| #ifndef _X86_PROCESSOR_H_ |
| #define _X86_PROCESSOR_H_ |
| |
| #include "libcflat.h" |
| #include "desc.h" |
| #include "msr.h" |
| #include <bitops.h> |
| #include <stdint.h> |
| #include <util.h> |
| |
| #define CANONICAL_48_VAL 0xffffaaaaaaaaaaaaull |
| #define CANONICAL_57_VAL 0xffaaaaaaaaaaaaaaull |
| #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull |
| |
| #define LAM57_MASK GENMASK_ULL(62, 57) |
| #define LAM48_MASK GENMASK_ULL(62, 48) |
| |
| /* |
| * Get a linear address by combining @addr with a non-canonical pattern in the |
| * @mask bits. |
| */ |
| static inline u64 get_non_canonical(u64 addr, u64 mask) |
| { |
| return (addr & ~mask) | (NONCANONICAL & mask); |
| } |
| |
| #ifdef __x86_64__ |
| # define R "r" |
| # define W "q" |
| # define S "8" |
| #else |
| # define R "e" |
| # define W "l" |
| # define S "4" |
| #endif |
| |
| #define DE_VECTOR 0 |
| #define DB_VECTOR 1 |
| #define NMI_VECTOR 2 |
| #define BP_VECTOR 3 |
| #define OF_VECTOR 4 |
| #define BR_VECTOR 5 |
| #define UD_VECTOR 6 |
| #define NM_VECTOR 7 |
| #define DF_VECTOR 8 |
| #define TS_VECTOR 10 |
| #define NP_VECTOR 11 |
| #define SS_VECTOR 12 |
| #define GP_VECTOR 13 |
| #define PF_VECTOR 14 |
| #define MF_VECTOR 16 |
| #define AC_VECTOR 17 |
| #define MC_VECTOR 18 |
| #define XM_VECTOR 19 |
| #define XF_VECTOR XM_VECTOR /* AMD */ |
| #define VE_VECTOR 20 /* Intel only */ |
| #define CP_VECTOR 21 |
| #define HV_VECTOR 28 /* AMD only */ |
| #define VC_VECTOR 29 /* AMD only */ |
| #define SX_VECTOR 30 /* AMD only */ |
| |
| #define X86_CR0_PE_BIT (0) |
| #define X86_CR0_PE BIT(X86_CR0_PE_BIT) |
| #define X86_CR0_MP_BIT (1) |
| #define X86_CR0_MP BIT(X86_CR0_MP_BIT) |
| #define X86_CR0_EM_BIT (2) |
| #define X86_CR0_EM BIT(X86_CR0_EM_BIT) |
| #define X86_CR0_TS_BIT (3) |
| #define X86_CR0_TS BIT(X86_CR0_TS_BIT) |
| #define X86_CR0_ET_BIT (4) |
| #define X86_CR0_ET BIT(X86_CR0_ET_BIT) |
| #define X86_CR0_NE_BIT (5) |
| #define X86_CR0_NE BIT(X86_CR0_NE_BIT) |
| #define X86_CR0_WP_BIT (16) |
| #define X86_CR0_WP BIT(X86_CR0_WP_BIT) |
| #define X86_CR0_AM_BIT (18) |
| #define X86_CR0_AM BIT(X86_CR0_AM_BIT) |
| #define X86_CR0_NW_BIT (29) |
| #define X86_CR0_NW BIT(X86_CR0_NW_BIT) |
| #define X86_CR0_CD_BIT (30) |
| #define X86_CR0_CD BIT(X86_CR0_CD_BIT) |
| #define X86_CR0_PG_BIT (31) |
| #define X86_CR0_PG BIT(X86_CR0_PG_BIT) |
| |
| #define X86_CR3_PCID_MASK GENMASK(11, 0) |
| #define X86_CR3_LAM_U57_BIT (61) |
| #define X86_CR3_LAM_U57 BIT_ULL(X86_CR3_LAM_U57_BIT) |
| #define X86_CR3_LAM_U48_BIT (62) |
| #define X86_CR3_LAM_U48 BIT_ULL(X86_CR3_LAM_U48_BIT) |
| |
| #define X86_CR4_VME_BIT (0) |
| #define X86_CR4_VME BIT(X86_CR4_VME_BIT) |
| #define X86_CR4_PVI_BIT (1) |
| #define X86_CR4_PVI BIT(X86_CR4_PVI_BIT) |
| #define X86_CR4_TSD_BIT (2) |
| #define X86_CR4_TSD BIT(X86_CR4_TSD_BIT) |
| #define X86_CR4_DE_BIT (3) |
| #define X86_CR4_DE BIT(X86_CR4_DE_BIT) |
| #define X86_CR4_PSE_BIT (4) |
| #define X86_CR4_PSE BIT(X86_CR4_PSE_BIT) |
| #define X86_CR4_PAE_BIT (5) |
| #define X86_CR4_PAE BIT(X86_CR4_PAE_BIT) |
| #define X86_CR4_MCE_BIT (6) |
| #define X86_CR4_MCE BIT(X86_CR4_MCE_BIT) |
| #define X86_CR4_PGE_BIT (7) |
| #define X86_CR4_PGE BIT(X86_CR4_PGE_BIT) |
| #define X86_CR4_PCE_BIT (8) |
| #define X86_CR4_PCE BIT(X86_CR4_PCE_BIT) |
| #define X86_CR4_OSFXSR_BIT (9) |
| #define X86_CR4_OSFXSR BIT(X86_CR4_OSFXSR_BIT) |
| #define X86_CR4_OSXMMEXCPT_BIT (10) |
| #define X86_CR4_OSXMMEXCPT BIT(X86_CR4_OSXMMEXCPT_BIT) |
| #define X86_CR4_UMIP_BIT (11) |
| #define X86_CR4_UMIP BIT(X86_CR4_UMIP_BIT) |
| #define X86_CR4_LA57_BIT (12) |
| #define X86_CR4_LA57 BIT(X86_CR4_LA57_BIT) |
| #define X86_CR4_VMXE_BIT (13) |
| #define X86_CR4_VMXE BIT(X86_CR4_VMXE_BIT) |
| #define X86_CR4_SMXE_BIT (14) |
| #define X86_CR4_SMXE BIT(X86_CR4_SMXE_BIT) |
| /* UNUSED (15) */ |
| #define X86_CR4_FSGSBASE_BIT (16) |
| #define X86_CR4_FSGSBASE BIT(X86_CR4_FSGSBASE_BIT) |
| #define X86_CR4_PCIDE_BIT (17) |
| #define X86_CR4_PCIDE BIT(X86_CR4_PCIDE_BIT) |
| #define X86_CR4_OSXSAVE_BIT (18) |
| #define X86_CR4_OSXSAVE BIT(X86_CR4_OSXSAVE_BIT) |
| #define X86_CR4_KL_BIT (19) |
| #define X86_CR4_KL BIT(X86_CR4_KL_BIT) |
| #define X86_CR4_SMEP_BIT (20) |
| #define X86_CR4_SMEP BIT(X86_CR4_SMEP_BIT) |
| #define X86_CR4_SMAP_BIT (21) |
| #define X86_CR4_SMAP BIT(X86_CR4_SMAP_BIT) |
| #define X86_CR4_PKE_BIT (22) |
| #define X86_CR4_PKE BIT(X86_CR4_PKE_BIT) |
| #define X86_CR4_CET_BIT (23) |
| #define X86_CR4_CET BIT(X86_CR4_CET_BIT) |
| #define X86_CR4_PKS_BIT (24) |
| #define X86_CR4_PKS BIT(X86_CR4_PKS_BIT) |
| #define X86_CR4_LAM_SUP_BIT (28) |
| #define X86_CR4_LAM_SUP BIT(X86_CR4_LAM_SUP_BIT) |
| |
| #define X86_EFLAGS_CF_BIT (0) |
| #define X86_EFLAGS_CF BIT(X86_EFLAGS_CF_BIT) |
| #define X86_EFLAGS_FIXED_BIT (1) |
| #define X86_EFLAGS_FIXED BIT(X86_EFLAGS_FIXED_BIT) |
| #define X86_EFLAGS_PF_BIT (2) |
| #define X86_EFLAGS_PF BIT(X86_EFLAGS_PF_BIT) |
| /* RESERVED 0 (3) */ |
| #define X86_EFLAGS_AF_BIT (4) |
| #define X86_EFLAGS_AF BIT(X86_EFLAGS_AF_BIT) |
| /* RESERVED 0 (5) */ |
| #define X86_EFLAGS_ZF_BIT (6) |
| #define X86_EFLAGS_ZF BIT(X86_EFLAGS_ZF_BIT) |
| #define X86_EFLAGS_SF_BIT (7) |
| #define X86_EFLAGS_SF BIT(X86_EFLAGS_SF_BIT) |
| #define X86_EFLAGS_TF_BIT (8) |
| #define X86_EFLAGS_TF BIT(X86_EFLAGS_TF_BIT) |
| #define X86_EFLAGS_IF_BIT (9) |
| #define X86_EFLAGS_IF BIT(X86_EFLAGS_IF_BIT) |
| #define X86_EFLAGS_DF_BIT (10) |
| #define X86_EFLAGS_DF BIT(X86_EFLAGS_DF_BIT) |
| #define X86_EFLAGS_OF_BIT (11) |
| #define X86_EFLAGS_OF BIT(X86_EFLAGS_OF_BIT) |
| #define X86_EFLAGS_IOPL GENMASK(13, 12) |
| #define X86_EFLAGS_NT_BIT (14) |
| #define X86_EFLAGS_NT BIT(X86_EFLAGS_NT_BIT) |
| /* RESERVED 0 (15) */ |
| #define X86_EFLAGS_RF_BIT (16) |
| #define X86_EFLAGS_RF BIT(X86_EFLAGS_RF_BIT) |
| #define X86_EFLAGS_VM_BIT (17) |
| #define X86_EFLAGS_VM BIT(X86_EFLAGS_VM_BIT) |
| #define X86_EFLAGS_AC_BIT (18) |
| #define X86_EFLAGS_AC BIT(X86_EFLAGS_AC_BIT) |
| #define X86_EFLAGS_VIF_BIT (19) |
| #define X86_EFLAGS_VIF BIT(X86_EFLAGS_VIF_BIT) |
| #define X86_EFLAGS_VIP_BIT (20) |
| #define X86_EFLAGS_VIP BIT(X86_EFLAGS_VIP_BIT) |
| #define X86_EFLAGS_ID_BIT (21) |
| #define X86_EFLAGS_ID BIT(X86_EFLAGS_ID_BIT) |
| |
| #define X86_EFLAGS_ALU (X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | \ |
| X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF) |
| |
| #define XFEATURE_MASK_FP BIT_ULL(0) |
| #define XFEATURE_MASK_SSE BIT_ULL(1) |
| #define XFEATURE_MASK_YMM BIT_ULL(2) |
| #define XFEATURE_MASK_BNDREGS BIT_ULL(3) |
| #define XFEATURE_MASK_BNDCSR BIT_ULL(4) |
| #define XFEATURE_MASK_OPMASK BIT_ULL(5) |
| #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) |
| #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) |
| #define XFEATURE_MASK_PT BIT_ULL(8) |
| #define XFEATURE_MASK_PKRU BIT_ULL(9) |
| #define XFEATURE_MASK_PASID BIT_ULL(10) |
| #define XFEATURE_MASK_CET_USER BIT_ULL(11) |
| #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) |
| #define XFEATURE_MASK_LBR BIT_ULL(15) |
| #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) |
| #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) |
| |
| #define XFEATURE_MASK_FP_SSE (XFEATURE_MASK_FP | XFEATURE_MASK_SSE) |
| |
| #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ |
| XFEATURE_MASK_ZMM_Hi256 | \ |
| XFEATURE_MASK_Hi16_ZMM) |
| #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ |
| XFEATURE_MASK_XTILE_CFG) |
| |
| /* |
| * CPU features |
| */ |
| |
| enum cpuid_output_regs { |
| EAX, |
| EBX, |
| ECX, |
| EDX |
| }; |
| |
| struct cpuid { u32 a, b, c, d; }; |
| |
| static inline struct cpuid raw_cpuid(u32 function, u32 index) |
| { |
| struct cpuid r; |
| asm volatile ("cpuid" |
| : "=a"(r.a), "=b"(r.b), "=c"(r.c), "=d"(r.d) |
| : "0"(function), "2"(index)); |
| return r; |
| } |
| |
| static inline struct cpuid cpuid_indexed(u32 function, u32 index) |
| { |
| u32 level = raw_cpuid(function & 0xf0000000, 0).a; |
| if (level < function) |
| return (struct cpuid) { 0, 0, 0, 0 }; |
| return raw_cpuid(function, index); |
| } |
| |
| static inline struct cpuid cpuid(u32 function) |
| { |
| return cpuid_indexed(function, 0); |
| } |
| |
| static inline bool is_intel(void) |
| { |
| struct cpuid c = cpuid(0); |
| u32 name[4] = {c.b, c.d, c.c }; |
| |
| return strcmp((char *)name, "GenuineIntel") == 0; |
| } |
| |
| static inline u32 x86_family(u32 sig) |
| { |
| u32 x86; |
| |
| x86 = (sig >> 8) & 0xf; |
| |
| if (x86 == 0xf) |
| x86 += (sig >> 20) & 0xff; |
| |
| return x86; |
| } |
| |
| static inline u32 x86_model(u32 sig) |
| { |
| u32 fam, model; |
| |
| fam = x86_family(sig); |
| |
| model = (sig >> 4) & 0xf; |
| |
| if (fam >= 0x6) |
| model += ((sig >> 16) & 0xf) << 4; |
| |
| return model; |
| } |
| |
| /* |
| * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be |
| * passed by value with no overhead. |
| */ |
| struct x86_cpu_feature { |
| u32 function; |
| u16 index; |
| u8 reg; |
| u8 bit; |
| }; |
| |
| #define X86_CPU_FEATURE(fn, idx, gpr, __bit) \ |
| ({ \ |
| struct x86_cpu_feature feature = { \ |
| .function = fn, \ |
| .index = idx, \ |
| .reg = gpr, \ |
| .bit = __bit, \ |
| }; \ |
| \ |
| static_assert((fn & 0xc0000000) == 0 || \ |
| (fn & 0xc0000000) == 0x40000000 || \ |
| (fn & 0xc0000000) == 0x80000000 || \ |
| (fn & 0xc0000000) == 0xc0000000); \ |
| static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ |
| feature; \ |
| }) |
| |
| /* |
| * Basic Leafs, a.k.a. Intel defined |
| */ |
| #define X86_FEATURE_MWAIT X86_CPU_FEATURE(0x1, 0, ECX, 3) |
| #define X86_FEATURE_VMX X86_CPU_FEATURE(0x1, 0, ECX, 5) |
| #define X86_FEATURE_PDCM X86_CPU_FEATURE(0x1, 0, ECX, 15) |
| #define X86_FEATURE_PCID X86_CPU_FEATURE(0x1, 0, ECX, 17) |
| #define X86_FEATURE_X2APIC X86_CPU_FEATURE(0x1, 0, ECX, 21) |
| #define X86_FEATURE_MOVBE X86_CPU_FEATURE(0x1, 0, ECX, 22) |
| #define X86_FEATURE_TSC_DEADLINE_TIMER X86_CPU_FEATURE(0x1, 0, ECX, 24) |
| #define X86_FEATURE_XSAVE X86_CPU_FEATURE(0x1, 0, ECX, 26) |
| #define X86_FEATURE_OSXSAVE X86_CPU_FEATURE(0x1, 0, ECX, 27) |
| #define X86_FEATURE_RDRAND X86_CPU_FEATURE(0x1, 0, ECX, 30) |
| #define X86_FEATURE_MCE X86_CPU_FEATURE(0x1, 0, EDX, 7) |
| #define X86_FEATURE_APIC X86_CPU_FEATURE(0x1, 0, EDX, 9) |
| #define X86_FEATURE_CLFLUSH X86_CPU_FEATURE(0x1, 0, EDX, 19) |
| #define X86_FEATURE_DS X86_CPU_FEATURE(0x1, 0, EDX, 21) |
| #define X86_FEATURE_XMM X86_CPU_FEATURE(0x1, 0, EDX, 25) |
| #define X86_FEATURE_XMM2 X86_CPU_FEATURE(0x1, 0, EDX, 26) |
| #define X86_FEATURE_TSC_ADJUST X86_CPU_FEATURE(0x7, 0, EBX, 1) |
| #define X86_FEATURE_HLE X86_CPU_FEATURE(0x7, 0, EBX, 4) |
| #define X86_FEATURE_SMEP X86_CPU_FEATURE(0x7, 0, EBX, 7) |
| #define X86_FEATURE_INVPCID X86_CPU_FEATURE(0x7, 0, EBX, 10) |
| #define X86_FEATURE_RTM X86_CPU_FEATURE(0x7, 0, EBX, 11) |
| #define X86_FEATURE_SMAP X86_CPU_FEATURE(0x7, 0, EBX, 20) |
| #define X86_FEATURE_PCOMMIT X86_CPU_FEATURE(0x7, 0, EBX, 22) |
| #define X86_FEATURE_CLFLUSHOPT X86_CPU_FEATURE(0x7, 0, EBX, 23) |
| #define X86_FEATURE_CLWB X86_CPU_FEATURE(0x7, 0, EBX, 24) |
| #define X86_FEATURE_INTEL_PT X86_CPU_FEATURE(0x7, 0, EBX, 25) |
| #define X86_FEATURE_UMIP X86_CPU_FEATURE(0x7, 0, ECX, 2) |
| #define X86_FEATURE_PKU X86_CPU_FEATURE(0x7, 0, ECX, 3) |
| #define X86_FEATURE_LA57 X86_CPU_FEATURE(0x7, 0, ECX, 16) |
| #define X86_FEATURE_RDPID X86_CPU_FEATURE(0x7, 0, ECX, 22) |
| #define X86_FEATURE_SHSTK X86_CPU_FEATURE(0x7, 0, ECX, 7) |
| #define X86_FEATURE_BUS_LOCK_DETECT X86_CPU_FEATURE(0x7, 0, ECX, 24) |
| #define X86_FEATURE_PKS X86_CPU_FEATURE(0x7, 0, ECX, 31) |
| #define X86_FEATURE_IBT X86_CPU_FEATURE(0x7, 0, EDX, 20) |
| #define X86_FEATURE_SPEC_CTRL X86_CPU_FEATURE(0x7, 0, EDX, 26) |
| #define X86_FEATURE_STIBP X86_CPU_FEATURE(0x7, 0, EDX, 27) |
| #define X86_FEATURE_FLUSH_L1D X86_CPU_FEATURE(0x7, 0, EDX, 28) |
| #define X86_FEATURE_ARCH_CAPABILITIES X86_CPU_FEATURE(0x7, 0, EDX, 29) |
| #define X86_FEATURE_SSBD X86_CPU_FEATURE(0x7, 0, EDX, 31) |
| #define X86_FEATURE_LAM X86_CPU_FEATURE(0x7, 1, EAX, 26) |
| |
| /* |
| * KVM defined leafs |
| */ |
| #define KVM_FEATURE_ASYNC_PF X86_CPU_FEATURE(0x40000001, 0, EAX, 4) |
| #define KVM_FEATURE_ASYNC_PF_INT X86_CPU_FEATURE(0x40000001, 0, EAX, 14) |
| |
| /* |
| * Extended Leafs, a.k.a. AMD defined |
| */ |
| #define X86_FEATURE_SVM X86_CPU_FEATURE(0x80000001, 0, ECX, 2) |
| #define X86_FEATURE_PERFCTR_CORE X86_CPU_FEATURE(0x80000001, 0, ECX, 23) |
| #define X86_FEATURE_NX X86_CPU_FEATURE(0x80000001, 0, EDX, 20) |
| #define X86_FEATURE_GBPAGES X86_CPU_FEATURE(0x80000001, 0, EDX, 26) |
| #define X86_FEATURE_RDTSCP X86_CPU_FEATURE(0x80000001, 0, EDX, 27) |
| #define X86_FEATURE_LM X86_CPU_FEATURE(0x80000001, 0, EDX, 29) |
| #define X86_FEATURE_RDPRU X86_CPU_FEATURE(0x80000008, 0, EBX, 4) |
| #define X86_FEATURE_AMD_IBPB X86_CPU_FEATURE(0x80000008, 0, EBX, 12) |
| #define X86_FEATURE_AMD_IBRS X86_CPU_FEATURE(0x80000008, 0, EBX, 14) |
| #define X86_FEATURE_AMD_STIBP X86_CPU_FEATURE(0x80000008, 0, EBX, 15) |
| #define X86_FEATURE_AMD_STIBP_ALWAYS_ON X86_CPU_FEATURE(0x80000008, 0, EBX, 17) |
| #define X86_FEATURE_AMD_IBRS_SAME_MODE X86_CPU_FEATURE(0x80000008, 0, EBX, 19) |
| #define X86_FEATURE_AMD_SSBD X86_CPU_FEATURE(0x80000008, 0, EBX, 24) |
| #define X86_FEATURE_NPT X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) |
| #define X86_FEATURE_LBRV X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) |
| #define X86_FEATURE_NRIPS X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) |
| #define X86_FEATURE_TSCRATEMSR X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) |
| #define X86_FEATURE_PAUSEFILTER X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) |
| #define X86_FEATURE_PFTHRESHOLD X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) |
| #define X86_FEATURE_VGIF X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) |
| #define X86_FEATURE_VNMI X86_CPU_FEATURE(0x8000000A, 0, EDX, 25) |
| #define X86_FEATURE_SME X86_CPU_FEATURE(0x8000001F, 0, EAX, 0) |
| #define X86_FEATURE_SEV X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) |
| #define X86_FEATURE_VM_PAGE_FLUSH X86_CPU_FEATURE(0x8000001F, 0, EAX, 2) |
| #define X86_FEATURE_SEV_ES X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) |
| #define X86_FEATURE_SEV_SNP X86_CPU_FEATURE(0x8000001F, 0, EAX, 4) |
| #define X86_FEATURE_V_TSC_AUX X86_CPU_FEATURE(0x8000001F, 0, EAX, 9) |
| #define X86_FEATURE_SME_COHERENT X86_CPU_FEATURE(0x8000001F, 0, EAX, 10) |
| #define X86_FEATURE_DEBUG_SWAP X86_CPU_FEATURE(0x8000001F, 0, EAX, 14) |
| #define X86_FEATURE_SVSM X86_CPU_FEATURE(0x8000001F, 0, EAX, 28) |
| #define X86_FEATURE_SBPB X86_CPU_FEATURE(0x80000021, 0, EAX, 27) |
| #define X86_FEATURE_AMD_PMU_V2 X86_CPU_FEATURE(0x80000022, 0, EAX, 0) |
| |
| /* |
| * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit |
| * value/property as opposed to a single-bit feature. Again, pack the info |
| * into a 64-bit value to pass by value with no overhead on 64-bit builds. |
| */ |
| struct x86_cpu_property { |
| u32 function; |
| u8 index; |
| u8 reg; |
| u8 lo_bit; |
| u8 hi_bit; |
| }; |
| #define X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ |
| ({ \ |
| struct x86_cpu_property property = { \ |
| .function = fn, \ |
| .index = idx, \ |
| .reg = gpr, \ |
| .lo_bit = low_bit, \ |
| .hi_bit = high_bit, \ |
| }; \ |
| \ |
| static_assert(low_bit < high_bit); \ |
| static_assert((fn & 0xc0000000) == 0 || \ |
| (fn & 0xc0000000) == 0x40000000 || \ |
| (fn & 0xc0000000) == 0x80000000 || \ |
| (fn & 0xc0000000) == 0xc0000000); \ |
| static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ |
| property; \ |
| }) |
| |
| #define X86_PROPERTY_MAX_BASIC_LEAF X86_CPU_PROPERTY(0, 0, EAX, 0, 31) |
| #define X86_PROPERTY_PMU_VERSION X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) |
| #define X86_PROPERTY_PMU_NR_GP_COUNTERS X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) |
| #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) |
| #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) |
| #define X86_PROPERTY_PMU_EVENTS_MASK X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) |
| #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) |
| #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) |
| #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) |
| |
| #define X86_PROPERTY_SUPPORTED_XCR0_LO X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) |
| #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) |
| #define X86_PROPERTY_XSTATE_MAX_SIZE X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) |
| #define X86_PROPERTY_SUPPORTED_XCR0_HI X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) |
| |
| #define X86_PROPERTY_XSTATE_TILE_SIZE X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) |
| #define X86_PROPERTY_XSTATE_TILE_OFFSET X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) |
| |
| #define X86_PROPERTY_INTEL_PT_NR_RANGES X86_CPU_PROPERTY(0x14, 1, EAX, 0, 2) |
| |
| #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) |
| #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) |
| #define X86_PROPERTY_AMX_BYTES_PER_TILE X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) |
| #define X86_PROPERTY_AMX_BYTES_PER_ROW X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) |
| #define X86_PROPERTY_AMX_NR_TILE_REGS X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) |
| #define X86_PROPERTY_AMX_MAX_ROWS X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) |
| |
| #define X86_PROPERTY_MAX_KVM_LEAF X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) |
| |
| #define X86_PROPERTY_MAX_EXT_LEAF X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) |
| #define X86_PROPERTY_MAX_PHY_ADDR X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) |
| #define X86_PROPERTY_MAX_VIRT_ADDR X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) |
| #define X86_PROPERTY_GUEST_MAX_PHY_ADDR X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23) |
| #define X86_PROPERTY_SEV_C_BIT X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5) |
| #define X86_PROPERTY_PHYS_ADDR_REDUCTION X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) |
| #define X86_PROPERTY_NR_PERFCTR_CORE X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3) |
| #define X86_PROPERTY_NR_PERFCTR_NB X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15) |
| |
| #define X86_PROPERTY_MAX_CENTAUR_LEAF X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) |
| |
| static inline u32 __this_cpu_has(u32 function, u32 index, u8 reg, u8 lo, u8 hi) |
| { |
| union { |
| struct cpuid cpuid; |
| u32 gprs[4]; |
| } c; |
| |
| c.cpuid = cpuid_indexed(function, index); |
| |
| return (c.gprs[reg] & GENMASK(hi, lo)) >> lo; |
| } |
| |
| static inline bool this_cpu_has(struct x86_cpu_feature feature) |
| { |
| return __this_cpu_has(feature.function, feature.index, |
| feature.reg, feature.bit, feature.bit); |
| } |
| |
| static inline uint32_t this_cpu_property(struct x86_cpu_property property) |
| { |
| return __this_cpu_has(property.function, property.index, |
| property.reg, property.lo_bit, property.hi_bit); |
| } |
| |
| static __always_inline bool this_cpu_has_p(struct x86_cpu_property property) |
| { |
| uint32_t max_leaf; |
| |
| switch (property.function & 0xc0000000) { |
| case 0: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); |
| break; |
| case 0x40000000: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); |
| break; |
| case 0x80000000: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); |
| break; |
| case 0xc0000000: |
| max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); |
| } |
| return max_leaf >= property.function; |
| } |
| |
| static inline u8 cpuid_maxphyaddr(void) |
| { |
| if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) |
| return 36; |
| |
| return this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); |
| } |
| |
| static inline u64 this_cpu_supported_xcr0(void) |
| { |
| if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) |
| return 0; |
| |
| return (u64)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | |
| ((u64)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); |
| } |
| |
| struct far_pointer32 { |
| u32 offset; |
| u16 selector; |
| } __attribute__((packed)); |
| |
| struct descriptor_table_ptr { |
| u16 limit; |
| ulong base; |
| } __attribute__((packed)); |
| |
| static inline void clac(void) |
| { |
| asm volatile (".byte 0x0f, 0x01, 0xca" : : : "memory"); |
| } |
| |
| static inline void stac(void) |
| { |
| asm volatile (".byte 0x0f, 0x01, 0xcb" : : : "memory"); |
| } |
| |
| static inline u16 read_cs(void) |
| { |
| unsigned val; |
| |
| asm volatile ("mov %%cs, %0" : "=mr"(val)); |
| return val; |
| } |
| |
| static inline u16 read_ds(void) |
| { |
| unsigned val; |
| |
| asm volatile ("mov %%ds, %0" : "=mr"(val)); |
| return val; |
| } |
| |
| static inline u16 read_es(void) |
| { |
| unsigned val; |
| |
| asm volatile ("mov %%es, %0" : "=mr"(val)); |
| return val; |
| } |
| |
| static inline u16 read_ss(void) |
| { |
| unsigned val; |
| |
| asm volatile ("mov %%ss, %0" : "=mr"(val)); |
| return val; |
| } |
| |
| static inline u16 read_fs(void) |
| { |
| unsigned val; |
| |
| asm volatile ("mov %%fs, %0" : "=mr"(val)); |
| return val; |
| } |
| |
| static inline u16 read_gs(void) |
| { |
| unsigned val; |
| |
| asm volatile ("mov %%gs, %0" : "=mr"(val)); |
| return val; |
| } |
| |
| static inline unsigned long read_rflags(void) |
| { |
| unsigned long f; |
| asm volatile ("pushf; pop %0\n\t" : "=rm"(f)); |
| return f; |
| } |
| |
| static inline void write_ds(unsigned val) |
| { |
| asm volatile ("mov %0, %%ds" : : "rm"(val) : "memory"); |
| } |
| |
| static inline void write_es(unsigned val) |
| { |
| asm volatile ("mov %0, %%es" : : "rm"(val) : "memory"); |
| } |
| |
| static inline void write_ss(unsigned val) |
| { |
| asm volatile ("mov %0, %%ss" : : "rm"(val) : "memory"); |
| } |
| |
| static inline void write_fs(unsigned val) |
| { |
| asm volatile ("mov %0, %%fs" : : "rm"(val) : "memory"); |
| } |
| |
| static inline void write_gs(unsigned val) |
| { |
| asm volatile ("mov %0, %%gs" : : "rm"(val) : "memory"); |
| } |
| |
| static inline void write_rflags(unsigned long f) |
| { |
| asm volatile ("push %0; popf\n\t" : : "rm"(f)); |
| } |
| |
| static inline void set_iopl(int iopl) |
| { |
| unsigned long flags = read_rflags() & ~X86_EFLAGS_IOPL; |
| flags |= iopl * (X86_EFLAGS_IOPL / 3); |
| write_rflags(flags); |
| } |
| |
| /* |
| * Don't use the safe variants for rdmsr() or wrmsr(). The exception fixup |
| * infrastructure uses per-CPU data and thus consumes GS.base. Various tests |
| * temporarily modify MSR_GS_BASE and will explode when trying to determine |
| * whether or not RDMSR/WRMSR faulted. |
| */ |
| static inline u64 rdmsr(u32 index) |
| { |
| u32 a, d; |
| asm volatile ("rdmsr" : "=a"(a), "=d"(d) : "c"(index) : "memory"); |
| return a | ((u64)d << 32); |
| } |
| |
| static inline void wrmsr(u32 index, u64 val) |
| { |
| u32 a = val, d = val >> 32; |
| asm volatile ("wrmsr" : : "a"(a), "d"(d), "c"(index) : "memory"); |
| } |
| |
| #define __rdreg64_safe(fep, insn, index, val) \ |
| ({ \ |
| uint32_t a, d; \ |
| int vector; \ |
| \ |
| vector = __asm_safe_out2(fep, insn, "=a"(a), "=d"(d), "c"(index));\ |
| \ |
| if (vector) \ |
| *(val) = 0; \ |
| else \ |
| *(val) = (uint64_t)a | ((uint64_t)d << 32); \ |
| vector; \ |
| }) |
| |
| #define rdreg64_safe(insn, index, val) \ |
| __rdreg64_safe("", insn, index, val) |
| |
| #define __wrreg64_safe(fep, insn, index, val) \ |
| ({ \ |
| uint32_t eax = (val), edx = (val) >> 32; \ |
| \ |
| __asm_safe(fep, insn, "a" (eax), "d" (edx), "c" (index)); \ |
| }) |
| |
| #define wrreg64_safe(insn, index, val) \ |
| __wrreg64_safe("", insn, index, val) |
| |
| static inline int rdmsr_safe(u32 index, uint64_t *val) |
| { |
| return rdreg64_safe("rdmsr", index, val); |
| } |
| |
| static inline int rdmsr_fep_safe(u32 index, uint64_t *val) |
| { |
| return __rdreg64_safe(KVM_FEP, "rdmsr", index, val); |
| } |
| |
| static inline int wrmsr_safe(u32 index, u64 val) |
| { |
| return wrreg64_safe("wrmsr", index, val); |
| } |
| |
| static inline int wrmsr_fep_safe(u32 index, u64 val) |
| { |
| return __wrreg64_safe(KVM_FEP, "wrmsr", index, val); |
| } |
| |
| static inline int rdpmc_safe(u32 index, uint64_t *val) |
| { |
| return rdreg64_safe("rdpmc", index, val); |
| } |
| |
| static inline uint64_t rdpmc(uint32_t index) |
| { |
| uint64_t val; |
| int vector = rdpmc_safe(index, &val); |
| |
| assert_msg(!vector, "Unexpected %s on RDPMC(%" PRId32 ")", |
| exception_mnemonic(vector), index); |
| return val; |
| } |
| |
| static inline int xgetbv_safe(u32 index, u64 *result) |
| { |
| return rdreg64_safe(".byte 0x0f,0x01,0xd0", index, result); |
| } |
| |
| static inline int xsetbv_safe(u32 index, u64 value) |
| { |
| return wrreg64_safe(".byte 0x0f,0x01,0xd1", index, value); |
| } |
| |
| static inline u64 xgetbv(u32 index) |
| { |
| u64 value; |
| int vector = xgetbv_safe(index, &value); |
| |
| assert_msg(!vector, "Unexpected exception '%s' reading XCR%" PRIu32, |
| exception_mnemonic(vector), index); |
| return value; |
| } |
| |
| static inline void xsetbv(u32 index, u64 value) |
| { |
| int vector = xsetbv_safe(index, value); |
| |
| assert_msg(!vector, "Unexpected exception '%s' writing XCR%" PRIu32 " = 0x%" PRIx64, |
| exception_mnemonic(vector), index, value); |
| } |
| |
| static inline int read_xcr0_safe(u64 *value) |
| { |
| return xgetbv_safe(0, value); |
| } |
| |
| static inline int write_xcr0_safe(u64 value) |
| { |
| return xsetbv_safe(0, value); |
| } |
| |
| static inline u64 read_xcr0(void) |
| { |
| return xgetbv(0); |
| } |
| |
| static inline void write_xcr0(u64 value) |
| { |
| xsetbv(0, value); |
| } |
| |
| static inline int write_cr0_safe(ulong val) |
| { |
| return asm_safe("mov %0,%%cr0", "r" (val)); |
| } |
| |
| static inline void write_cr0(ulong val) |
| { |
| int vector = write_cr0_safe(val); |
| |
| assert_msg(!vector, "Unexpected fault '%d' writing CR0 = %lx", |
| vector, val); |
| } |
| |
| static inline ulong read_cr0(void) |
| { |
| ulong val; |
| asm volatile ("mov %%cr0, %0" : "=r"(val) : : "memory"); |
| return val; |
| } |
| |
| static inline void write_cr2(ulong val) |
| { |
| asm volatile ("mov %0, %%cr2" : : "r"(val) : "memory"); |
| } |
| |
| static inline ulong read_cr2(void) |
| { |
| ulong val; |
| asm volatile ("mov %%cr2, %0" : "=r"(val) : : "memory"); |
| return val; |
| } |
| |
| static inline int write_cr3_safe(ulong val) |
| { |
| return asm_safe("mov %0,%%cr3", "r" (val)); |
| } |
| |
| static inline void write_cr3(ulong val) |
| { |
| int vector = write_cr3_safe(val); |
| |
| assert_msg(!vector, "Unexpected fault '%d' writing CR3 = %lx", |
| vector, val); |
| } |
| |
| static inline ulong read_cr3(void) |
| { |
| ulong val; |
| asm volatile ("mov %%cr3, %0" : "=r"(val) : : "memory"); |
| return val; |
| } |
| |
| static inline void update_cr3(void *cr3) |
| { |
| write_cr3((ulong)cr3); |
| } |
| |
| static inline int write_cr4_safe(ulong val) |
| { |
| return asm_safe("mov %0,%%cr4", "r" (val)); |
| } |
| |
| static inline void write_cr4(ulong val) |
| { |
| int vector = write_cr4_safe(val); |
| |
| assert_msg(!vector, "Unexpected fault '%d' writing CR4 = %lx", |
| vector, val); |
| } |
| |
| static inline ulong read_cr4(void) |
| { |
| ulong val; |
| asm volatile ("mov %%cr4, %0" : "=r"(val) : : "memory"); |
| return val; |
| } |
| |
| static inline void write_cr8(ulong val) |
| { |
| asm volatile ("mov %0, %%cr8" : : "r"(val) : "memory"); |
| } |
| |
| static inline ulong read_cr8(void) |
| { |
| ulong val; |
| asm volatile ("mov %%cr8, %0" : "=r"(val) : : "memory"); |
| return val; |
| } |
| |
| static inline void lgdt(const struct descriptor_table_ptr *ptr) |
| { |
| asm volatile ("lgdt %0" : : "m"(*ptr)); |
| } |
| |
| static inline int lgdt_safe(const struct descriptor_table_ptr *ptr) |
| { |
| return asm_safe("lgdt %0", "m"(*ptr)); |
| } |
| |
| static inline int lgdt_fep_safe(const struct descriptor_table_ptr *ptr) |
| { |
| return asm_fep_safe("lgdt %0", "m"(*ptr)); |
| } |
| |
| static inline void sgdt(struct descriptor_table_ptr *ptr) |
| { |
| asm volatile ("sgdt %0" : "=m"(*ptr)); |
| } |
| |
| static inline void lidt(const struct descriptor_table_ptr *ptr) |
| { |
| asm volatile ("lidt %0" : : "m"(*ptr)); |
| } |
| |
| static inline int lidt_safe(const struct descriptor_table_ptr *ptr) |
| { |
| return asm_safe("lidt %0", "m"(*ptr)); |
| } |
| |
| static inline int lidt_fep_safe(const struct descriptor_table_ptr *ptr) |
| { |
| return asm_fep_safe("lidt %0", "m"(*ptr)); |
| } |
| |
| static inline void sidt(struct descriptor_table_ptr *ptr) |
| { |
| asm volatile ("sidt %0" : "=m"(*ptr)); |
| } |
| |
| static inline void lldt(u16 val) |
| { |
| asm volatile ("lldt %0" : : "rm"(val)); |
| } |
| |
| static inline int lldt_safe(u16 val) |
| { |
| return asm_safe("lldt %0", "rm"(val)); |
| } |
| |
| static inline int lldt_fep_safe(u16 val) |
| { |
| return asm_safe("lldt %0", "rm"(val)); |
| } |
| |
| static inline u16 sldt(void) |
| { |
| u16 val; |
| asm volatile ("sldt %0" : "=rm"(val)); |
| return val; |
| } |
| |
| static inline void ltr(u16 val) |
| { |
| asm volatile ("ltr %0" : : "rm"(val)); |
| } |
| |
| static inline int ltr_safe(u16 val) |
| { |
| return asm_safe("ltr %0", "rm"(val)); |
| } |
| |
| static inline int ltr_fep_safe(u16 val) |
| { |
| return asm_safe("ltr %0", "rm"(val)); |
| } |
| |
| static inline u16 str(void) |
| { |
| u16 val; |
| asm volatile ("str %0" : "=rm"(val)); |
| return val; |
| } |
| |
| static inline void write_dr0(void *val) |
| { |
| asm volatile ("mov %0, %%dr0" : : "r"(val) : "memory"); |
| } |
| |
| static inline void write_dr1(void *val) |
| { |
| asm volatile ("mov %0, %%dr1" : : "r"(val) : "memory"); |
| } |
| |
| static inline void write_dr2(void *val) |
| { |
| asm volatile ("mov %0, %%dr2" : : "r"(val) : "memory"); |
| } |
| |
| static inline void write_dr3(void *val) |
| { |
| asm volatile ("mov %0, %%dr3" : : "r"(val) : "memory"); |
| } |
| |
| static inline void write_dr6(ulong val) |
| { |
| asm volatile ("mov %0, %%dr6" : : "r"(val) : "memory"); |
| } |
| |
| static inline ulong read_dr6(void) |
| { |
| ulong val; |
| asm volatile ("mov %%dr6, %0" : "=r"(val)); |
| return val; |
| } |
| |
| static inline void write_dr7(ulong val) |
| { |
| asm volatile ("mov %0, %%dr7" : : "r"(val) : "memory"); |
| } |
| |
| static inline ulong read_dr7(void) |
| { |
| ulong val; |
| asm volatile ("mov %%dr7, %0" : "=r"(val)); |
| return val; |
| } |
| |
| static inline void pause(void) |
| { |
| asm volatile ("pause"); |
| } |
| |
| static inline void cli(void) |
| { |
| asm volatile ("cli"); |
| } |
| |
| /* |
| * See also safe_halt(). |
| */ |
| static inline void sti(void) |
| { |
| asm volatile ("sti"); |
| } |
| |
| /* |
| * Enable interrupts and ensure that interrupts are evaluated upon return from |
| * this function, i.e. execute a nop to consume the STi interrupt shadow. |
| */ |
| static inline void sti_nop(void) |
| { |
| asm volatile ("sti; nop"); |
| } |
| |
| /* |
| * Enable interrupts for one instruction (nop), to allow the CPU to process all |
| * interrupts that are already pending. |
| */ |
| static inline void sti_nop_cli(void) |
| { |
| asm volatile ("sti; nop; cli"); |
| } |
| |
| static inline unsigned long long rdrand(void) |
| { |
| long long r; |
| |
| asm volatile("rdrand %0\n\t" |
| "jc 1f\n\t" |
| "mov $0, %0\n\t" |
| "1:\n\t" : "=r" (r)); |
| return r; |
| } |
| |
| static inline unsigned long long rdtsc(void) |
| { |
| long long r; |
| |
| #ifdef __x86_64__ |
| unsigned a, d; |
| |
| asm volatile ("rdtsc" : "=a"(a), "=d"(d)); |
| r = a | ((long long)d << 32); |
| #else |
| asm volatile ("rdtsc" : "=A"(r)); |
| #endif |
| return r; |
| } |
| |
| /* |
| * Per the advice in the SDM, volume 2, the sequence "mfence; lfence" |
| * executed immediately before rdtsc ensures that rdtsc will be |
| * executed only after all previous instructions have executed and all |
| * previous loads and stores are globally visible. In addition, the |
| * lfence immediately after rdtsc ensures that rdtsc will be executed |
| * prior to the execution of any subsequent instruction. |
| */ |
| static inline unsigned long long fenced_rdtsc(void) |
| { |
| unsigned long long tsc; |
| |
| #ifdef __x86_64__ |
| unsigned int eax, edx; |
| |
| asm volatile ("mfence; lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); |
| tsc = eax | ((unsigned long long)edx << 32); |
| #else |
| asm volatile ("mfence; lfence; rdtsc; lfence" : "=A"(tsc)); |
| #endif |
| return tsc; |
| } |
| |
| static inline unsigned long long rdtscp(u32 *aux) |
| { |
| long long r; |
| |
| #ifdef __x86_64__ |
| unsigned a, d; |
| |
| asm volatile ("rdtscp" : "=a"(a), "=d"(d), "=c"(*aux)); |
| r = a | ((long long)d << 32); |
| #else |
| asm volatile ("rdtscp" : "=A"(r), "=c"(*aux)); |
| #endif |
| return r; |
| } |
| |
| static inline void wrtsc(u64 tsc) |
| { |
| wrmsr(MSR_IA32_TSC, tsc); |
| } |
| |
| |
| static inline void invlpg(volatile void *va) |
| { |
| asm volatile("invlpg (%0)" ::"r" (va) : "memory"); |
| } |
| |
| struct invpcid_desc { |
| u64 pcid : 12; |
| u64 rsv : 52; |
| u64 addr : 64; |
| }; |
| |
| static inline int invpcid_safe(unsigned long type, struct invpcid_desc *desc) |
| { |
| /* invpcid (%rax), %rbx */ |
| return asm_safe(".byte 0x66,0x0f,0x38,0x82,0x18", "a" (desc), "b" (type)); |
| } |
| |
| /* |
| * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's |
| * intended to be a wake event arrives *after* HLT is executed. Modern CPUs, |
| * except for a few oddballs that KVM is unlikely to run on, block IRQs for one |
| * instruction after STI, *if* RFLAGS.IF=0 before STI. Note, Intel CPUs may |
| * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too. |
| */ |
| static inline void safe_halt(void) |
| { |
| asm volatile("sti; hlt"); |
| } |
| |
| static inline u32 read_pkru(void) |
| { |
| unsigned int eax, edx; |
| unsigned int ecx = 0; |
| unsigned int pkru; |
| |
| asm volatile(".byte 0x0f,0x01,0xee\n\t" |
| : "=a" (eax), "=d" (edx) |
| : "c" (ecx)); |
| pkru = eax; |
| return pkru; |
| } |
| |
| static inline void write_pkru(u32 pkru) |
| { |
| unsigned int eax = pkru; |
| unsigned int ecx = 0; |
| unsigned int edx = 0; |
| |
| asm volatile(".byte 0x0f,0x01,0xef\n\t" |
| : : "a" (eax), "c" (ecx), "d" (edx)); |
| } |
| |
| static inline bool is_canonical(u64 addr) |
| { |
| int va_width, shift_amt; |
| |
| if (this_cpu_has_p(X86_PROPERTY_MAX_VIRT_ADDR)) |
| va_width = this_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); |
| else |
| va_width = 48; |
| |
| shift_amt = 64 - va_width; |
| return (s64)(addr << shift_amt) >> shift_amt == addr; |
| } |
| |
| static inline void flush_tlb(void) |
| { |
| ulong cr4; |
| |
| cr4 = read_cr4(); |
| write_cr4(cr4 ^ X86_CR4_PGE); |
| write_cr4(cr4); |
| } |
| |
| static inline void generate_non_canonical_gp(void) |
| { |
| *(volatile u64 *)NONCANONICAL = 0; |
| } |
| |
| static inline void generate_ud(void) |
| { |
| asm volatile ("ud2"); |
| } |
| |
| static inline void generate_de(void) |
| { |
| asm volatile ( |
| "xor %%eax, %%eax\n\t" |
| "xor %%ebx, %%ebx\n\t" |
| "xor %%edx, %%edx\n\t" |
| "idiv %%ebx\n\t" |
| ::: "eax", "ebx", "edx"); |
| } |
| |
| static inline void generate_bp(void) |
| { |
| asm volatile ("int3"); |
| } |
| |
| static inline void generate_single_step_db(void) |
| { |
| write_rflags(read_rflags() | X86_EFLAGS_TF); |
| asm volatile("nop"); |
| } |
| |
| static inline uint64_t generate_usermode_ac(void) |
| { |
| /* |
| * Trigger an #AC by writing 8 bytes to a 4-byte aligned address. |
| * Disclaimer: It is assumed that the stack pointer is aligned |
| * on a 16-byte boundary as x86_64 stacks should be. |
| */ |
| asm volatile("movq $0, -0x4(%rsp)"); |
| |
| return 0; |
| } |
| |
| /* |
| * Switch from 64-bit to 32-bit mode and generate #OF via INTO. Note, if RIP |
| * or RSP holds a 64-bit value, this helper will NOT generate #OF. |
| */ |
| static inline void generate_of(void) |
| { |
| struct far_pointer32 fp = { |
| .offset = (uintptr_t)&&into, |
| .selector = KERNEL_CS32, |
| }; |
| uintptr_t rsp; |
| |
| asm volatile ("mov %%rsp, %0" : "=r"(rsp)); |
| |
| if (fp.offset != (uintptr_t)&&into) { |
| printf("Code address too high.\n"); |
| return; |
| } |
| if ((u32)rsp != rsp) { |
| printf("Stack address too high.\n"); |
| return; |
| } |
| |
| asm goto ("lcall *%0" : : "m" (fp) : "rax" : into); |
| return; |
| into: |
| asm volatile (".code32;" |
| "movl $0x7fffffff, %eax;" |
| "addl %eax, %eax;" |
| "into;" |
| "lret;" |
| ".code64"); |
| __builtin_unreachable(); |
| } |
| |
| static inline void fnop(void) |
| { |
| asm volatile("fnop"); |
| } |
| |
| /* If CR0.TS is set in L2, #NM is generated. */ |
| static inline void generate_cr0_ts_nm(void) |
| { |
| write_cr0((read_cr0() & ~X86_CR0_EM) | X86_CR0_TS); |
| fnop(); |
| } |
| |
| /* If CR0.TS is cleared and CR0.EM is set, #NM is generated. */ |
| static inline void generate_cr0_em_nm(void) |
| { |
| write_cr0((read_cr0() & ~X86_CR0_TS) | X86_CR0_EM); |
| fnop(); |
| } |
| |
| static inline bool is_la57_enabled(void) |
| { |
| return !!(read_cr4() & X86_CR4_LA57); |
| } |
| |
| static inline bool is_lam_sup_enabled(void) |
| { |
| return !!(read_cr4() & X86_CR4_LAM_SUP); |
| } |
| |
| static inline bool is_lam_u48_enabled(void) |
| { |
| return (read_cr3() & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57)) == X86_CR3_LAM_U48; |
| } |
| |
| static inline bool is_lam_u57_enabled(void) |
| { |
| return !!(read_cr3() & X86_CR3_LAM_U57); |
| } |
| |
| #endif |