blob: 175caf0809e90775e8315d02a3174a4fb3ebb1ce [file] [log] [blame]
/*
* Copyright (C) 2013, Red Hat Inc, Michael S. Tsirkin <mst@redhat.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2.
*/
#include <linux/pci_regs.h>
#include "pci.h"
#include "asm/pci.h"
void pci_cap_walk(struct pci_dev *dev, pci_cap_handler_t handler)
{
uint8_t cap_offset;
uint8_t cap_id;
int count = 0;
cap_offset = pci_config_readb(dev->bdf, PCI_CAPABILITY_LIST);
while (cap_offset) {
cap_id = pci_config_readb(dev->bdf, cap_offset);
assert(cap_id < PCI_CAP_ID_MAX + 1);
handler(dev, cap_offset, cap_id);
cap_offset = pci_config_readb(dev->bdf, cap_offset + 1);
/* Avoid dead loop during cap walk */
assert(++count <= 255);
}
}
void pci_msi_set_enable(struct pci_dev *dev, bool enabled)
{
uint16_t msi_control;
uint16_t offset;
offset = dev->msi_offset;
msi_control = pci_config_readw(dev->bdf, offset + PCI_MSI_FLAGS);
if (enabled)
msi_control |= PCI_MSI_FLAGS_ENABLE;
else
msi_control &= ~PCI_MSI_FLAGS_ENABLE;
pci_config_writew(dev->bdf, offset + PCI_MSI_FLAGS, msi_control);
}
bool pci_setup_msi(struct pci_dev *dev, uint64_t msi_addr, uint32_t msi_data)
{
uint16_t msi_control;
uint16_t offset;
pcidevaddr_t addr;
assert(dev);
if (!dev->msi_offset) {
printf("MSI: dev %#x does not support MSI.\n", dev->bdf);
return false;
}
addr = dev->bdf;
offset = dev->msi_offset;
msi_control = pci_config_readw(addr, offset + PCI_MSI_FLAGS);
pci_config_writel(addr, offset + PCI_MSI_ADDRESS_LO,
msi_addr & 0xffffffff);
if (msi_control & PCI_MSI_FLAGS_64BIT) {
pci_config_writel(addr, offset + PCI_MSI_ADDRESS_HI,
(uint32_t)(msi_addr >> 32));
pci_config_writel(addr, offset + PCI_MSI_DATA_64, msi_data);
} else {
pci_config_writel(addr, offset + PCI_MSI_DATA_32, msi_data);
}
pci_msi_set_enable(dev, true);
return true;
}
void pci_cmd_set_clr(struct pci_dev *dev, uint16_t set, uint16_t clr)
{
uint16_t val = pci_config_readw(dev->bdf, PCI_COMMAND);
/* No overlap is allowed */
assert((set & clr) == 0);
val |= set;
val &= ~clr;
pci_config_writew(dev->bdf, PCI_COMMAND, val);
}
bool pci_dev_exists(pcidevaddr_t dev)
{
return (pci_config_readw(dev, PCI_VENDOR_ID) != 0xffff &&
pci_config_readw(dev, PCI_DEVICE_ID) != 0xffff);
}
/* Scan bus look for a specific device. Only bus 0 scanned for now. */
pcidevaddr_t pci_find_dev(uint16_t vendor_id, uint16_t device_id)
{
pcidevaddr_t dev;
for (dev = 0; dev < PCI_DEVFN_MAX; ++dev) {
if (pci_config_readw(dev, PCI_VENDOR_ID) == vendor_id &&
pci_config_readw(dev, PCI_DEVICE_ID) == device_id)
return dev;
}
return PCIDEVADDR_INVALID;
}
uint32_t pci_bar_mask(uint32_t bar)
{
return (bar & PCI_BASE_ADDRESS_SPACE_IO) ?
PCI_BASE_ADDRESS_IO_MASK : PCI_BASE_ADDRESS_MEM_MASK;
}
uint32_t pci_bar_get(struct pci_dev *dev, int bar_num)
{
ASSERT_BAR_NUM(bar_num);
return pci_config_readl(dev->bdf, PCI_BASE_ADDRESS_0 +
bar_num * 4);
}
static phys_addr_t __pci_bar_get_addr(struct pci_dev *dev, int bar_num)
{
uint32_t bar = pci_bar_get(dev, bar_num);
uint32_t mask = pci_bar_mask(bar);
uint64_t addr = bar & mask;
phys_addr_t phys_addr;
if (pci_bar_is64(dev, bar_num))
addr |= (uint64_t)pci_bar_get(dev, bar_num + 1) << 32;
phys_addr = pci_translate_addr(dev->bdf, addr);
assert(phys_addr != INVALID_PHYS_ADDR);
return phys_addr;
}
phys_addr_t pci_bar_get_addr(struct pci_dev *dev, int bar_num)
{
ASSERT_BAR_NUM(bar_num);
return dev->resource[bar_num];
}
void pci_bar_set_addr(struct pci_dev *dev, int bar_num, phys_addr_t addr)
{
int off = PCI_BASE_ADDRESS_0 + bar_num * 4;
assert(addr != INVALID_PHYS_ADDR);
assert(dev->resource[bar_num] != INVALID_PHYS_ADDR);
ASSERT_BAR_NUM(bar_num);
if (pci_bar_is64(dev, bar_num))
ASSERT_BAR_NUM(bar_num + 1);
else
assert((addr >> 32) == 0);
pci_config_writel(dev->bdf, off, (uint32_t)addr);
dev->resource[bar_num] = addr;
if (pci_bar_is64(dev, bar_num)) {
pci_config_writel(dev->bdf, off + 4, (uint32_t)(addr >> 32));
dev->resource[bar_num + 1] = dev->resource[bar_num];
}
}
/*
* To determine the amount of address space needed by a PCI device,
* one must save the original value of the BAR, write a value of
* all 1's to the register, and then read it back. The amount of
* memory can be then determined by masking the information bits,
* performing a bitwise NOT, and incrementing the value by 1.
*
* The following pci_bar_size_helper() and pci_bar_size() functions
* implement the algorithm.
*/
static uint32_t pci_bar_size_helper(struct pci_dev *dev, int bar_num)
{
int off = PCI_BASE_ADDRESS_0 + bar_num * 4;
uint16_t bdf = dev->bdf;
uint32_t bar, val;
bar = pci_config_readl(bdf, off);
pci_config_writel(bdf, off, ~0u);
val = pci_config_readl(bdf, off);
pci_config_writel(bdf, off, bar);
return val;
}
phys_addr_t pci_bar_size(struct pci_dev *dev, int bar_num)
{
uint32_t bar, size;
size = pci_bar_size_helper(dev, bar_num);
if (!size)
return 0;
bar = pci_bar_get(dev, bar_num);
size &= pci_bar_mask(bar);
if (pci_bar_is64(dev, bar_num)) {
phys_addr_t size64 = pci_bar_size_helper(dev, bar_num + 1);
size64 = (size64 << 32) | size;
return ~size64 + 1;
} else {
return ~size + 1;
}
}
bool pci_bar_is_memory(struct pci_dev *dev, int bar_num)
{
uint32_t bar = pci_bar_get(dev, bar_num);
return !(bar & PCI_BASE_ADDRESS_SPACE_IO);
}
bool pci_bar_is_valid(struct pci_dev *dev, int bar_num)
{
return dev->resource[bar_num] != INVALID_PHYS_ADDR;
}
bool pci_bar_is64(struct pci_dev *dev, int bar_num)
{
uint32_t bar = pci_bar_get(dev, bar_num);
if (bar & PCI_BASE_ADDRESS_SPACE_IO)
return false;
return (bar & PCI_BASE_ADDRESS_MEM_TYPE_MASK) ==
PCI_BASE_ADDRESS_MEM_TYPE_64;
}
void pci_bar_print(struct pci_dev *dev, int bar_num)
{
phys_addr_t size, start, end;
uint32_t bar;
if (!pci_bar_is_valid(dev, bar_num))
return;
bar = pci_bar_get(dev, bar_num);
size = pci_bar_size(dev, bar_num);
start = pci_bar_get_addr(dev, bar_num);
end = start + size - 1;
if (pci_bar_is64(dev, bar_num)) {
printf("BAR#%d,%d [%" PRIx64 "-%" PRIx64 " ",
bar_num, bar_num + 1, start, end);
} else {
printf("BAR#%d [%02" PRIx32 "-%02" PRIx32 " ",
bar_num, (uint32_t)start, (uint32_t)end);
}
if (bar & PCI_BASE_ADDRESS_SPACE_IO) {
printf("PIO");
} else {
printf("MEM");
switch (bar & PCI_BASE_ADDRESS_MEM_TYPE_MASK) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
printf("32");
break;
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
printf("1M");
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
printf("64");
break;
default:
assert(0);
}
}
if (bar & PCI_BASE_ADDRESS_MEM_PREFETCH)
printf("/p");
printf("]");
}
void pci_dev_print_id(struct pci_dev *dev)
{
pcidevaddr_t bdf = dev->bdf;
printf("00.%02x.%1x %04x:%04x", bdf / 8, bdf % 8,
pci_config_readw(bdf, PCI_VENDOR_ID),
pci_config_readw(bdf, PCI_DEVICE_ID));
}
static void pci_cap_print(struct pci_dev *dev, int cap_offset, int cap_id)
{
switch (cap_id) {
case PCI_CAP_ID_MSI: {
uint16_t control = pci_config_readw(dev->bdf, cap_offset + PCI_MSI_FLAGS);
printf("\tMSI,%s-bit capability ", control & PCI_MSI_FLAGS_64BIT ? "64" : "32");
break;
}
default:
printf("\tcapability %#04x ", cap_id);
break;
}
printf("at offset %#04x\n", cap_offset);
}
void pci_dev_print(struct pci_dev *dev)
{
pcidevaddr_t bdf = dev->bdf;
uint8_t header = pci_config_readb(bdf, PCI_HEADER_TYPE);
uint8_t progif = pci_config_readb(bdf, PCI_CLASS_PROG);
uint8_t subclass = pci_config_readb(bdf, PCI_CLASS_DEVICE);
uint8_t class = pci_config_readb(bdf, PCI_CLASS_DEVICE + 1);
int i;
pci_dev_print_id(dev);
printf(" type %02x progif %02x class %02x subclass %02x\n",
header, progif, class, subclass);
pci_cap_walk(dev, pci_cap_print);
if ((header & PCI_HEADER_TYPE_MASK) != PCI_HEADER_TYPE_NORMAL)
return;
for (i = 0; i < PCI_BAR_NUM; i++) {
if (pci_bar_is_valid(dev, i)) {
printf("\t");
pci_bar_print(dev, i);
printf("\n");
}
if (pci_bar_is64(dev, i))
i++;
}
}
void pci_print(void)
{
pcidevaddr_t devfn;
struct pci_dev pci_dev;
for (devfn = 0; devfn < PCI_DEVFN_MAX; ++devfn) {
if (pci_dev_exists(devfn)) {
pci_dev_init(&pci_dev, devfn);
pci_dev_print(&pci_dev);
}
}
}
void pci_dev_init(struct pci_dev *dev, pcidevaddr_t bdf)
{
int i;
memset(dev, 0, sizeof(*dev));
dev->bdf = bdf;
for (i = 0; i < PCI_BAR_NUM; i++) {
if (pci_bar_size(dev, i)) {
dev->resource[i] = __pci_bar_get_addr(dev, i);
if (pci_bar_is64(dev, i)) {
assert(i + 1 < PCI_BAR_NUM);
dev->resource[i + 1] = dev->resource[i];
i++;
}
} else {
dev->resource[i] = INVALID_PHYS_ADDR;
}
}
}
uint8_t pci_intx_line(struct pci_dev *dev)
{
return pci_config_readb(dev->bdf, PCI_INTERRUPT_LINE);
}
static void pci_cap_setup(struct pci_dev *dev, int cap_offset, int cap_id)
{
switch (cap_id) {
case PCI_CAP_ID_MSI:
dev->msi_offset = cap_offset;
break;
}
}
void pci_enable_defaults(struct pci_dev *dev)
{
/* Enable device DMA operations */
pci_cmd_set_clr(dev, PCI_COMMAND_MASTER, 0);
pci_cap_walk(dev, pci_cap_setup);
}