blob: 8921493384190812bcc236dd59088983e8c65c50 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* on_cpus() support based on cpumasks.
*
* Copyright (C) 2015, Red Hat Inc, Andrew Jones <drjones@redhat.com>
*/
#include <libcflat.h>
#include <cpumask.h>
#include <on-cpus.h>
#include <asm/barrier.h>
#include <asm/smp.h>
bool cpu0_calls_idle;
struct on_cpu_info {
void (*func)(void *data);
void *data;
cpumask_t waiters;
};
static struct on_cpu_info on_cpu_info[NR_CPUS];
static cpumask_t on_cpu_info_lock;
static bool get_on_cpu_info(int cpu)
{
return !cpumask_test_and_set_cpu(cpu, &on_cpu_info_lock);
}
static void put_on_cpu_info(int cpu)
{
int ret = cpumask_test_and_clear_cpu(cpu, &on_cpu_info_lock);
assert(ret);
}
static void __deadlock_check(int cpu, const cpumask_t *waiters, bool *found)
{
int i;
for_each_cpu(i, waiters) {
if (i == cpu) {
printf("CPU%d", cpu);
*found = true;
return;
}
__deadlock_check(cpu, &on_cpu_info[i].waiters, found);
if (*found) {
printf(" <=> CPU%d", i);
return;
}
}
}
static void deadlock_check(int me, int cpu)
{
bool found = false;
__deadlock_check(cpu, &on_cpu_info[me].waiters, &found);
if (found) {
printf(" <=> CPU%d deadlock detectd\n", me);
assert(0);
}
}
static void cpu_wait(int cpu)
{
int me = smp_processor_id();
if (cpu == me)
return;
cpumask_set_cpu(me, &on_cpu_info[cpu].waiters);
deadlock_check(me, cpu);
while (!cpu_idle(cpu))
smp_wait_for_event();
cpumask_clear_cpu(me, &on_cpu_info[cpu].waiters);
}
void do_idle(void)
{
int cpu = smp_processor_id();
if (cpu == 0)
cpu0_calls_idle = true;
set_cpu_idle(cpu, true);
smp_send_event();
for (;;) {
while (cpu_idle(cpu))
smp_wait_for_event();
smp_rmb();
on_cpu_info[cpu].func(on_cpu_info[cpu].data);
on_cpu_info[cpu].func = NULL;
smp_wmb();
set_cpu_idle(cpu, true);
smp_send_event();
}
}
void on_cpu_async(int cpu, void (*func)(void *data), void *data)
{
if (cpu == smp_processor_id()) {
func(data);
return;
}
assert_msg(cpu != 0 || cpu0_calls_idle, "Waiting on CPU0, which is unlikely to idle. "
"If this is intended set cpu0_calls_idle=1");
smp_boot_secondary_nofail(cpu, do_idle);
for (;;) {
cpu_wait(cpu);
if (get_on_cpu_info(cpu)) {
if ((volatile void *)on_cpu_info[cpu].func == NULL)
break;
put_on_cpu_info(cpu);
}
}
on_cpu_info[cpu].func = func;
on_cpu_info[cpu].data = data;
set_cpu_idle(cpu, false);
put_on_cpu_info(cpu);
smp_send_event();
}
void on_cpumask_async(const cpumask_t *mask, void (*func)(void *data), void *data)
{
int cpu, me = smp_processor_id();
for_each_cpu(cpu, mask) {
if (cpu == me)
continue;
on_cpu_async(cpu, func, data);
}
if (cpumask_test_cpu(me, mask))
func(data);
}
void on_cpumask(const cpumask_t *mask, void (*func)(void *data), void *data)
{
int cpu, me = smp_processor_id();
for_each_cpu(cpu, mask) {
if (cpu == me)
continue;
on_cpu_async(cpu, func, data);
}
if (cpumask_test_cpu(me, mask))
func(data);
for_each_cpu(cpu, mask) {
if (cpu == me)
continue;
cpumask_set_cpu(me, &on_cpu_info[cpu].waiters);
deadlock_check(me, cpu);
}
while (cpumask_weight(&cpu_idle_mask) < nr_cpus - 1)
smp_wait_for_event();
for_each_cpu(cpu, mask)
cpumask_clear_cpu(me, &on_cpu_info[cpu].waiters);
}
void on_cpu(int cpu, void (*func)(void *data), void *data)
{
on_cpu_async(cpu, func, data);
cpu_wait(cpu);
}
void on_cpus(void (*func)(void *data), void *data)
{
on_cpumask(&cpu_present_mask, func, data);
}