID (1 << 17)
#define X86_FEATURE_MCE (1 << 7)
static int write_cr4_checking(unsigned long val)
{
asm volatile(ASM_TRY("1f")
"mov %0, %%cr4\n\t"
"1:": : "r" (val));
return exception_vector();
}
static void vmx_cr_load_test(void)
{
struct cpuid _cpuid = cpuid(1);
unsigned long cr4 = read_cr4(), cr3 = read_cr3();
if (!(_cpuid.c & X86_FEATURE_PCID)) {
report_skip("PCID not detected");
return;
}
if (!(_cpuid.d & X86_FEATURE_MCE)) {
report_skip("MCE not detected");
return;
}
TEST_ASSERT(!(cr4 & (X86_CR4_PCIDE | X86_CR4_MCE)));
TEST_ASSERT(!(cr3 & X86_CR3_PCID_MASK));
/* Enable PCID for L1. */
cr4 |= X86_CR4_PCIDE;
cr3 |= 0x1;
TEST_ASSERT(!write_cr4_checking(cr4));
write_cr3(cr3);
test_set_guest(v2_null_test_guest);
vmcs_write(HOST_CR4, cr4);
vmcs_write(HOST_CR3, cr3);
enter_guest();
/*
* No exception is expected.
*
* NB. KVM loads the last guest write to CR4 into CR4 read
* shadow. In order to trigger an exit to KVM, we can set a
* bit that was zero in the above CR4 write and is owned by
* KVM. We choose to set CR4.MCE, which shall have no side
* effect because normally no guest MCE (e.g., as the result
* of bad memory) would happen during this test.
*/
TEST_ASSERT(!write_cr4_checking(cr4 | X86_CR4_MCE));
/* Cleanup L1 state: disable PCID. */
write_cr3(cr3 & ~X86_CR3_PCID_MASK);
TEST_ASSERT(!write_cr4_checking(cr4 & ~X86_CR4_PCIDE));
}
#define TEST(name) { #name, .v2 = name }
/* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
struct vmx_test vmx_tests[] = {
{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
{ "preemption timer", preemption_timer_init, preemption_timer_main,
preemption_timer_exit_handler, NULL, {0} },
{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
test_ctrl_pat_exit_handler, NULL, {0} },
{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
test_ctrl_efer_exit_handler, NULL, {0} },
{ "CR shadowing", NULL, cr_shadowing_main,
cr_shadowing_exit_handler, NULL, {0} },
{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
NULL, {0} },
{ "instruction intercept", insn_intercept_init, insn_intercept_main,
insn_intercept_exit_handler, NULL, {0} },
{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
{ "VPID", vpid_init, vpid_main, vpid_exit_handler, NULL, {0} },
{ "interrupt", interrupt_init, interrupt_main,
interrupt_exit_handler, NULL, {0} },
{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
NULL, {0} },
{ "MSR switch", msr_switch_init, msr_switch_main,
msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
disable_rdtscp_exit_handler, NULL, {0} },
{ "int3", int3_init, int3_guest_main, int3_exit_handler, NULL, {0} },
{ "into", into_init, into_guest_main, into_exit_handler, NULL, {0} },
{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
exit_monitor_from_l2_handler, NULL, {0} },
/* Basic V2 tests. */
TEST(v2_null_test),
TEST(v2_multiple_entries_test),
TEST(fixture_test_case1),
TEST(fixture_test_case2),
/* EPT access tests. */
TEST(ept_access_test_not_present),
TEST(ept_access_test_read_only),
TEST(ept_access_test_write_only),
TEST(ept_access_test_read_write),
TEST(ept_access_test_execute_only),
TEST(ept_access_test_read_execute),
TEST(ept_access_test_write_execute),
TEST(ept_access_test_read_write_execute),
TEST(ept_access_test_reserved_bits),
TEST(ept_access_test_ignored_bits),
TEST(ept_access_test_paddr_not_present_ad_disabled),
TEST(ept_access_test_paddr_not_present_ad_enabled),
TEST(ept_access_test_paddr_read_only_ad_disabled),
TEST(ept_access_test_paddr_read_only_ad_enabled),
TEST(ept_access_test_paddr_read_write),
TEST(ept_access_test_paddr_read_write_execute),
TEST(ept_access_test_paddr_read_execute_ad_disabled),
TEST(ept_access_test_paddr_read_execute_ad_enabled),
TEST(ept_access_test_paddr_not_present_page_fault),
TEST(ept_access_test_force_2m_page),
/* Opcode tests. */
TEST(invvpid_test_v2),
/* VM-entry tests */
TEST(vmx_controls_test),
TEST(vmentry_movss_shadow_test),
/* Regression tests */
TEST(vmx_cr_load_test),
{ NULL, NULL, NULL, NULL, NULL, {0} },
};