blob: 9ff7a301cf89aefba31fe4b2bc61454a9d5ddd83 [file] [log] [blame]
/*
* Test the ARM Performance Monitors Unit (PMU).
*
* Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
* Copyright (C) 2016, Red Hat Inc, Wei Huang <wei@redhat.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License version 2.1 and
* only version 2.1 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*/
#include "libcflat.h"
#include "errata.h"
#include "asm/barrier.h"
#include "asm/sysreg.h"
#include "asm/processor.h"
#include <bitops.h>
#include <asm/gic.h>
#define PMU_PMCR_E (1 << 0)
#define PMU_PMCR_P (1 << 1)
#define PMU_PMCR_C (1 << 2)
#define PMU_PMCR_D (1 << 3)
#define PMU_PMCR_X (1 << 4)
#define PMU_PMCR_DP (1 << 5)
#define PMU_PMCR_LC (1 << 6)
#define PMU_PMCR_LP (1 << 7)
#define PMU_PMCR_N_SHIFT 11
#define PMU_PMCR_N_MASK 0x1f
#define PMU_PMCR_ID_SHIFT 16
#define PMU_PMCR_ID_MASK 0xff
#define PMU_PMCR_IMP_SHIFT 24
#define PMU_PMCR_IMP_MASK 0xff
#define PMU_CYCLE_IDX 31
#define NR_SAMPLES 10
/* Some PMU events */
#define SW_INCR 0x0
#define INST_RETIRED 0x8
#define CPU_CYCLES 0x11
#define MEM_ACCESS 0x13
#define INST_PREC 0x1B
#define STALL_FRONTEND 0x23
#define STALL_BACKEND 0x24
#define CHAIN 0x1E
#define COMMON_EVENTS_LOW 0x0
#define COMMON_EVENTS_HIGH 0x3F
#define EXT_COMMON_EVENTS_LOW 0x4000
#define EXT_COMMON_EVENTS_HIGH 0x403F
#define ALL_SET_32 0x00000000FFFFFFFFULL
#define ALL_SET_64 0xFFFFFFFFFFFFFFFFULL
#define ALL_SET(__overflow_at_64bits) \
(__overflow_at_64bits ? ALL_SET_64 : ALL_SET_32)
#define ALL_CLEAR 0x0000000000000000ULL
#define PRE_OVERFLOW_32 0x00000000FFFFFFF0ULL
#define PRE_OVERFLOW_64 0xFFFFFFFFFFFFFFF0ULL
#define COUNT 250
#define MARGIN 100
#define COUNT_INT 1000
/*
* PRE_OVERFLOW2 is set so that 1st @COUNT iterations do not
* produce 32b overflow and 2nd @COUNT iterations do. To accommodate
* for some observed variability we take into account a given @MARGIN
*/
#define PRE_OVERFLOW2_32 (ALL_SET_32 - COUNT - MARGIN)
#define PRE_OVERFLOW2_64 (ALL_SET_64 - COUNT - MARGIN)
#define PRE_OVERFLOW2(__overflow_at_64bits) \
(__overflow_at_64bits ? PRE_OVERFLOW2_64 : PRE_OVERFLOW2_32)
#define PRE_OVERFLOW(__overflow_at_64bits) \
(__overflow_at_64bits ? PRE_OVERFLOW_64 : PRE_OVERFLOW_32)
#define PMU_PPI 23
struct pmu {
unsigned int version;
unsigned int nb_implemented_counters;
uint32_t pmcr_ro;
};
struct pmu_stats {
unsigned long bitmap;
uint32_t interrupts[32];
bool unexpected;
};
static struct pmu pmu;
#if defined(__arm__)
#define ID_DFR0_PERFMON_SHIFT 24
#define ID_DFR0_PERFMON_MASK 0xf
#define ID_DFR0_PMU_NOTIMPL 0b0000
#define ID_DFR0_PMU_V1 0b0001
#define ID_DFR0_PMU_V2 0b0010
#define ID_DFR0_PMU_V3 0b0011
#define ID_DFR0_PMU_V3_8_1 0b0100
#define ID_DFR0_PMU_V3_8_4 0b0101
#define ID_DFR0_PMU_V3_8_5 0b0110
#define ID_DFR0_PMU_IMPDEF 0b1111
#define PMCR __ACCESS_CP15(c9, 0, c12, 0)
#define ID_DFR0 __ACCESS_CP15(c0, 0, c1, 2)
#define PMSELR __ACCESS_CP15(c9, 0, c12, 5)
#define PMXEVTYPER __ACCESS_CP15(c9, 0, c13, 1)
#define PMCNTENSET __ACCESS_CP15(c9, 0, c12, 1)
#define PMCNTENCLR __ACCESS_CP15(c9, 0, c12, 2)
#define PMOVSR __ACCESS_CP15(c9, 0, c12, 3)
#define PMCCNTR32 __ACCESS_CP15(c9, 0, c13, 0)
#define PMINTENCLR __ACCESS_CP15(c9, 0, c14, 2)
#define PMCCNTR64 __ACCESS_CP15_64(0, c9)
static inline uint32_t get_id_dfr0(void) { return read_sysreg(ID_DFR0); }
static inline uint32_t get_pmcr(void) { return read_sysreg(PMCR); }
static inline void set_pmcr(uint32_t v) { write_sysreg(v, PMCR); }
static inline void set_pmcntenset(uint32_t v) { write_sysreg(v, PMCNTENSET); }
static inline uint8_t get_pmu_version(void)
{
return (get_id_dfr0() >> ID_DFR0_PERFMON_SHIFT) & ID_DFR0_PERFMON_MASK;
}
static inline uint64_t get_pmccntr(void)
{
return read_sysreg(PMCCNTR32);
}
static inline void set_pmccntr(uint64_t value)
{
write_sysreg(value & 0xffffffff, PMCCNTR32);
}
/* PMCCFILTR is an obsolete name for PMXEVTYPER31 in ARMv7 */
static inline void set_pmccfiltr(uint32_t value)
{
write_sysreg(PMU_CYCLE_IDX, PMSELR);
write_sysreg(value, PMXEVTYPER);
isb();
}
/*
* Extra instructions inserted by the compiler would be difficult to compensate
* for, so hand assemble everything between, and including, the PMCR accesses
* to start and stop counting. isb instructions were inserted to make sure
* pmccntr read after this function returns the exact instructions executed in
* the controlled block. Total instrs = isb + mcr + 2*loop = 2 + 2*loop.
*/
static inline void precise_instrs_loop(int loop, uint32_t pmcr)
{
asm volatile(
" mcr p15, 0, %[pmcr], c9, c12, 0\n"
" isb\n"
"1: subs %[loop], %[loop], #1\n"
" bgt 1b\n"
" mcr p15, 0, %[z], c9, c12, 0\n"
" isb\n"
: [loop] "+r" (loop)
: [pmcr] "r" (pmcr), [z] "r" (0)
: "cc");
}
static void pmu_reset(void)
{
/* reset all counters, counting disabled at PMCR level*/
set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P);
/* Disable all counters */
write_sysreg(ALL_SET_32, PMCNTENCLR);
/* clear overflow reg */
write_sysreg(ALL_SET_32, PMOVSR);
/* disable overflow interrupts on all counters */
write_sysreg(ALL_SET_32, PMINTENCLR);
isb();
}
/* event counter tests only implemented for aarch64 */
static void test_event_introspection(void) {}
static void test_event_counter_config(void) {}
static void test_basic_event_count(bool overflow_at_64bits) {}
static void test_mem_access_reliability(bool overflow_at_64bits) {}
static void test_mem_access(bool overflow_at_64bits) {}
static void test_sw_incr(bool overflow_at_64bits) {}
static void test_chained_counters(bool unused) {}
static void test_chained_sw_incr(bool unused) {}
static void test_chain_promotion(bool unused) {}
static void test_overflow_interrupt(bool overflow_at_64bits) {}
#elif defined(__aarch64__)
#define ID_AA64DFR0_PERFMON_SHIFT 8
#define ID_AA64DFR0_PERFMON_MASK 0xf
#define ID_DFR0_PMU_NOTIMPL 0b0000
#define ID_DFR0_PMU_V3 0b0001
#define ID_DFR0_PMU_V3_8_1 0b0100
#define ID_DFR0_PMU_V3_8_4 0b0101
#define ID_DFR0_PMU_V3_8_5 0b0110
#define ID_DFR0_PMU_IMPDEF 0b1111
static inline uint32_t get_id_aa64dfr0(void) { return read_sysreg(id_aa64dfr0_el1); }
static inline uint32_t get_pmcr(void) { return read_sysreg(pmcr_el0); }
static inline void set_pmcr(uint32_t v) { write_sysreg(v, pmcr_el0); }
static inline uint64_t get_pmccntr(void) { return read_sysreg(pmccntr_el0); }
static inline void set_pmccntr(uint64_t v) { write_sysreg(v, pmccntr_el0); }
static inline void set_pmcntenset(uint32_t v) { write_sysreg(v, pmcntenset_el0); }
static inline void set_pmccfiltr(uint32_t v) { write_sysreg(v, pmccfiltr_el0); }
static inline uint8_t get_pmu_version(void)
{
uint8_t ver = (get_id_aa64dfr0() >> ID_AA64DFR0_PERFMON_SHIFT) & ID_AA64DFR0_PERFMON_MASK;
return ver;
}
/*
* Extra instructions inserted by the compiler would be difficult to compensate
* for, so hand assemble everything between, and including, the PMCR accesses
* to start and stop counting. isb instructions are inserted to make sure
* pmccntr read after this function returns the exact instructions executed
* in the controlled block. Total instrs = isb + msr + 2*loop = 2 + 2*loop.
*/
static inline void precise_instrs_loop(int loop, uint32_t pmcr)
{
uint64_t pmcr64 = pmcr;
asm volatile(
" msr pmcr_el0, %[pmcr]\n"
" isb\n"
"1: subs %w[loop], %w[loop], #1\n"
" b.gt 1b\n"
" msr pmcr_el0, xzr\n"
" isb\n"
: [loop] "+r" (loop)
: [pmcr] "r" (pmcr64)
: "cc");
}
#define PMCEID1_EL0 sys_reg(3, 3, 9, 12, 7)
#define PMCNTENSET_EL0 sys_reg(3, 3, 9, 12, 1)
#define PMCNTENCLR_EL0 sys_reg(3, 3, 9, 12, 2)
#define PMEVTYPER_EXCLUDE_EL1 BIT(31)
#define PMEVTYPER_EXCLUDE_EL0 BIT(30)
static bool is_event_supported(uint32_t n, bool warn)
{
uint64_t pmceid0 = read_sysreg(pmceid0_el0);
uint64_t pmceid1 = read_sysreg_s(PMCEID1_EL0);
bool supported;
uint64_t reg;
/*
* The low 32-bits of PMCEID0/1 respectively describe
* event support for events 0-31/32-63. Their High
* 32-bits describe support for extended events
* starting at 0x4000, using the same split.
*/
assert((n >= COMMON_EVENTS_LOW && n <= COMMON_EVENTS_HIGH) ||
(n >= EXT_COMMON_EVENTS_LOW && n <= EXT_COMMON_EVENTS_HIGH));
if (n <= COMMON_EVENTS_HIGH)
reg = lower_32_bits(pmceid0) | ((u64)lower_32_bits(pmceid1) << 32);
else
reg = upper_32_bits(pmceid0) | ((u64)upper_32_bits(pmceid1) << 32);
supported = reg & (1UL << (n & 0x3F));
if (!supported && warn)
report_info("event 0x%x is not supported", n);
return supported;
}
static void test_event_introspection(void)
{
bool required_events;
if (!pmu.nb_implemented_counters) {
report_skip("No event counter, skip ...");
return;
}
/* PMUv3 requires an implementation includes some common events */
required_events = is_event_supported(SW_INCR, true) &&
is_event_supported(CPU_CYCLES, true) &&
(is_event_supported(INST_RETIRED, true) ||
is_event_supported(INST_PREC, true));
if (pmu.version >= ID_DFR0_PMU_V3_8_1) {
required_events = required_events &&
is_event_supported(STALL_FRONTEND, true) &&
is_event_supported(STALL_BACKEND, true);
}
report(required_events, "Check required events are implemented");
}
/*
* Extra instructions inserted by the compiler would be difficult to compensate
* for, so hand assemble everything between, and including, the PMCR accesses
* to start and stop counting. isb instructions are inserted to make sure
* pmccntr read after this function returns the exact instructions executed
* in the controlled block. Loads @loop times the data at @address into x9.
*/
static void mem_access_loop(void *addr, long loop, uint32_t pmcr)
{
uint64_t pmcr64 = pmcr;
asm volatile(
" dsb ish\n"
" msr pmcr_el0, %[pmcr]\n"
" isb\n"
" dsb ish\n"
" mov x10, %[loop]\n"
"1: sub x10, x10, #1\n"
" ldr x9, [%[addr]]\n"
" cmp x10, #0x0\n"
" b.gt 1b\n"
" dsb ish\n"
" msr pmcr_el0, xzr\n"
" isb\n"
:
: [addr] "r" (addr), [pmcr] "r" (pmcr64), [loop] "r" (loop)
: "x9", "x10", "cc");
}
static volatile struct pmu_stats pmu_stats;
static void irq_handler(struct pt_regs *regs)
{
uint32_t irqstat, irqnr;
irqstat = gic_read_iar();
irqnr = gic_iar_irqnr(irqstat);
if (irqnr == PMU_PPI) {
unsigned long overflows = read_sysreg(pmovsclr_el0);
int i;
for (i = 0; i < 32; i++) {
if (test_and_clear_bit(i, &overflows)) {
pmu_stats.interrupts[i]++;
pmu_stats.bitmap |= 1 << i;
}
}
write_sysreg(ALL_SET_32, pmovsclr_el0);
isb();
} else {
pmu_stats.unexpected = true;
}
gic_write_eoir(irqstat);
}
static void pmu_reset_stats(void)
{
int i;
for (i = 0; i < 32; i++)
pmu_stats.interrupts[i] = 0;
pmu_stats.bitmap = 0;
pmu_stats.unexpected = false;
}
static void pmu_reset(void)
{
/* reset all counters, counting disabled at PMCR level*/
set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P);
/* Disable all counters */
write_sysreg_s(ALL_SET_32, PMCNTENCLR_EL0);
/* clear overflow reg */
write_sysreg(ALL_SET_32, pmovsclr_el0);
/* disable overflow interrupts on all counters */
write_sysreg(ALL_SET_32, pmintenclr_el1);
pmu_reset_stats();
isb();
}
static void test_event_counter_config(void)
{
int i;
if (!pmu.nb_implemented_counters) {
report_skip("No event counter, skip ...");
return;
}
pmu_reset();
/*
* Test setting through PMESELR/PMXEVTYPER and PMEVTYPERn read,
* select counter 0
*/
write_sysreg(1, PMSELR_EL0);
/* program this counter to count unsupported event */
write_sysreg(0xEA, PMXEVTYPER_EL0);
write_sysreg(0xdeadbeef, PMXEVCNTR_EL0);
report((read_regn_el0(pmevtyper, 1) & 0xFFF) == 0xEA,
"PMESELR/PMXEVTYPER/PMEVTYPERn");
report((read_regn_el0(pmevcntr, 1) == 0xdeadbeef),
"PMESELR/PMXEVCNTR/PMEVCNTRn");
/* try to configure an unsupported event within the range [0x0, 0x3F] */
for (i = 0; i <= 0x3F; i++) {
if (!is_event_supported(i, false))
break;
}
if (i > 0x3F) {
report_skip("pmevtyper: all events within [0x0, 0x3F] are supported");
return;
}
/* select counter 0 */
write_sysreg(0, PMSELR_EL0);
/* program this counter to count unsupported event */
write_sysreg(i, PMXEVCNTR_EL0);
/* read the counter value */
read_sysreg(PMXEVCNTR_EL0);
report(read_sysreg(PMXEVCNTR_EL0) == i,
"read of a counter programmed with unsupported event");
}
static bool satisfy_prerequisites(uint32_t *events, unsigned int nb_events)
{
int i;
if (pmu.nb_implemented_counters < nb_events) {
report_skip("Skip test as number of counters is too small (%d)",
pmu.nb_implemented_counters);
return false;
}
for (i = 0; i < nb_events; i++) {
if (!is_event_supported(events[i], false)) {
report_skip("Skip test as event 0x%x is not supported",
events[i]);
return false;
}
}
return true;
}
static uint64_t pmevcntr_mask(void)
{
/*
* Bits [63:0] are always incremented for 64-bit counters,
* even if the PMU is configured to generate an overflow at
* bits [31:0]
*
* For more details see the AArch64.IncrementEventCounter()
* pseudo-code in the ARM ARM DDI 0487I.a, section J1.1.1.
*/
if (pmu.version >= ID_DFR0_PMU_V3_8_5)
return ~0;
return (uint32_t)~0;
}
static bool check_overflow_prerequisites(bool overflow_at_64bits)
{
if (overflow_at_64bits && pmu.version < ID_DFR0_PMU_V3_8_5) {
report_skip("Skip test as 64 overflows need FEAT_PMUv3p5");
return false;
}
return true;
}
static void test_basic_event_count(bool overflow_at_64bits)
{
uint32_t implemented_counter_mask, non_implemented_counter_mask;
uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits);
uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0;
uint32_t events[] = {CPU_CYCLES, INST_RETIRED};
uint32_t counter_mask;
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) ||
!check_overflow_prerequisites(overflow_at_64bits))
return;
implemented_counter_mask = BIT(pmu.nb_implemented_counters) - 1;
non_implemented_counter_mask = ~(BIT(31) | implemented_counter_mask);
counter_mask = implemented_counter_mask | non_implemented_counter_mask;
write_regn_el0(pmevtyper, 0, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, INST_RETIRED | PMEVTYPER_EXCLUDE_EL0);
/* disable all counters */
write_sysreg_s(ALL_SET_32, PMCNTENCLR_EL0);
report(!read_sysreg_s(PMCNTENCLR_EL0) && !read_sysreg_s(PMCNTENSET_EL0),
"pmcntenclr: disable all counters");
/*
* clear cycle and all event counters and allow counter enablement
* through PMCNTENSET. LC is RES1.
*/
set_pmcr(pmu.pmcr_ro | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_P | pmcr_lp);
isb();
report(get_pmcr() == (pmu.pmcr_ro | PMU_PMCR_LC | pmcr_lp), "pmcr: reset counters");
/* Preset counter #0 to pre overflow value to trigger an overflow */
write_regn_el0(pmevcntr, 0, pre_overflow);
report(read_regn_el0(pmevcntr, 0) == pre_overflow,
"counter #0 preset to pre-overflow value");
report(!read_regn_el0(pmevcntr, 1), "counter #1 is 0");
/*
* Enable all implemented counters and also attempt to enable
* not supported counters. Counting still is disabled by !PMCR.E
*/
write_sysreg_s(counter_mask, PMCNTENSET_EL0);
/* check only those implemented are enabled */
report((read_sysreg_s(PMCNTENSET_EL0) == read_sysreg_s(PMCNTENCLR_EL0)) &&
(read_sysreg_s(PMCNTENSET_EL0) == implemented_counter_mask),
"pmcntenset: enabled implemented_counters");
/* Disable all counters but counters #0 and #1 */
write_sysreg_s(~0x3, PMCNTENCLR_EL0);
report((read_sysreg_s(PMCNTENSET_EL0) == read_sysreg_s(PMCNTENCLR_EL0)) &&
(read_sysreg_s(PMCNTENSET_EL0) == 0x3),
"pmcntenset: just enabled #0 and #1");
/* clear overflow register */
write_sysreg(ALL_SET_32, pmovsclr_el0);
report(!read_sysreg(pmovsclr_el0), "check overflow reg is 0");
/* disable overflow interrupts on all counters*/
write_sysreg(ALL_SET_32, pmintenclr_el1);
report(!read_sysreg(pmintenclr_el1),
"pmintenclr_el1=0, all interrupts disabled");
/* enable overflow interrupts on all event counters */
write_sysreg(implemented_counter_mask | non_implemented_counter_mask,
pmintenset_el1);
report(read_sysreg(pmintenset_el1) == implemented_counter_mask,
"overflow interrupts enabled on all implemented counters");
/* Set PMCR.E, execute asm code and unset PMCR.E */
precise_instrs_loop(20, pmu.pmcr_ro | PMU_PMCR_E);
report_info("counter #0 is 0x%lx (CPU_CYCLES)",
read_regn_el0(pmevcntr, 0));
report_info("counter #1 is 0x%lx (INST_RETIRED)",
read_regn_el0(pmevcntr, 1));
report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0));
report(read_sysreg(pmovsclr_el0) == 0x1,
"check overflow happened on #0 only");
}
static void test_mem_access(bool overflow_at_64bits)
{
void *addr = malloc(PAGE_SIZE);
uint32_t events[] = {MEM_ACCESS, MEM_ACCESS};
uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits);
uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0;
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) ||
!check_overflow_prerequisites(overflow_at_64bits))
return;
pmu_reset();
write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
write_sysreg_s(0x3, PMCNTENSET_EL0);
isb();
mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
report_info("counter #0 is 0x%lx (MEM_ACCESS)", read_regn_el0(pmevcntr, 0));
report_info("counter #1 is 0x%lx (MEM_ACCESS)", read_regn_el0(pmevcntr, 1));
/* We may measure more than 20 mem access depending on the core */
report((read_regn_el0(pmevcntr, 0) == read_regn_el0(pmevcntr, 1)) &&
(read_regn_el0(pmevcntr, 0) >= 20) && !read_sysreg(pmovsclr_el0),
"Ran 20 mem accesses");
pmu_reset();
write_regn_el0(pmevcntr, 0, pre_overflow);
write_regn_el0(pmevcntr, 1, pre_overflow);
write_sysreg_s(0x3, PMCNTENSET_EL0);
isb();
mem_access_loop(addr, 20, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
report(read_sysreg(pmovsclr_el0) == 0x3,
"Ran 20 mem accesses with expected overflows on both counters");
report_info("cnt#0=0x%lx cnt#1=0x%lx overflow=0x%lx",
read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1),
read_sysreg(pmovsclr_el0));
}
static void test_sw_incr(bool overflow_at_64bits)
{
uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits);
uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0;
uint32_t events[] = {SW_INCR, SW_INCR};
uint64_t cntr0 = (pre_overflow + 100) & pmevcntr_mask();
int i;
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) ||
!check_overflow_prerequisites(overflow_at_64bits))
return;
pmu_reset();
write_regn_el0(pmevtyper, 0, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
/* enable counters #0 and #1 */
write_sysreg_s(0x3, PMCNTENSET_EL0);
write_regn_el0(pmevcntr, 0, pre_overflow);
isb();
for (i = 0; i < 100; i++)
write_sysreg(0x1, pmswinc_el0);
isb();
report_info("SW_INCR counter #0 has value 0x%lx", read_regn_el0(pmevcntr, 0));
report(read_regn_el0(pmevcntr, 0) == pre_overflow,
"PWSYNC does not increment if PMCR.E is unset");
pmu_reset();
write_regn_el0(pmevcntr, 0, pre_overflow);
write_sysreg_s(0x3, PMCNTENSET_EL0);
set_pmcr(pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
isb();
for (i = 0; i < 100; i++)
write_sysreg(0x3, pmswinc_el0);
isb();
report(read_regn_el0(pmevcntr, 0) == cntr0, "counter #0 after + 100 SW_INCR");
report(read_regn_el0(pmevcntr, 1) == 100, "counter #1 after + 100 SW_INCR");
report_info("counter values after 100 SW_INCR #0=0x%lx #1=0x%lx",
read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
report(read_sysreg(pmovsclr_el0) == 0x1,
"overflow on counter #0 after 100 SW_INCR");
}
static void enable_chain_counter(int even)
{
write_sysreg_s(BIT(even + 1), PMCNTENSET_EL0); /* Enable the high counter first */
isb();
write_sysreg_s(BIT(even), PMCNTENSET_EL0); /* Enable the low counter */
isb();
}
static void disable_chain_counter(int even)
{
write_sysreg_s(BIT(even), PMCNTENCLR_EL0); /* Disable the low counter first*/
isb();
write_sysreg_s(BIT(even + 1), PMCNTENCLR_EL0); /* Disable the high counter */
isb();
}
static void test_chained_counters(bool unused)
{
uint32_t events[] = {CPU_CYCLES, CHAIN};
uint64_t all_set = pmevcntr_mask();
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
return;
pmu_reset();
write_regn_el0(pmevtyper, 0, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32);
enable_chain_counter(0);
precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E);
report(read_regn_el0(pmevcntr, 1) == 1, "CHAIN counter #1 incremented");
report(read_sysreg(pmovsclr_el0) == 0x1, "overflow recorded for chained incr #1");
/* test 64b overflow */
pmu_reset();
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32);
write_regn_el0(pmevcntr, 1, 0x1);
enable_chain_counter(0);
precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E);
report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0));
report(read_regn_el0(pmevcntr, 1) == 2, "CHAIN counter #1 set to 2");
report(read_sysreg(pmovsclr_el0) == 0x1, "overflow recorded for chained incr #2");
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32);
write_regn_el0(pmevcntr, 1, all_set);
precise_instrs_loop(22, pmu.pmcr_ro | PMU_PMCR_E);
report_info("overflow reg = 0x%lx", read_sysreg(pmovsclr_el0));
report(read_regn_el0(pmevcntr, 1) == 0, "CHAIN counter #1 wrapped");
report(read_sysreg(pmovsclr_el0) == 0x3, "overflow on even and odd counters");
}
static void test_chained_sw_incr(bool unused)
{
uint32_t events[] = {SW_INCR, CHAIN};
uint64_t cntr0 = (PRE_OVERFLOW_32 + 100) & pmevcntr_mask();
uint64_t cntr1 = (ALL_SET_32 + 1) & pmevcntr_mask();
int i;
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
return;
pmu_reset();
write_regn_el0(pmevtyper, 0, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
enable_chain_counter(0);
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32);
set_pmcr(pmu.pmcr_ro | PMU_PMCR_E);
isb();
for (i = 0; i < 100; i++)
write_sysreg(0x1, pmswinc_el0);
isb();
report((read_sysreg(pmovsclr_el0) == 0x1) &&
(read_regn_el0(pmevcntr, 1) == 1),
"overflow and chain counter incremented after 100 SW_INCR/CHAIN");
report_info("overflow=0x%lx, #0=0x%lx #1=0x%lx", read_sysreg(pmovsclr_el0),
read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
/* 64b SW_INCR and overflow on CHAIN counter*/
pmu_reset();
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32);
write_regn_el0(pmevcntr, 1, ALL_SET_32);
enable_chain_counter(0);
set_pmcr(pmu.pmcr_ro | PMU_PMCR_E);
isb();
for (i = 0; i < 100; i++)
write_sysreg(0x1, pmswinc_el0);
isb();
report((read_sysreg(pmovsclr_el0) == 0x3) &&
(read_regn_el0(pmevcntr, 0) == cntr0) &&
(read_regn_el0(pmevcntr, 1) == cntr1),
"expected overflows and values after 100 SW_INCR/CHAIN");
report_info("overflow=0x%lx, #0=0x%lx #1=0x%lx", read_sysreg(pmovsclr_el0),
read_regn_el0(pmevcntr, 0), read_regn_el0(pmevcntr, 1));
}
#define PRINT_REGS(__s) \
report_info("%s #1=0x%lx #0=0x%lx overflow=0x%lx", __s, \
read_regn_el0(pmevcntr, 1), \
read_regn_el0(pmevcntr, 0), \
read_sysreg(pmovsclr_el0))
/*
* This test checks that a mem access loop featuring COUNT accesses
* does not overflow with an init value of PRE_OVERFLOW2. It also
* records the min/max access count to see how much the counting
* is (un)reliable
*/
static void test_mem_access_reliability(bool overflow_at_64bits)
{
uint32_t events[] = {MEM_ACCESS};
void *addr = malloc(PAGE_SIZE);
uint64_t cntr_val, num_events, max = 0, min = pmevcntr_mask();
uint64_t pre_overflow2 = PRE_OVERFLOW2(overflow_at_64bits);
uint64_t all_set = ALL_SET(overflow_at_64bits);
uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0;
bool overflow = false;
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) ||
!check_overflow_prerequisites(overflow_at_64bits))
return;
pmu_reset();
write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
for (int i = 0; i < 100; i++) {
pmu_reset();
write_regn_el0(pmevcntr, 0, pre_overflow2);
write_sysreg_s(0x1, PMCNTENSET_EL0);
isb();
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
cntr_val = read_regn_el0(pmevcntr, 0);
if (cntr_val >= pre_overflow2) {
num_events = cntr_val - pre_overflow2;
} else {
/* unexpected counter overflow */
num_events = cntr_val + all_set - pre_overflow2;
overflow = true;
report_info("iter=%d num_events=%ld min=%ld max=%ld overflow!!!",
i, num_events, min, max);
}
/* record extreme value */
max = MAX(num_events, max);
min = MIN(num_events, min);
}
report_info("overflow=%d min=%ld max=%ld expected=%d acceptable margin=%d",
overflow, min, max, COUNT, MARGIN);
report(!overflow, "mem_access count is reliable");
}
static void test_chain_promotion(bool unused)
{
uint32_t events[] = {MEM_ACCESS, CHAIN};
void *addr = malloc(PAGE_SIZE);
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)))
return;
/* Only enable CHAIN counter */
report_prefix_push("subtest1");
pmu_reset();
write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
write_sysreg_s(0x2, PMCNTENSET_EL0);
isb();
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("post");
report(!read_regn_el0(pmevcntr, 0),
"chain counter not counting if even counter is disabled");
report_prefix_pop();
/* Only enable even counter */
report_prefix_push("subtest2");
pmu_reset();
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW_32);
write_sysreg_s(0x1, PMCNTENSET_EL0);
isb();
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("post");
report(!read_regn_el0(pmevcntr, 1) && (read_sysreg(pmovsclr_el0) == 0x1),
"odd counter did not increment on overflow if disabled");
report_prefix_pop();
/* 1st COUNT with CHAIN enabled, next COUNT with CHAIN disabled */
report_prefix_push("subtest3");
pmu_reset();
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32);
enable_chain_counter(0);
PRINT_REGS("init");
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 1st loop");
/* disable the CHAIN event */
disable_chain_counter(0);
write_sysreg_s(0x1, PMCNTENSET_EL0); /* Enable the low counter */
isb();
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 2nd loop");
report(read_sysreg(pmovsclr_el0) == 0x1,
"should have triggered an overflow on #0");
report(!read_regn_el0(pmevcntr, 1),
"CHAIN counter #1 shouldn't have incremented");
report_prefix_pop();
/* 1st COUNT with CHAIN disabled, next COUNT with CHAIN enabled */
report_prefix_push("subtest4");
pmu_reset();
write_sysreg_s(0x1, PMCNTENSET_EL0);
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32);
isb();
PRINT_REGS("init");
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 1st loop");
/* Disable the low counter first and enable the chain counter */
write_sysreg_s(0x1, PMCNTENCLR_EL0);
isb();
enable_chain_counter(0);
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 2nd loop");
report((read_regn_el0(pmevcntr, 1) == 1) &&
(read_sysreg(pmovsclr_el0) == 0x1),
"CHAIN counter enabled: CHAIN counter was incremented and overflow");
report_prefix_pop();
/* start as MEM_ACCESS/CPU_CYCLES and move to CHAIN/MEM_ACCESS */
report_prefix_push("subtest5");
pmu_reset();
write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
write_sysreg_s(0x3, PMCNTENSET_EL0);
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32);
isb();
PRINT_REGS("init");
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 1st loop");
/* 0 becomes CHAINED */
write_sysreg_s(0x3, PMCNTENCLR_EL0);
write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevcntr, 1, 0x0);
enable_chain_counter(0);
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 2nd loop");
report((read_regn_el0(pmevcntr, 1) == 1) &&
(read_sysreg(pmovsclr_el0) == 0x1),
"32b->64b: CHAIN counter incremented and overflow");
report_prefix_pop();
/* start as CHAIN/MEM_ACCESS and move to MEM_ACCESS/CPU_CYCLES */
report_prefix_push("subtest6");
pmu_reset();
write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevcntr, 0, PRE_OVERFLOW2_32);
enable_chain_counter(0);
PRINT_REGS("init");
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 1st loop");
disable_chain_counter(0);
write_regn_el0(pmevtyper, 1, CPU_CYCLES | PMEVTYPER_EXCLUDE_EL0);
write_sysreg_s(0x3, PMCNTENSET_EL0);
mem_access_loop(addr, COUNT, pmu.pmcr_ro | PMU_PMCR_E);
PRINT_REGS("After 2nd loop");
report(read_sysreg(pmovsclr_el0) == 1,
"overflow is expected on counter 0");
report_prefix_pop();
}
static bool expect_interrupts(uint32_t bitmap)
{
int i;
if (pmu_stats.bitmap ^ bitmap || pmu_stats.unexpected)
return false;
for (i = 0; i < 32; i++) {
if (test_and_clear_bit(i, &pmu_stats.bitmap))
if (pmu_stats.interrupts[i] != 1)
return false;
}
return true;
}
static void test_overflow_interrupt(bool overflow_at_64bits)
{
uint64_t pre_overflow = PRE_OVERFLOW(overflow_at_64bits);
uint64_t all_set = pmevcntr_mask();
uint64_t pmcr_lp = overflow_at_64bits ? PMU_PMCR_LP : 0;
uint32_t events[] = {MEM_ACCESS, SW_INCR};
void *addr = malloc(PAGE_SIZE);
int i;
if (!satisfy_prerequisites(events, ARRAY_SIZE(events)) ||
!check_overflow_prerequisites(overflow_at_64bits))
return;
gic_enable_defaults();
install_irq_handler(EL1H_IRQ, irq_handler);
local_irq_enable();
gic_enable_irq(23);
pmu_reset();
write_regn_el0(pmevtyper, 0, MEM_ACCESS | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevtyper, 1, SW_INCR | PMEVTYPER_EXCLUDE_EL0);
write_sysreg_s(0x3, PMCNTENSET_EL0);
write_regn_el0(pmevcntr, 0, pre_overflow);
write_regn_el0(pmevcntr, 1, pre_overflow);
isb();
/* interrupts are disabled (PMINTENSET_EL1 == 0) */
mem_access_loop(addr, COUNT_INT, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
report(expect_interrupts(0), "no overflow interrupt after preset");
set_pmcr(pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
isb();
for (i = 0; i < 100; i++)
write_sysreg(0x2, pmswinc_el0);
isb();
set_pmcr(pmu.pmcr_ro);
isb();
report(expect_interrupts(0), "no overflow interrupt after counting");
/* enable interrupts (PMINTENSET_EL1 <= ALL_SET_32) */
pmu_reset_stats();
write_regn_el0(pmevcntr, 0, pre_overflow);
write_regn_el0(pmevcntr, 1, pre_overflow);
write_sysreg(ALL_SET_32, pmovsclr_el0);
write_sysreg(ALL_SET_32, pmintenset_el1);
isb();
mem_access_loop(addr, COUNT_INT, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
set_pmcr(pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
isb();
for (i = 0; i < 100; i++)
write_sysreg(0x3, pmswinc_el0);
mem_access_loop(addr, COUNT_INT, pmu.pmcr_ro);
report_info("overflow=0x%lx", read_sysreg(pmovsclr_el0));
report(expect_interrupts(0x3),
"overflow interrupts expected on #0 and #1");
/*
* promote to 64-b:
*
* This only applies to the !overflow_at_64bits case, as
* overflow_at_64bits doesn't implement CHAIN events. The
* overflow_at_64bits case just checks that chained counters are
* not incremented when PMCR.LP == 1.
*/
pmu_reset_stats();
write_regn_el0(pmevtyper, 1, CHAIN | PMEVTYPER_EXCLUDE_EL0);
write_regn_el0(pmevcntr, 0, pre_overflow);
isb();
mem_access_loop(addr, COUNT_INT, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
report(expect_interrupts(0x1), "expect overflow interrupt");
/* overflow on odd counter */
pmu_reset_stats();
write_regn_el0(pmevcntr, 0, pre_overflow);
write_regn_el0(pmevcntr, 1, all_set);
isb();
mem_access_loop(addr, COUNT_INT, pmu.pmcr_ro | PMU_PMCR_E | pmcr_lp);
if (overflow_at_64bits) {
report(expect_interrupts(0x1),
"expect overflow interrupt on even counter");
report(read_regn_el0(pmevcntr, 1) == all_set,
"Odd counter did not change");
} else {
report(expect_interrupts(0x3),
"expect overflow interrupt on even and odd counter");
report(read_regn_el0(pmevcntr, 1) != all_set,
"Odd counter wrapped");
}
}
#endif
/*
* Ensure that the cycle counter progresses between back-to-back reads.
*/
static bool check_cycles_increase(void)
{
bool success = true;
/* init before event access, this test only cares about cycle count */
pmu_reset();
set_pmcntenset(1 << PMU_CYCLE_IDX);
set_pmccfiltr(0); /* count cycles in EL0, EL1, but not EL2 */
set_pmcr(get_pmcr() | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_E);
isb();
for (int i = 0; i < NR_SAMPLES; i++) {
uint64_t a, b;
a = get_pmccntr();
b = get_pmccntr();
if (a >= b) {
printf("Read %"PRId64" then %"PRId64".\n", a, b);
success = false;
break;
}
}
set_pmcr(get_pmcr() & ~PMU_PMCR_E);
isb();
return success;
}
/*
* Execute a known number of guest instructions. Only even instruction counts
* greater than or equal to 4 are supported by the in-line assembly code. The
* control register (PMCR_EL0) is initialized with the provided value (allowing
* for example for the cycle counter or event counters to be reset). At the end
* of the exact instruction loop, zero is written to PMCR_EL0 to disable
* counting, allowing the cycle counter or event counters to be read at the
* leisure of the calling code.
*/
static void measure_instrs(int num, uint32_t pmcr)
{
int loop = (num - 2) / 2;
assert(num >= 4 && ((num - 2) % 2 == 0));
precise_instrs_loop(loop, pmcr);
}
/*
* Measure cycle counts for various known instruction counts. Ensure that the
* cycle counter progresses (similar to check_cycles_increase() but with more
* instructions and using reset and stop controls). If supplied a positive,
* nonzero CPI parameter, it also strictly checks that every measurement matches
* it. Strict CPI checking is used to test -icount mode.
*/
static bool check_cpi(int cpi)
{
uint32_t pmcr = get_pmcr() | PMU_PMCR_LC | PMU_PMCR_C | PMU_PMCR_E;
/* init before event access, this test only cares about cycle count */
pmu_reset();
set_pmcntenset(1 << PMU_CYCLE_IDX);
set_pmccfiltr(0); /* count cycles in EL0, EL1, but not EL2 */
if (cpi > 0)
printf("Checking for CPI=%d.\n", cpi);
printf("instrs : cycles0 cycles1 ...\n");
for (unsigned int i = 4; i < 300; i += 32) {
uint64_t avg, sum = 0;
printf("%4d:", i);
for (int j = 0; j < NR_SAMPLES; j++) {
uint64_t cycles;
set_pmccntr(0);
measure_instrs(i, pmcr);
cycles = get_pmccntr();
printf(" %4"PRId64"", cycles);
if (!cycles) {
printf("\ncycles not incrementing!\n");
return false;
} else if (cpi > 0 && cycles != i * cpi) {
printf("\nunexpected cycle count received!\n");
return false;
} else if ((cycles >> 32) != 0) {
/* The cycles taken by the loop above should
* fit in 32 bits easily. We check the upper
* 32 bits of the cycle counter to make sure
* there is no supprise. */
printf("\ncycle count bigger than 32bit!\n");
return false;
}
sum += cycles;
}
avg = sum / NR_SAMPLES;
printf(" avg=%-4"PRId64" %s=%-3"PRId64"\n", avg,
(avg >= i) ? "cpi" : "ipc",
(avg >= i) ? avg / i : i / avg);
}
return true;
}
static void pmccntr64_test(void)
{
#ifdef __arm__
if (pmu.version == ID_DFR0_PMU_V3) {
if (ERRATA(9e3f7a296940)) {
write_sysreg(0xdead, PMCCNTR64);
report(read_sysreg(PMCCNTR64) == 0xdead, "pmccntr64");
} else
report_skip("Skipping unsafe pmccntr64 test. Set ERRATA_9e3f7a296940=y to enable.");
}
#endif
}
/* Return FALSE if no PMU found, otherwise return TRUE */
static bool pmu_probe(void)
{
uint32_t pmcr;
uint8_t implementer;
pmu.version = get_pmu_version();
if (pmu.version == ID_DFR0_PMU_NOTIMPL || pmu.version == ID_DFR0_PMU_IMPDEF)
return false;
report_info("PMU version: 0x%x", pmu.version);
pmcr = get_pmcr();
implementer = (pmcr >> PMU_PMCR_IMP_SHIFT) & PMU_PMCR_IMP_MASK;
report_info("PMU implementer/ID code: %#"PRIx32"(\"%c\")/%#"PRIx32,
(pmcr >> PMU_PMCR_IMP_SHIFT) & PMU_PMCR_IMP_MASK,
implementer ? implementer : ' ',
(pmcr >> PMU_PMCR_ID_SHIFT) & PMU_PMCR_ID_MASK);
/* store read-only and RES0 fields of the PMCR bottom-half*/
pmu.pmcr_ro = pmcr & 0xFFFFFF00;
pmu.nb_implemented_counters =
(pmcr >> PMU_PMCR_N_SHIFT) & PMU_PMCR_N_MASK;
report_info("Implements %d event counters",
pmu.nb_implemented_counters);
return true;
}
static void run_test(const char *name, const char *prefix,
void (*test)(bool), void *arg)
{
report_prefix_push(name);
report_prefix_push(prefix);
test(arg);
report_prefix_pop();
report_prefix_pop();
}
static void run_event_test(char *name, void (*test)(bool),
bool overflow_at_64bits)
{
const char *prefix = overflow_at_64bits ? "64-bit overflows"
: "32-bit overflows";
run_test(name, prefix, test, (void *)overflow_at_64bits);
}
int main(int argc, char *argv[])
{
int cpi = 0;
if (!pmu_probe()) {
printf("No PMU found, test skipped...\n");
return report_summary();
}
if (argc < 2)
report_abort("no test specified");
report_prefix_push("pmu");
if (strcmp(argv[1], "cycle-counter") == 0) {
report_prefix_push(argv[1]);
if (argc > 2)
cpi = atol(argv[2]);
report(check_cycles_increase(),
"Monotonically increasing cycle count");
report(check_cpi(cpi), "Cycle/instruction ratio");
pmccntr64_test();
report_prefix_pop();
} else if (strcmp(argv[1], "pmu-event-introspection") == 0) {
report_prefix_push(argv[1]);
test_event_introspection();
report_prefix_pop();
} else if (strcmp(argv[1], "pmu-event-counter-config") == 0) {
report_prefix_push(argv[1]);
test_event_counter_config();
report_prefix_pop();
} else if (strcmp(argv[1], "pmu-basic-event-count") == 0) {
run_event_test(argv[1], test_basic_event_count, false);
run_event_test(argv[1], test_basic_event_count, true);
} else if (strcmp(argv[1], "pmu-mem-access-reliability") == 0) {
run_event_test(argv[1], test_mem_access_reliability, false);
run_event_test(argv[1], test_mem_access_reliability, true);
} else if (strcmp(argv[1], "pmu-mem-access") == 0) {
run_event_test(argv[1], test_mem_access, false);
run_event_test(argv[1], test_mem_access, true);
} else if (strcmp(argv[1], "pmu-sw-incr") == 0) {
run_event_test(argv[1], test_sw_incr, false);
run_event_test(argv[1], test_sw_incr, true);
} else if (strcmp(argv[1], "pmu-chained-counters") == 0) {
run_event_test(argv[1], test_chained_counters, false);
} else if (strcmp(argv[1], "pmu-chained-sw-incr") == 0) {
run_event_test(argv[1], test_chained_sw_incr, false);
} else if (strcmp(argv[1], "pmu-chain-promotion") == 0) {
run_event_test(argv[1], test_chain_promotion, false);
} else if (strcmp(argv[1], "pmu-overflow-interrupt") == 0) {
run_event_test(argv[1], test_overflow_interrupt, false);
run_event_test(argv[1], test_overflow_interrupt, true);
} else {
report_abort("Unknown sub-test '%s'", argv[1]);
}
return report_summary();
}