blob: 7fdc605f4399f1c1d0841eb562d501ca9d390438 [file] [log] [blame]
/*
* All test cases of nested virtualization should be in this file
*
* Author : Arthur Chunqi Li <yzt356@gmail.com>
*/
#include <asm/debugreg.h>
#include "vmx.h"
#include "msr.h"
#include "processor.h"
#include "pmu.h"
#include "vm.h"
#include "pci.h"
#include "fwcfg.h"
#include "isr.h"
#include "desc.h"
#include "apic.h"
#include "vmalloc.h"
#include "alloc_page.h"
#include "smp.h"
#include "delay.h"
#include "access.h"
#include "x86/usermode.h"
/*
* vmcs.GUEST_PENDING_DEBUG has the same format as DR6, although some bits that
* are legal in DR6 are reserved in vmcs.GUEST_PENDING_DEBUG. And if any data
* or I/O breakpoint matches *and* was enabled, bit 12 is also set.
*/
#define PENDING_DBG_TRAP BIT(12)
#define VPID_CAP_INVVPID_TYPES_SHIFT 40
u64 ia32_pat;
u64 ia32_efer;
void *io_bitmap_a, *io_bitmap_b;
u16 ioport;
unsigned long *pml4;
u64 eptp;
void *data_page1, *data_page2;
phys_addr_t pci_physaddr;
void *pml_log;
#define PML_INDEX 512
static inline unsigned ffs(unsigned x)
{
int pos = -1;
__asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0"
: "+r"(pos) : "rm"(x) : "eax");
return pos + 1;
}
static inline void vmcall(void)
{
asm volatile("vmcall");
}
static void basic_guest_main(void)
{
report_pass("Basic VMX test");
}
static int basic_exit_handler(union exit_reason exit_reason)
{
report_fail("Basic VMX test");
print_vmexit_info(exit_reason);
return VMX_TEST_EXIT;
}
static void vmenter_main(void)
{
u64 rax;
u64 rsp, resume_rsp;
report_pass("test vmlaunch");
asm volatile(
"mov %%rsp, %0\n\t"
"mov %3, %%rax\n\t"
"vmcall\n\t"
"mov %%rax, %1\n\t"
"mov %%rsp, %2\n\t"
: "=r"(rsp), "=r"(rax), "=r"(resume_rsp)
: "g"(0xABCD));
report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume");
}
static int vmenter_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip = vmcs_read(GUEST_RIP);
switch (exit_reason.basic) {
case VMX_VMCALL:
if (regs.rax != 0xABCD) {
report_fail("test vmresume");
return VMX_TEST_VMEXIT;
}
regs.rax = 0xFFFF;
vmcs_write(GUEST_RIP, guest_rip + 3);
return VMX_TEST_RESUME;
default:
report_fail("test vmresume");
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
u32 preempt_scale;
volatile unsigned long long tsc_val;
volatile u32 preempt_val;
u64 saved_rip;
static int preemption_timer_init(struct vmcs *vmcs)
{
if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
printf("\tPreemption timer is not supported\n");
return VMX_TEST_EXIT;
}
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
preempt_val = 10000000;
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
printf("\tSave preemption value is not supported\n");
return VMX_TEST_START;
}
static void preemption_timer_main(void)
{
tsc_val = rdtsc();
if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) {
vmx_set_test_stage(0);
vmcall();
if (vmx_get_test_stage() == 1)
vmcall();
}
vmx_set_test_stage(1);
while (vmx_get_test_stage() == 1) {
if (((rdtsc() - tsc_val) >> preempt_scale)
> 10 * preempt_val) {
vmx_set_test_stage(2);
vmcall();
}
}
tsc_val = rdtsc();
asm volatile ("hlt");
vmcall();
vmx_set_test_stage(5);
vmcall();
}
static int preemption_timer_exit_handler(union exit_reason exit_reason)
{
bool guest_halted;
u64 guest_rip;
u32 insn_len;
u32 ctrl_exit;
guest_rip = vmcs_read(GUEST_RIP);
insn_len = vmcs_read(EXI_INST_LEN);
switch (exit_reason.basic) {
case VMX_PREEMPT:
switch (vmx_get_test_stage()) {
case 1:
case 2:
report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val,
"busy-wait for preemption timer");
vmx_set_test_stage(3);
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
return VMX_TEST_RESUME;
case 3:
guest_halted =
(vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT);
report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val
&& guest_halted,
"preemption timer during hlt");
vmx_set_test_stage(4);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
vmcs_write(EXI_CONTROLS,
vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT);
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
return VMX_TEST_RESUME;
case 4:
report(saved_rip == guest_rip,
"preemption timer with 0 value");
break;
default:
report_fail("Invalid stage.");
print_vmexit_info(exit_reason);
break;
}
break;
case VMX_VMCALL:
vmcs_write(GUEST_RIP, guest_rip + insn_len);
switch (vmx_get_test_stage()) {
case 0:
report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val,
"Keep preemption value");
vmx_set_test_stage(1);
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
ctrl_exit = (vmcs_read(EXI_CONTROLS) |
EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr;
vmcs_write(EXI_CONTROLS, ctrl_exit);
return VMX_TEST_RESUME;
case 1:
report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val,
"Save preemption value");
return VMX_TEST_RESUME;
case 2:
report_fail("busy-wait for preemption timer");
vmx_set_test_stage(3);
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
return VMX_TEST_RESUME;
case 3:
report_fail("preemption timer during hlt");
vmx_set_test_stage(4);
/* fall through */
case 4:
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
vmcs_write(PREEMPT_TIMER_VALUE, 0);
saved_rip = guest_rip + insn_len;
return VMX_TEST_RESUME;
case 5:
report_fail("preemption timer with 0 value (vmcall stage 5)");
break;
default:
// Should not reach here
report_fail("unexpected stage, %d",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
break;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT);
return VMX_TEST_VMEXIT;
}
static void msr_bmp_init(void)
{
void *msr_bitmap;
u32 ctrl_cpu0;
msr_bitmap = alloc_page();
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 |= CPU_MSR_BITMAP;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
}
static void *get_msr_bitmap(void)
{
void *msr_bitmap;
if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) {
msr_bitmap = (void *)vmcs_read(MSR_BITMAP);
} else {
msr_bitmap = alloc_page();
memset(msr_bitmap, 0xff, PAGE_SIZE);
vmcs_write(MSR_BITMAP, (u64)msr_bitmap);
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP);
}
return msr_bitmap;
}
static void disable_intercept_for_x2apic_msrs(void)
{
unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap();
u32 msr;
for (msr = APIC_BASE_MSR;
msr < (APIC_BASE_MSR+0xff);
msr += BITS_PER_LONG) {
unsigned int word = msr / BITS_PER_LONG;
msr_bitmap[word] = 0;
msr_bitmap[word + (0x800 / sizeof(long))] = 0;
}
}
static int test_ctrl_pat_init(struct vmcs *vmcs)
{
u64 ctrl_ent;
u64 ctrl_exi;
msr_bmp_init();
if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) &&
!(ctrl_exit_rev.clr & EXI_LOAD_PAT) &&
!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
printf("\tSave/load PAT is not supported\n");
return 1;
}
ctrl_ent = vmcs_read(ENT_CONTROLS);
ctrl_exi = vmcs_read(EXI_CONTROLS);
ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT;
ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT);
vmcs_write(ENT_CONTROLS, ctrl_ent);
vmcs_write(EXI_CONTROLS, ctrl_exi);
ia32_pat = rdmsr(MSR_IA32_CR_PAT);
vmcs_write(GUEST_PAT, 0x0);
vmcs_write(HOST_PAT, ia32_pat);
return VMX_TEST_START;
}
static void test_ctrl_pat_main(void)
{
u64 guest_ia32_pat;
guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT))
printf("\tENT_LOAD_PAT is not supported.\n");
else {
if (guest_ia32_pat != 0) {
report_fail("Entry load PAT");
return;
}
}
wrmsr(MSR_IA32_CR_PAT, 0x6);
vmcall();
guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT);
if (ctrl_enter_rev.clr & ENT_LOAD_PAT)
report(guest_ia32_pat == ia32_pat, "Entry load PAT");
}
static int test_ctrl_pat_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip;
u64 guest_pat;
guest_rip = vmcs_read(GUEST_RIP);
switch (exit_reason.basic) {
case VMX_VMCALL:
guest_pat = vmcs_read(GUEST_PAT);
if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) {
printf("\tEXI_SAVE_PAT is not supported\n");
vmcs_write(GUEST_PAT, 0x6);
} else {
report(guest_pat == 0x6, "Exit save PAT");
}
if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT))
printf("\tEXI_LOAD_PAT is not supported\n");
else
report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat,
"Exit load PAT");
vmcs_write(GUEST_PAT, ia32_pat);
vmcs_write(GUEST_RIP, guest_rip + 3);
return VMX_TEST_RESUME;
default:
printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
break;
}
return VMX_TEST_VMEXIT;
}
static int test_ctrl_efer_init(struct vmcs *vmcs)
{
u64 ctrl_ent;
u64 ctrl_exi;
msr_bmp_init();
ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER;
ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER;
vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr);
vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr);
ia32_efer = rdmsr(MSR_EFER);
vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX);
vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX);
return VMX_TEST_START;
}
static void test_ctrl_efer_main(void)
{
u64 guest_ia32_efer;
guest_ia32_efer = rdmsr(MSR_EFER);
if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER))
printf("\tENT_LOAD_EFER is not supported.\n");
else {
if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) {
report_fail("Entry load EFER");
return;
}
}
wrmsr(MSR_EFER, ia32_efer);
vmcall();
guest_ia32_efer = rdmsr(MSR_EFER);
if (ctrl_enter_rev.clr & ENT_LOAD_EFER)
report(guest_ia32_efer == ia32_efer, "Entry load EFER");
}
static int test_ctrl_efer_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip;
u64 guest_efer;
guest_rip = vmcs_read(GUEST_RIP);
switch (exit_reason.basic) {
case VMX_VMCALL:
guest_efer = vmcs_read(GUEST_EFER);
if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) {
printf("\tEXI_SAVE_EFER is not supported\n");
vmcs_write(GUEST_EFER, ia32_efer);
} else {
report(guest_efer == ia32_efer, "Exit save EFER");
}
if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) {
printf("\tEXI_LOAD_EFER is not supported\n");
wrmsr(MSR_EFER, ia32_efer ^ EFER_NX);
} else {
report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX),
"Exit load EFER");
}
vmcs_write(GUEST_PAT, ia32_efer);
vmcs_write(GUEST_RIP, guest_rip + 3);
return VMX_TEST_RESUME;
default:
printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full);
break;
}
return VMX_TEST_VMEXIT;
}
u32 guest_cr0, guest_cr4;
static void cr_shadowing_main(void)
{
u32 cr0, cr4, tmp;
// Test read through
vmx_set_test_stage(0);
guest_cr0 = read_cr0();
if (vmx_get_test_stage() == 1)
report_fail("Read through CR0");
else
vmcall();
vmx_set_test_stage(1);
guest_cr4 = read_cr4();
if (vmx_get_test_stage() == 2)
report_fail("Read through CR4");
else
vmcall();
// Test write through
guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP);
guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE);
vmx_set_test_stage(2);
write_cr0(guest_cr0);
if (vmx_get_test_stage() == 3)
report_fail("Write through CR0");
else
vmcall();
vmx_set_test_stage(3);
write_cr4(guest_cr4);
if (vmx_get_test_stage() == 4)
report_fail("Write through CR4");
else
vmcall();
// Test read shadow
vmx_set_test_stage(4);
vmcall();
cr0 = read_cr0();
if (vmx_get_test_stage() != 5)
report(cr0 == guest_cr0, "Read shadowing CR0");
vmx_set_test_stage(5);
cr4 = read_cr4();
if (vmx_get_test_stage() != 6)
report(cr4 == guest_cr4, "Read shadowing CR4");
// Test write shadow (same value with shadow)
vmx_set_test_stage(6);
write_cr0(guest_cr0);
if (vmx_get_test_stage() == 7)
report_fail("Write shadowing CR0 (same value with shadow)");
else
vmcall();
vmx_set_test_stage(7);
write_cr4(guest_cr4);
if (vmx_get_test_stage() == 8)
report_fail("Write shadowing CR4 (same value with shadow)");
else
vmcall();
// Test write shadow (different value)
vmx_set_test_stage(8);
tmp = guest_cr0 ^ X86_CR0_TS;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr0\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report(vmx_get_test_stage() == 9,
"Write shadowing different X86_CR0_TS");
vmx_set_test_stage(9);
tmp = guest_cr0 ^ X86_CR0_MP;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr0\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report(vmx_get_test_stage() == 10,
"Write shadowing different X86_CR0_MP");
vmx_set_test_stage(10);
tmp = guest_cr4 ^ X86_CR4_TSD;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr4\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report(vmx_get_test_stage() == 11,
"Write shadowing different X86_CR4_TSD");
vmx_set_test_stage(11);
tmp = guest_cr4 ^ X86_CR4_DE;
asm volatile("mov %0, %%rsi\n\t"
"mov %%rsi, %%cr4\n\t"
::"m"(tmp)
:"rsi", "memory", "cc");
report(vmx_get_test_stage() == 12,
"Write shadowing different X86_CR4_DE");
}
static int cr_shadowing_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip;
u32 insn_len;
u32 exit_qual;
guest_rip = vmcs_read(GUEST_RIP);
insn_len = vmcs_read(EXI_INST_LEN);
exit_qual = vmcs_read(EXI_QUALIFICATION);
switch (exit_reason.basic) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
report(guest_cr0 == vmcs_read(GUEST_CR0),
"Read through CR0");
break;
case 1:
report(guest_cr4 == vmcs_read(GUEST_CR4),
"Read through CR4");
break;
case 2:
report(guest_cr0 == vmcs_read(GUEST_CR0),
"Write through CR0");
break;
case 3:
report(guest_cr4 == vmcs_read(GUEST_CR4),
"Write through CR4");
break;
case 4:
guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP);
guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE);
vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP);
vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP));
vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE);
vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE));
break;
case 6:
report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)),
"Write shadowing CR0 (same value)");
break;
case 7:
report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)),
"Write shadowing CR4 (same value)");
break;
default:
// Should not reach here
report_fail("unexpected stage, %d",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_CR:
switch (vmx_get_test_stage()) {
case 4:
report_fail("Read shadowing CR0");
vmx_inc_test_stage();
break;
case 5:
report_fail("Read shadowing CR4");
vmx_inc_test_stage();
break;
case 6:
report_fail("Write shadowing CR0 (same value)");
vmx_inc_test_stage();
break;
case 7:
report_fail("Write shadowing CR4 (same value)");
vmx_inc_test_stage();
break;
case 8:
case 9:
// 0x600 encodes "mov %esi, %cr0"
if (exit_qual == 0x600)
vmx_inc_test_stage();
break;
case 10:
case 11:
// 0x604 encodes "mov %esi, %cr4"
if (exit_qual == 0x604)
vmx_inc_test_stage();
break;
default:
// Should not reach here
report_fail("unexpected stage, %d",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
static int iobmp_init(struct vmcs *vmcs)
{
u32 ctrl_cpu0;
io_bitmap_a = alloc_page();
io_bitmap_b = alloc_page();
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 |= CPU_IO_BITMAP;
ctrl_cpu0 &= (~CPU_IO);
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a);
vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b);
return VMX_TEST_START;
}
static void iobmp_main(void)
{
// stage 0, test IO pass
vmx_set_test_stage(0);
inb(0x5000);
outb(0x0, 0x5000);
report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass");
// test IO width, in/out
((u8 *)io_bitmap_a)[0] = 0xFF;
vmx_set_test_stage(2);
inb(0x0);
report(vmx_get_test_stage() == 3, "I/O bitmap - trap in");
vmx_set_test_stage(3);
outw(0x0, 0x0);
report(vmx_get_test_stage() == 4, "I/O bitmap - trap out");
vmx_set_test_stage(4);
inl(0x0);
report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long");
// test low/high IO port
vmx_set_test_stage(5);
((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8));
inb(0x5000);
report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part");
vmx_set_test_stage(6);
((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8));
inb(0x9000);
report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part");
// test partial pass
vmx_set_test_stage(7);
inl(0x4FFF);
report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass");
// test overrun
vmx_set_test_stage(8);
memset(io_bitmap_a, 0x0, PAGE_SIZE);
memset(io_bitmap_b, 0x0, PAGE_SIZE);
inl(0xFFFF);
report(vmx_get_test_stage() == 9, "I/O bitmap - overrun");
vmx_set_test_stage(9);
vmcall();
outb(0x0, 0x0);
report(vmx_get_test_stage() == 9,
"I/O bitmap - ignore unconditional exiting");
vmx_set_test_stage(10);
vmcall();
outb(0x0, 0x0);
report(vmx_get_test_stage() == 11,
"I/O bitmap - unconditional exiting");
}
static int iobmp_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip;
ulong exit_qual;
u32 insn_len, ctrl_cpu0;
guest_rip = vmcs_read(GUEST_RIP);
exit_qual = vmcs_read(EXI_QUALIFICATION);
insn_len = vmcs_read(EXI_INST_LEN);
switch (exit_reason.basic) {
case VMX_IO:
switch (vmx_get_test_stage()) {
case 0:
case 1:
vmx_inc_test_stage();
break;
case 2:
report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE,
"I/O bitmap - I/O width, byte");
report(exit_qual & VMX_IO_IN,
"I/O bitmap - I/O direction, in");
vmx_inc_test_stage();
break;
case 3:
report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD,
"I/O bitmap - I/O width, word");
report(!(exit_qual & VMX_IO_IN),
"I/O bitmap - I/O direction, out");
vmx_inc_test_stage();
break;
case 4:
report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG,
"I/O bitmap - I/O width, long");
vmx_inc_test_stage();
break;
case 5:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000)
vmx_inc_test_stage();
break;
case 6:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000)
vmx_inc_test_stage();
break;
case 7:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF)
vmx_inc_test_stage();
break;
case 8:
if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF)
vmx_inc_test_stage();
break;
case 9:
case 10:
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO);
vmx_inc_test_stage();
break;
default:
// Should not reach here
report_fail("unexpected stage, %d",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 9:
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
break;
case 10:
ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0);
ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0);
break;
default:
// Should not reach here
report_fail("unexpected stage, %d",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
printf("guest_rip = %#lx\n", guest_rip);
printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full);
break;
}
return VMX_TEST_VMEXIT;
}
#define INSN_CPU0 0
#define INSN_CPU1 1
#define INSN_ALWAYS_TRAP 2
#define FIELD_EXIT_QUAL (1 << 0)
#define FIELD_INSN_INFO (1 << 1)
asm(
"insn_hlt: hlt;ret\n\t"
"insn_invlpg: invlpg 0x12345678;ret\n\t"
"insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t"
"insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t"
"insn_rdtsc: rdtsc;ret\n\t"
"insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t"
"insn_cr3_store: mov %cr3,%rax;ret\n\t"
"insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t"
"insn_cr8_store: mov %cr8,%rax;ret\n\t"
"insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t"
"insn_pause: pause;ret\n\t"
"insn_wbinvd: wbinvd;ret\n\t"
"insn_cpuid: mov $10, %eax; cpuid;ret\n\t"
"insn_invd: invd;ret\n\t"
"insn_sgdt: sgdt gdt_descr;ret\n\t"
"insn_lgdt: lgdt gdt_descr;ret\n\t"
"insn_sidt: sidt idt_descr;ret\n\t"
"insn_lidt: lidt idt_descr;ret\n\t"
"insn_sldt: sldt %ax;ret\n\t"
"insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t"
"insn_str: str %ax;ret\n\t"
"insn_rdrand: rdrand %rax;ret\n\t"
"insn_rdseed: rdseed %rax;ret\n\t"
);
extern void insn_hlt(void);
extern void insn_invlpg(void);
extern void insn_mwait(void);
extern void insn_rdpmc(void);
extern void insn_rdtsc(void);
extern void insn_cr3_load(void);
extern void insn_cr3_store(void);
extern void insn_cr8_load(void);
extern void insn_cr8_store(void);
extern void insn_monitor(void);
extern void insn_pause(void);
extern void insn_wbinvd(void);
extern void insn_sgdt(void);
extern void insn_lgdt(void);
extern void insn_sidt(void);
extern void insn_lidt(void);
extern void insn_sldt(void);
extern void insn_lldt(void);
extern void insn_str(void);
extern void insn_cpuid(void);
extern void insn_invd(void);
extern void insn_rdrand(void);
extern void insn_rdseed(void);
u32 cur_insn;
u64 cr3;
typedef bool (*supported_fn)(void);
static bool this_cpu_has_mwait(void)
{
return this_cpu_has(X86_FEATURE_MWAIT);
}
struct insn_table {
const char *name;
u32 flag;
void (*insn_func)(void);
u32 type;
u32 reason;
ulong exit_qual;
u32 insn_info;
// Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define
// which field need to be tested, reason is always tested
u32 test_field;
const supported_fn supported_fn;
u8 disabled;
};
/*
* Add more test cases of instruction intercept here. Elements in this
* table is:
* name/control flag/insn function/type/exit reason/exit qulification/
* instruction info/field to test
* The last field defines which fields (exit_qual and insn_info) need to be
* tested in exit handler. If set to 0, only "reason" is checked.
*/
static struct insn_table insn_table[] = {
// Flags for Primary Processor-Based VM-Execution Controls
{"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0},
{"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14,
0x12345678, 0, FIELD_EXIT_QUAL},
{"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, this_cpu_has_mwait},
{"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0, this_cpu_has_pmu},
{"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0},
{"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0,
FIELD_EXIT_QUAL},
{"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0,
FIELD_EXIT_QUAL},
{"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0,
FIELD_EXIT_QUAL},
{"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0,
FIELD_EXIT_QUAL},
{"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, this_cpu_has_mwait},
{"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0},
// Flags for Secondary Processor-Based VM-Execution Controls
{"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0},
{"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0},
{"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0},
{"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0},
{"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0},
/* LTR causes a #GP if done with a busy selector, so it is not tested. */
{"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0},
{"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0},
// Instructions always trap
{"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0},
{"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0},
// Instructions never trap
{NULL},
};
static int insn_intercept_init(struct vmcs *vmcs)
{
u32 ctrl_cpu, cur_insn;
ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY;
ctrl_cpu &= ctrl_cpu_rev[0].clr;
vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu);
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set);
cr3 = read_cr3();
for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
if (insn_table[cur_insn].supported_fn == NULL)
continue;
insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn();
}
return VMX_TEST_START;
}
static void insn_intercept_main(void)
{
for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) {
vmx_set_test_stage(cur_insn * 2);
if ((insn_table[cur_insn].type == INSN_CPU0 &&
!(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) ||
(insn_table[cur_insn].type == INSN_CPU1 &&
!(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) {
printf("\tCPU_CTRL%d.CPU_%s is not supported.\n",
insn_table[cur_insn].type - INSN_CPU0,
insn_table[cur_insn].name);
continue;
}
if (insn_table[cur_insn].disabled) {
printf("\tFeature required for %s is not supported.\n",
insn_table[cur_insn].name);
continue;
}
if ((insn_table[cur_insn].type == INSN_CPU0 &&
!(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) ||
(insn_table[cur_insn].type == INSN_CPU1 &&
!(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) {
/* skip hlt, it stalls the guest and is tested below */
if (insn_table[cur_insn].insn_func != insn_hlt)
insn_table[cur_insn].insn_func();
report(vmx_get_test_stage() == cur_insn * 2,
"execute %s",
insn_table[cur_insn].name);
} else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP)
printf("\tCPU_CTRL%d.CPU_%s always traps.\n",
insn_table[cur_insn].type - INSN_CPU0,
insn_table[cur_insn].name);
vmcall();
insn_table[cur_insn].insn_func();
report(vmx_get_test_stage() == cur_insn * 2 + 1,
"intercept %s",
insn_table[cur_insn].name);
vmx_set_test_stage(cur_insn * 2 + 1);
vmcall();
}
}
static int insn_intercept_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip;
ulong exit_qual;
u32 insn_len;
u32 insn_info;
bool pass;
guest_rip = vmcs_read(GUEST_RIP);
exit_qual = vmcs_read(EXI_QUALIFICATION);
insn_len = vmcs_read(EXI_INST_LEN);
insn_info = vmcs_read(EXI_INST_INFO);
if (exit_reason.basic == VMX_VMCALL) {
u32 val = 0;
if (insn_table[cur_insn].type == INSN_CPU0)
val = vmcs_read(CPU_EXEC_CTRL0);
else if (insn_table[cur_insn].type == INSN_CPU1)
val = vmcs_read(CPU_EXEC_CTRL1);
if (vmx_get_test_stage() & 1)
val &= ~insn_table[cur_insn].flag;
else
val |= insn_table[cur_insn].flag;
if (insn_table[cur_insn].type == INSN_CPU0)
vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set);
else if (insn_table[cur_insn].type == INSN_CPU1)
vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set);
} else {
pass = (cur_insn * 2 == vmx_get_test_stage()) &&
insn_table[cur_insn].reason == exit_reason.full;
if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL &&
insn_table[cur_insn].exit_qual != exit_qual)
pass = false;
if (insn_table[cur_insn].test_field & FIELD_INSN_INFO &&
insn_table[cur_insn].insn_info != insn_info)
pass = false;
if (pass)
vmx_inc_test_stage();
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
}
/**
* __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT)
* @hpa: Host physical address of the top-level, a.k.a. root, EPT table
* @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries
*
* Returns 0 on success, 1 on failure.
*
* Note that @hpa doesn't need to point at actual memory if VM-Launch is
* expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy
* the various EPTP consistency checks, but doesn't ensure backing for HPA '0'.
*/
static int __setup_ept(u64 hpa, bool enable_ad)
{
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_EPT)) {
printf("\tEPT is not supported\n");
return 1;
}
if (!is_ept_memtype_supported(EPT_MEM_TYPE_WB)) {
printf("\tWB memtype for EPT walks not supported\n");
return 1;
}
if (!is_4_level_ept_supported()) {
/* Support for 4-level EPT is mandatory. */
report(false, "4-level EPT support check");
printf("\tPWL4 is not supported\n");
return 1;
}
eptp = EPT_MEM_TYPE_WB;
eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT);
eptp |= hpa;
if (enable_ad)
eptp |= EPTP_AD_FLAG;
vmcs_write(EPTP, eptp);
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT);
return 0;
}
/**
* setup_ept - Enable Extended Page Tables (EPT) and setup an identity map
* @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries
*
* Returns 0 on success, 1 on failure.
*
* This is the "real" function for setting up EPT tables, i.e. use this for
* tests that need to run code in the guest with EPT enabled.
*/
static int setup_ept(bool enable_ad)
{
unsigned long end_of_memory;
pml4 = alloc_page();
if (__setup_ept(virt_to_phys(pml4), enable_ad))
return 1;
end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE);
if (end_of_memory < (1ul << 32))
end_of_memory = (1ul << 32);
/* Cannot use large EPT pages if we need to track EPT
* accessed/dirty bits at 4K granularity.
*/
setup_ept_range(pml4, 0, end_of_memory, 0,
!enable_ad && ept_2m_supported(),
EPT_WA | EPT_RA | EPT_EA);
return 0;
}
/**
* setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA
*
* Setup EPT using a semi-arbitrary dummy root HPA. This function is intended
* for use by tests that need EPT enabled to verify dependent VMCS controls
* but never expect to fully enter the guest, i.e. don't need setup the actual
* EPT tables.
*/
static void setup_dummy_ept(void)
{
if (__setup_ept(0, false))
report_abort("EPT setup unexpectedly failed");
}
static int enable_unrestricted_guest(bool need_valid_ept)
{
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_URG) ||
!(ctrl_cpu_rev[1].clr & CPU_EPT))
return 1;
if (need_valid_ept)
setup_ept(false);
else
setup_dummy_ept();
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
return 0;
}
static void ept_enable_ad_bits(void)
{
eptp |= EPTP_AD_FLAG;
vmcs_write(EPTP, eptp);
}
static void ept_disable_ad_bits(void)
{
eptp &= ~EPTP_AD_FLAG;
vmcs_write(EPTP, eptp);
}
static int ept_ad_enabled(void)
{
return eptp & EPTP_AD_FLAG;
}
static void ept_enable_ad_bits_or_skip_test(void)
{
if (!ept_ad_bits_supported())
test_skip("EPT AD bits not supported.");
ept_enable_ad_bits();
}
static int apic_version;
static int ept_init_common(bool have_ad)
{
int ret;
struct pci_dev pcidev;
/* INVEPT is required by the EPT violation handler. */
if (!is_invept_type_supported(INVEPT_SINGLE))
return VMX_TEST_EXIT;
if (setup_ept(have_ad))
return VMX_TEST_EXIT;
data_page1 = alloc_page();
data_page2 = alloc_page();
*((u32 *)data_page1) = MAGIC_VAL_1;
*((u32 *)data_page2) = MAGIC_VAL_2;
install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2,
EPT_RA | EPT_WA | EPT_EA);
apic_version = apic_read(APIC_LVR);
ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST);
if (ret != PCIDEVADDR_INVALID) {
pci_dev_init(&pcidev, ret);
pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM];
}
return VMX_TEST_START;
}
static int ept_init(struct vmcs *vmcs)
{
return ept_init_common(false);
}
static void ept_common(void)
{
vmx_set_test_stage(0);
if (*((u32 *)data_page2) != MAGIC_VAL_1 ||
*((u32 *)data_page1) != MAGIC_VAL_1)
report_fail("EPT basic framework - read");
else {
*((u32 *)data_page2) = MAGIC_VAL_3;
vmcall();
if (vmx_get_test_stage() == 1) {
if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
*((u32 *)data_page2) == MAGIC_VAL_2)
report_pass("EPT basic framework");
else
report_pass("EPT basic framework - remap");
}
}
// Test EPT Misconfigurations
vmx_set_test_stage(1);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_1;
if (vmx_get_test_stage() != 2) {
report_fail("EPT misconfigurations");
goto t1;
}
vmx_set_test_stage(2);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_1;
report(vmx_get_test_stage() == 3, "EPT misconfigurations");
t1:
// Test EPT violation
vmx_set_test_stage(3);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_1;
report(vmx_get_test_stage() == 4, "EPT violation - page permission");
// Violation caused by EPT paging structure
vmx_set_test_stage(4);
vmcall();
*((u32 *)data_page1) = MAGIC_VAL_2;
report(vmx_get_test_stage() == 5, "EPT violation - paging structure");
// MMIO Read/Write
vmx_set_test_stage(5);
vmcall();
*(u32 volatile *)pci_physaddr;
report(vmx_get_test_stage() == 6, "MMIO EPT violation - read");
*(u32 volatile *)pci_physaddr = MAGIC_VAL_1;
report(vmx_get_test_stage() == 7, "MMIO EPT violation - write");
}
static void ept_main(void)
{
ept_common();
// Test EPT access to L1 MMIO
vmx_set_test_stage(7);
report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access");
// Test invalid operand for INVEPT
vmcall();
report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT");
}
static bool invept_test(int type, u64 eptp)
{
bool ret, supported;
supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type);
ret = __invept(type, eptp);
if (ret == !supported)
return false;
if (!supported)
printf("WARNING: unsupported invept passed!\n");
else
printf("WARNING: invept failed!\n");
return true;
}
static int pml_exit_handler(union exit_reason exit_reason)
{
u16 index, count;
u64 *pmlbuf = pml_log;
u64 guest_rip = vmcs_read(GUEST_RIP);;
u64 guest_cr3 = vmcs_read(GUEST_CR3);
u32 insn_len = vmcs_read(EXI_INST_LEN);
switch (exit_reason.basic) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
index = vmcs_read(GUEST_PML_INDEX);
for (count = index + 1; count < PML_INDEX; count++) {
if (pmlbuf[count] == (u64)data_page2) {
vmx_inc_test_stage();
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
break;
}
}
break;
case 1:
index = vmcs_read(GUEST_PML_INDEX);
/* Keep clearing the dirty bit till a overflow */
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
break;
default:
report_fail("unexpected stage, %d.",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_PML_FULL:
vmx_inc_test_stage();
vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
return VMX_TEST_RESUME;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad)
{
u64 guest_rip;
u64 guest_cr3;
u32 insn_len;
u32 exit_qual;
static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte,
guest_pte_addr;
guest_rip = vmcs_read(GUEST_RIP);
guest_cr3 = vmcs_read(GUEST_CR3);
insn_len = vmcs_read(EXI_INST_LEN);
exit_qual = vmcs_read(EXI_QUALIFICATION);
pteval_t *ptep;
switch (exit_reason.basic) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
check_ept_ad(pml4, guest_cr3,
(unsigned long)data_page1,
have_ad ? EPT_ACCESS_FLAG : 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
check_ept_ad(pml4, guest_cr3,
(unsigned long)data_page2,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2);
if (have_ad)
invept(INVEPT_SINGLE, eptp);
if (*((u32 *)data_page1) == MAGIC_VAL_3 &&
*((u32 *)data_page2) == MAGIC_VAL_2) {
vmx_inc_test_stage();
install_ept(pml4, (unsigned long)data_page2,
(unsigned long)data_page2,
EPT_RA | EPT_WA | EPT_EA);
} else
report_fail("EPT basic framework - write");
break;
case 1:
install_ept(pml4, (unsigned long)data_page1,
(unsigned long)data_page1, EPT_WA);
invept(INVEPT_SINGLE, eptp);
break;
case 2:
install_ept(pml4, (unsigned long)data_page1,
(unsigned long)data_page1,
EPT_RA | EPT_WA | EPT_EA |
(2 << EPT_MEM_TYPE_SHIFT));
invept(INVEPT_SINGLE, eptp);
break;
case 3:
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1,
1, &data_page1_pte));
set_ept_pte(pml4, (unsigned long)data_page1,
1, data_page1_pte & ~EPT_PRESENT);
invept(INVEPT_SINGLE, eptp);
break;
case 4:
ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2);
guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK;
TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte));
set_ept_pte(pml4, guest_pte_addr, 2,
data_page1_pte_pte & ~EPT_PRESENT);
invept(INVEPT_SINGLE, eptp);
break;
case 5:
install_ept(pml4, (unsigned long)pci_physaddr,
(unsigned long)pci_physaddr, 0);
invept(INVEPT_SINGLE, eptp);
break;
case 7:
if (!invept_test(0, eptp))
vmx_inc_test_stage();
break;
// Should not reach here
default:
report_fail("ERROR - unexpected stage, %d.",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_EPT_MISCONFIG:
switch (vmx_get_test_stage()) {
case 1:
case 2:
vmx_inc_test_stage();
install_ept(pml4, (unsigned long)data_page1,
(unsigned long)data_page1,
EPT_RA | EPT_WA | EPT_EA);
invept(INVEPT_SINGLE, eptp);
break;
// Should not reach here
default:
report_fail("ERROR - unexpected stage, %d.",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
return VMX_TEST_RESUME;
case VMX_EPT_VIOLATION:
/*
* Exit-qualifications are masked not to account for advanced
* VM-exit information. Once KVM supports this feature, this
* masking should be removed.
*/
exit_qual &= ~EPT_VLT_GUEST_MASK;
switch(vmx_get_test_stage()) {
case 3:
check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD |
EPT_VLT_PADDR))
vmx_inc_test_stage();
set_ept_pte(pml4, (unsigned long)data_page1,
1, data_page1_pte | (EPT_PRESENT));
invept(INVEPT_SINGLE, eptp);
break;
case 4:
check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0,
have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0);
clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1);
if (exit_qual == (EPT_VLT_RD |
(have_ad ? EPT_VLT_WR : 0) |
EPT_VLT_LADDR_VLD))
vmx_inc_test_stage();
set_ept_pte(pml4, guest_pte_addr, 2,
data_page1_pte_pte | (EPT_PRESENT));
invept(INVEPT_SINGLE, eptp);
break;
case 5:
if (exit_qual & EPT_VLT_RD)
vmx_inc_test_stage();
TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1, &memaddr_pte));
set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA);
invept(INVEPT_SINGLE, eptp);
break;
case 6:
if (exit_qual & EPT_VLT_WR)
vmx_inc_test_stage();
TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr,
1, &memaddr_pte));
set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA);
invept(INVEPT_SINGLE, eptp);
break;
default:
// Should not reach here
report_fail("ERROR : unexpected stage, %d",
vmx_get_test_stage());
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
return VMX_TEST_RESUME;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
static int ept_exit_handler(union exit_reason exit_reason)
{
return ept_exit_handler_common(exit_reason, false);
}
static int eptad_init(struct vmcs *vmcs)
{
int r = ept_init_common(true);
if (r == VMX_TEST_EXIT)
return r;
if (!ept_ad_bits_supported()) {
printf("\tEPT A/D bits are not supported");
return VMX_TEST_EXIT;
}
return r;
}
static int pml_init(struct vmcs *vmcs)
{
u32 ctrl_cpu;
int r = eptad_init(vmcs);
if (r == VMX_TEST_EXIT)
return r;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(ctrl_cpu_rev[1].clr & CPU_PML)) {
printf("\tPML is not supported");
return VMX_TEST_EXIT;
}
pml_log = alloc_page();
vmcs_write(PMLADDR, (u64)pml_log);
vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1);
ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML;
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu);
return VMX_TEST_START;
}
static void pml_main(void)
{
int count = 0;
vmx_set_test_stage(0);
*((u32 *)data_page2) = 0x1;
vmcall();
report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging");
while (vmx_get_test_stage() == 1) {
vmcall();
*((u32 *)data_page2) = 0x1;
if (count++ > PML_INDEX)
break;
}
report(vmx_get_test_stage() == 2, "PML Full Event");
}
static void eptad_main(void)
{
ept_common();
}
static int eptad_exit_handler(union exit_reason exit_reason)
{
return ept_exit_handler_common(exit_reason, true);
}
#define TIMER_VECTOR 222
static volatile bool timer_fired;
static void timer_isr(isr_regs_t *regs)
{
timer_fired = true;
apic_write(APIC_EOI, 0);
}
static int interrupt_init(struct vmcs *vmcs)
{
msr_bmp_init();
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
handle_irq(TIMER_VECTOR, timer_isr);
return VMX_TEST_START;
}
static void interrupt_main(void)
{
long long start, loops;
vmx_set_test_stage(0);
apic_write(APIC_LVTT, TIMER_VECTOR);
sti();
apic_write(APIC_TMICT, 1);
for (loops = 0; loops < 10000000 && !timer_fired; loops++)
asm volatile ("nop");
report(timer_fired, "direct interrupt while running guest");
apic_write(APIC_TMICT, 0);
cli();
vmcall();
timer_fired = false;
apic_write(APIC_TMICT, 1);
for (loops = 0; loops < 10000000 && !timer_fired; loops++)
asm volatile ("nop");
report(timer_fired, "intercepted interrupt while running guest");
sti();
apic_write(APIC_TMICT, 0);
cli();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
safe_halt();
report(rdtsc() - start > 1000000 && timer_fired,
"direct interrupt + hlt");
apic_write(APIC_TMICT, 0);
cli();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
safe_halt();
report(rdtsc() - start > 10000 && timer_fired,
"intercepted interrupt + hlt");
apic_write(APIC_TMICT, 0);
cli();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
sti_nop();
vmcall();
report(rdtsc() - start > 10000 && timer_fired,
"direct interrupt + activity state hlt");
apic_write(APIC_TMICT, 0);
cli();
vmcall();
timer_fired = false;
start = rdtsc();
apic_write(APIC_TMICT, 1000000);
sti_nop();
vmcall();
report(rdtsc() - start > 10000 && timer_fired,
"intercepted interrupt + activity state hlt");
apic_write(APIC_TMICT, 0);
cli();
vmx_set_test_stage(7);
vmcall();
timer_fired = false;
apic_write(APIC_TMICT, 1);
for (loops = 0; loops < 10000000 && !timer_fired; loops++)
asm volatile ("nop");
report(timer_fired,
"running a guest with interrupt acknowledgement set");
apic_write(APIC_TMICT, 0);
sti();
timer_fired = false;
vmcall();
report(timer_fired, "Inject an event to a halted guest");
}
static int interrupt_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip = vmcs_read(GUEST_RIP);
u32 insn_len = vmcs_read(EXI_INST_LEN);
switch (exit_reason.basic) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
case 2:
case 5:
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
break;
case 7:
vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_EXTINT);
break;
case 1:
case 3:
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
break;
case 4:
case 6:
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
break;
case 8:
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
vmcs_write(ENT_INTR_INFO,
TIMER_VECTOR |
(VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) |
INTR_INFO_VALID_MASK);
break;
}
vmx_inc_test_stage();
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
case VMX_EXTINT:
if (vmcs_read(EXI_CONTROLS) & EXI_INTA) {
int vector = vmcs_read(EXI_INTR_INFO) & 0xff;
handle_external_interrupt(vector);
} else {
sti_nop_cli();
}
if (vmx_get_test_stage() >= 2)
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
return VMX_TEST_RESUME;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
static volatile int nmi_fired;
#define NMI_DELAY 100000000ULL
static void nmi_isr(isr_regs_t *regs)
{
nmi_fired = true;
}
static int nmi_hlt_init(struct vmcs *vmcs)
{
msr_bmp_init();
handle_irq(NMI_VECTOR, nmi_isr);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) & ~PIN_NMI);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI);
return VMX_TEST_START;
}
static void nmi_message_thread(void *data)
{
while (vmx_get_test_stage() != 1)
pause();
delay(NMI_DELAY);
apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
while (vmx_get_test_stage() != 2)
pause();
delay(NMI_DELAY);
apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
}
static void nmi_hlt_main(void)
{
long long start;
if (cpu_count() < 2) {
report_skip("%s : CPU count < 2", __func__);
vmx_set_test_stage(-1);
return;
}
vmx_set_test_stage(0);
on_cpu_async(1, nmi_message_thread, NULL);
start = rdtsc();
vmx_set_test_stage(1);
asm volatile ("hlt");
report((rdtsc() - start > NMI_DELAY) && nmi_fired,
"direct NMI + hlt");
if (!nmi_fired)
vmx_set_test_stage(-1);
nmi_fired = false;
vmcall();
start = rdtsc();
vmx_set_test_stage(2);
asm volatile ("hlt");
report((rdtsc() - start > NMI_DELAY) && !nmi_fired,
"intercepted NMI + hlt");
if (nmi_fired) {
report(!nmi_fired, "intercepted NMI was dispatched");
vmx_set_test_stage(-1);
return;
}
vmx_set_test_stage(3);
}
static int nmi_hlt_exit_handler(union exit_reason exit_reason)
{
u64 guest_rip = vmcs_read(GUEST_RIP);
u32 insn_len = vmcs_read(EXI_INST_LEN);
switch (vmx_get_test_stage()) {
case 1:
if (exit_reason.basic != VMX_VMCALL) {
report_fail("VMEXIT not due to vmcall. Exit reason 0x%x",
exit_reason.full);
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_NMI);
vmcs_write(PIN_CONTROLS,
vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI);
vmcs_write(GUEST_RIP, guest_rip + insn_len);
break;
case 2:
if (exit_reason.basic != VMX_EXC_NMI) {
report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
exit_reason.full);
print_vmexit_info(exit_reason);
return VMX_TEST_VMEXIT;
}
report_pass("NMI intercept while running guest");
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
break;
case 3:
break;
default:
return VMX_TEST_VMEXIT;
}
if (vmx_get_test_stage() == 3)
return VMX_TEST_VMEXIT;
return VMX_TEST_RESUME;
}
static int dbgctls_init(struct vmcs *vmcs)
{
u64 dr7 = 0x402;
u64 zero = 0;
msr_bmp_init();
asm volatile(
"mov %0,%%dr0\n\t"
"mov %0,%%dr1\n\t"
"mov %0,%%dr2\n\t"
"mov %1,%%dr7\n\t"
: : "r" (zero), "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
vmcs_write(GUEST_DR7, 0x404);
vmcs_write(GUEST_DEBUGCTL, 0x2);
vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS);
return VMX_TEST_START;
}
static void dbgctls_main(void)
{
u64 dr7, debugctl;
asm volatile("mov %%dr7,%0" : "=r" (dr7));
debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
/* Commented out: KVM does not support DEBUGCTL so far */
(void)debugctl;
report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */);
dr7 = 0x408;
asm volatile("mov %0,%%dr7" : : "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
vmx_set_test_stage(0);
vmcall();
report(vmx_get_test_stage() == 1, "Save debug controls");
if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS ||
ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) {
printf("\tDebug controls are always loaded/saved\n");
return;
}
vmx_set_test_stage(2);
vmcall();
asm volatile("mov %%dr7,%0" : "=r" (dr7));
debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
/* Commented out: KVM does not support DEBUGCTL so far */
(void)debugctl;
report(dr7 == 0x402,
"Guest=host debug controls" /* && debugctl == 0x1 */);
dr7 = 0x408;
asm volatile("mov %0,%%dr7" : : "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3);
vmx_set_test_stage(3);
vmcall();
report(vmx_get_test_stage() == 4, "Don't save debug controls");
}
static int dbgctls_exit_handler(union exit_reason exit_reason)
{
u32 insn_len = vmcs_read(EXI_INST_LEN);
u64 guest_rip = vmcs_read(GUEST_RIP);
u64 dr7, debugctl;
asm volatile("mov %%dr7,%0" : "=r" (dr7));
debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
switch (exit_reason.basic) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
if (dr7 == 0x400 && debugctl == 0 &&
vmcs_read(GUEST_DR7) == 0x408 /* &&
Commented out: KVM does not support DEBUGCTL so far
vmcs_read(GUEST_DEBUGCTL) == 0x3 */)
vmx_inc_test_stage();
break;
case 2:
dr7 = 0x402;
asm volatile("mov %0,%%dr7" : : "r" (dr7));
wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1);
vmcs_write(GUEST_DR7, 0x404);
vmcs_write(GUEST_DEBUGCTL, 0x2);
vmcs_write(ENT_CONTROLS,
vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS);
vmcs_write(EXI_CONTROLS,
vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS);
break;
case 3:
if (dr7 == 0x400 && debugctl == 0 &&
vmcs_read(GUEST_DR7) == 0x404 /* &&
Commented out: KVM does not support DEBUGCTL so far
vmcs_read(GUEST_DEBUGCTL) == 0x2 */)
vmx_inc_test_stage();
break;
}
vmcs_write(GUEST_RIP, guest_rip + insn_len);
return VMX_TEST_RESUME;
default:
report_fail("Unknown exit reason, %d", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
struct vmx_msr_entry {
u32 index;
u32 reserved;
u64 value;
} __attribute__((packed));
#define MSR_MAGIC 0x31415926
struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load;
static int msr_switch_init(struct vmcs *vmcs)
{
msr_bmp_init();
exit_msr_store = alloc_page();
exit_msr_load = alloc_page();
entry_msr_load = alloc_page();
entry_msr_load[0].index = MSR_KERNEL_GS_BASE;
entry_msr_load[0].value = MSR_MAGIC;
vmx_set_test_stage(1);
vmcs_write(ENT_MSR_LD_CNT, 1);
vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load);
vmcs_write(EXI_MSR_ST_CNT, 1);
vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store);
vmcs_write(EXI_MSR_LD_CNT, 1);
vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load);
return VMX_TEST_START;
}
static void msr_switch_main(void)
{
if (vmx_get_test_stage() == 1) {
report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC,
"VM entry MSR load");
vmx_set_test_stage(2);
wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1);
exit_msr_store[0].index = MSR_KERNEL_GS_BASE;
exit_msr_load[0].index = MSR_KERNEL_GS_BASE;
exit_msr_load[0].value = MSR_MAGIC + 2;
}
vmcall();
}
static int msr_switch_exit_handler(union exit_reason exit_reason)
{
if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) {
report(exit_msr_store[0].value == MSR_MAGIC + 1,
"VM exit MSR store");
report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2,
"VM exit MSR load");
vmx_set_test_stage(3);
entry_msr_load[0].index = MSR_FS_BASE;
return VMX_TEST_RESUME;
}
printf("ERROR %s: unexpected stage=%u or reason=0x%x\n",
__func__, vmx_get_test_stage(), exit_reason.full);
return VMX_TEST_EXIT;
}
static int msr_switch_entry_failure(struct vmentry_result *result)
{
if (result->vm_fail) {
printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr);
return VMX_TEST_EXIT;
}
if (result->exit_reason.failed_vmentry &&
result->exit_reason.basic == VMX_FAIL_MSR &&
vmx_get_test_stage() == 3) {
report(vmcs_read(EXI_QUALIFICATION) == 1,
"VM entry MSR load: try to load FS_BASE");
return VMX_TEST_VMEXIT;
}
printf("ERROR %s: unexpected stage=%u or reason=%x\n",
__func__, vmx_get_test_stage(), result->exit_reason.full);
return VMX_TEST_EXIT;
}
static int vmmcall_init(struct vmcs *vmcs)
{
vmcs_write(EXC_BITMAP, 1 << UD_VECTOR);
return VMX_TEST_START;
}
static void vmmcall_main(void)
{
asm volatile(
"mov $0xABCD, %%rax\n\t"
"vmmcall\n\t"
::: "rax");
report_fail("VMMCALL");
}
static int vmmcall_exit_handler(union exit_reason exit_reason)
{
switch (exit_reason.basic) {
case VMX_VMCALL:
printf("here\n");
report_fail("VMMCALL triggers #UD");
break;
case VMX_EXC_NMI:
report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR,
"VMMCALL triggers #UD");
break;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
static int disable_rdtscp_init(struct vmcs *vmcs)
{
u32 ctrl_cpu1;
if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) {
ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1);
ctrl_cpu1 &= ~CPU_RDTSCP;
vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1);
}
return VMX_TEST_START;
}
static void disable_rdtscp_ud_handler(struct ex_regs *regs)
{
switch (vmx_get_test_stage()) {
case 0:
report_pass("RDTSCP triggers #UD");
vmx_inc_test_stage();
regs->rip += 3;
break;
case 2:
report_pass("RDPID triggers #UD");
vmx_inc_test_stage();
regs->rip += 4;
break;
}
return;
}
static void disable_rdtscp_main(void)
{
/* Test that #UD is properly injected in L2. */
handle_exception(UD_VECTOR, disable_rdtscp_ud_handler);
vmx_set_test_stage(0);
asm volatile("rdtscp" : : : "eax", "ecx", "edx");
vmcall();
asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax");
handle_exception(UD_VECTOR, 0);
vmcall();
}
static int disable_rdtscp_exit_handler(union exit_reason exit_reason)
{
switch (exit_reason.basic) {
case VMX_VMCALL:
switch (vmx_get_test_stage()) {
case 0:
report_fail("RDTSCP triggers #UD");
vmx_inc_test_stage();
/* fallthrough */
case 1:
vmx_inc_test_stage();
vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3);
return VMX_TEST_RESUME;
case 2:
report_fail("RDPID triggers #UD");
break;
}
break;
default:
report_fail("Unknown exit reason, 0x%x", exit_reason.full);
print_vmexit_info(exit_reason);
}
return VMX_TEST_VMEXIT;
}
static void exit_monitor_from_l2_main(void)
{
printf("Calling exit(0) from l2...\n");
exit(0);
}
static int exit_monitor_from_l2_handler(union exit_reason exit_reason)
{
report_fail("The guest should have killed the VMM");
return VMX_TEST_EXIT;
}
static void assert_exit_reason(u64 expected)
{
u64 actual = vmcs_read(EXI_REASON);
TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.",
exit_reason_description(expected),
exit_reason_description(actual));
}
static void skip_exit_insn(void)
{
u64 guest_rip = vmcs_read(GUEST_RIP);
u32 insn_len = vmcs_read(EXI_INST_LEN);
vmcs_write(GUEST_RIP, guest_rip + insn_len);
}
static void skip_exit_vmcall(void)
{
assert_exit_reason(VMX_VMCALL);
skip_exit_insn();
}
static void v2_null_test_guest(void)
{
}
static void v2_null_test(void)
{
test_set_guest(v2_null_test_guest);
enter_guest();
report_pass(__func__);
}
static void v2_multiple_entries_test_guest(void)
{
vmx_set_test_stage(1);
vmcall();
vmx_set_test_stage(2);
}
static void v2_multiple_entries_test(void)
{
test_set_guest(v2_multiple_entries_test_guest);
enter_guest();
TEST_ASSERT_EQ(vmx_get_test_stage(), 1);
skip_exit_vmcall();
enter_guest();
TEST_ASSERT_EQ(vmx_get_test_stage(), 2);
report_pass(__func__);
}
static int fixture_test_data = 1;
static void fixture_test_teardown(void *data)
{
*((int *) data) = 1;
}
static void fixture_test_guest(void)
{
fixture_test_data++;
}
static void fixture_test_setup(void)
{
TEST_ASSERT_EQ_MSG(1, fixture_test_data,
"fixture_test_teardown didn't run?!");
fixture_test_data = 2;
test_add_teardown(fixture_test_teardown, &fixture_test_data);
test_set_guest(fixture_test_guest);
}
static void fixture_test_case1(void)
{
fixture_test_setup();
TEST_ASSERT_EQ(2, fixture_test_data);
enter_guest();
TEST_ASSERT_EQ(3, fixture_test_data);
report_pass(__func__);
}
static void fixture_test_case2(void)
{
fixture_test_setup();
TEST_ASSERT_EQ(2, fixture_test_data);
enter_guest();
TEST_ASSERT_EQ(3, fixture_test_data);
report_pass(__func__);
}
enum ept_access_op {
OP_READ,
OP_WRITE,
OP_EXEC,
OP_FLUSH_TLB,
OP_EXIT,
};
static struct ept_access_test_data {
unsigned long gpa;
unsigned long *gva;
unsigned long hpa;
unsigned long *hva;
enum ept_access_op op;
} ept_access_test_data;
extern unsigned char ret42_start;
extern unsigned char ret42_end;
/* Returns 42. */
asm(
".align 64\n"
"ret42_start:\n"
"mov $42, %eax\n"
"ret\n"
"ret42_end:\n"
);
static void
diagnose_ept_violation_qual(u64 expected, u64 actual)
{
#define DIAGNOSE(flag) \
do { \
if ((expected & flag) != (actual & flag)) \
printf(#flag " %sexpected\n", \
(expected & flag) ? "" : "un"); \
} while (0)
DIAGNOSE(EPT_VLT_RD);
DIAGNOSE(EPT_VLT_WR);
DIAGNOSE(EPT_VLT_FETCH);
DIAGNOSE(EPT_VLT_PERM_RD);
DIAGNOSE(EPT_VLT_PERM_WR);
DIAGNOSE(EPT_VLT_PERM_EX);
DIAGNOSE(EPT_VLT_LADDR_VLD);
DIAGNOSE(EPT_VLT_PADDR);
#undef DIAGNOSE
}
static void do_ept_access_op(enum ept_access_op op)
{
ept_access_test_data.op = op;
enter_guest();
}
/*
* Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only
* needed by tests that modify guest PTEs.
*/
static void ept_access_test_guest_flush_tlb(void)
{
do_ept_access_op(OP_FLUSH_TLB);
skip_exit_vmcall();
}
/*
* Modifies the EPT entry at @level in the mapping of @gpa. First clears the
* bits in @clear then sets the bits in @set. @mkhuge transforms the entry into
* a huge page.
*/
static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level,
unsigned long clear, unsigned long set)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
unsigned long pte;
/* Screw with the mapping at the requested level. */
TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte));
pte = orig_pte;
if (mkhuge)
pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE;
else
pte = orig_pte;
pte = (pte & ~clear) | set;
set_ept_pte(pml4, gpa, level, pte);
invept(INVEPT_SINGLE, eptp);
return orig_pte;
}
static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte)
{
set_ept_pte(pml4, gpa, level, orig_pte);
invept(INVEPT_SINGLE, eptp);
}
static void do_ept_violation(bool leaf, enum ept_access_op op,
u64 expected_qual, u64 expected_paddr)
{
u64 qual;
/* Try the access and observe the violation. */
do_ept_access_op(op);
assert_exit_reason(VMX_EPT_VIOLATION);
qual = vmcs_read(EXI_QUALIFICATION);
/* Mask undefined bits (which may later be defined in certain cases). */
qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX |
EPT_VLT_PERM_USER_EX);
diagnose_ept_violation_qual(expected_qual, qual);
TEST_EXPECT_EQ(expected_qual, qual);
#if 0
/* Disable for now otherwise every test will fail */
TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
(unsigned long) (
op == OP_EXEC ? data->gva + 1 : data->gva));
#endif
/*
* TODO: tests that probe expected_paddr in pages other than the one at
* the beginning of the 1g region.
*/
TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr);
}
static void
ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear,
unsigned long set, enum ept_access_op op,
u64 expected_qual)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
do_ept_violation(level == 1 || mkhuge, op, expected_qual,
op == OP_EXEC ? data->gpa + sizeof(unsigned long) :
data->gpa);
/* Fix the violation and resume the op loop. */
ept_untwiddle(data->gpa, level, orig_pte);
enter_guest();
skip_exit_vmcall();
}
static void
ept_violation_at_level(int level, unsigned long clear, unsigned long set,
enum ept_access_op op, u64 expected_qual)
{
ept_violation_at_level_mkhuge(false, level, clear, set, op,
expected_qual);
if (ept_huge_pages_supported(level))
ept_violation_at_level_mkhuge(true, level, clear, set, op,
expected_qual);
}
static void ept_violation(unsigned long clear, unsigned long set,
enum ept_access_op op, u64 expected_qual)
{
ept_violation_at_level(1, clear, set, op, expected_qual);
ept_violation_at_level(2, clear, set, op, expected_qual);
ept_violation_at_level(3, clear, set, op, expected_qual);
ept_violation_at_level(4, clear, set, op, expected_qual);
}
static void ept_access_violation(unsigned long access, enum ept_access_op op,
u64 expected_qual)
{
ept_violation(EPT_PRESENT, access, op,
expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
/*
* For translations that don't involve a GVA, that is physical address (paddr)
* accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical
* guest memory access, the hardware does GVA -> GPA -> HPA. However, certain
* translations don't involve GVAs, such as when the hardware does the guest
* page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU
* might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides
* on isn't present in the EPT, then the EPT violation will be for GPA_2 and
* the EPT_VLT_PADDR bit will be clear in the exit qualification.
*
* Note that paddr violations can also be triggered by loading PAE page tables
* with wonky addresses. We don't test that yet.
*
* This function modifies the EPT entry that maps the GPA that the guest page
* table entry mapping ept_access_test_data.gva resides on.
*
* @ept_access EPT permissions to set. Other permissions are cleared.
*
* @pte_ad Set the A/D bits on the guest PTE accordingly.
*
* @op Guest operation to perform with
* ept_access_test_data.gva.
*
* @expect_violation
* Is a violation expected during the paddr access?
*
* @expected_qual Expected qualification for the EPT violation.
* EPT_VLT_PADDR should be clear.
*/
static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad,
enum ept_access_op op, bool expect_violation,
u64 expected_qual)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long *ptep;
unsigned long gpa;
unsigned long orig_epte;
unsigned long epte;
int i;
/* Modify the guest PTE mapping data->gva according to @pte_ad. */
ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1);
TEST_ASSERT(ptep);
TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa);
*ptep = (*ptep & ~PT_AD_MASK) | pte_ad;
ept_access_test_guest_flush_tlb();
/*
* Now modify the access bits on the EPT entry for the GPA that the
* guest PTE resides on. Note that by modifying a single EPT entry,
* we're potentially affecting 512 guest PTEs. However, we've carefully
* constructed our test such that those other 511 PTEs aren't used by
* the guest: data->gva is at the beginning of a 1G huge page, thus the
* PTE we're modifying is at the beginning of a 4K page and the
* following 511 entries are also under our control (and not touched by
* the guest).
*/
gpa = virt_to_phys(ptep);
TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0);
/*
* Make sure the guest page table page is mapped with a 4K EPT entry,
* otherwise our level=1 twiddling below will fail. We use the
* identity map (gpa = gpa) since page tables are shared with the host.
*/
install_ept(pml4, gpa, gpa, EPT_PRESENT);
orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1,
/*clear=*/EPT_PRESENT, /*set=*/ept_access);
if (expect_violation) {
do_ept_violation(/*leaf=*/true, op,
expected_qual | EPT_VLT_LADDR_VLD, gpa);
ept_untwiddle(gpa, /*level=*/1, orig_epte);
do_ept_access_op(op);
} else {
do_ept_access_op(op);
if (ept_ad_enabled()) {
for (i = EPT_PAGE_LEVEL; i > 0; i--) {
TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte));
TEST_ASSERT(epte & EPT_ACCESS_FLAG);
if (i == 1)
TEST_ASSERT(epte & EPT_DIRTY_FLAG);
else
TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0);
}
}
ept_untwiddle(gpa, /*level=*/1, orig_epte);
}
TEST_ASSERT(*ptep & PT_ACCESSED_MASK);
if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE)
TEST_ASSERT(*ptep & PT_DIRTY_MASK);
skip_exit_vmcall();
}
static void ept_access_allowed_paddr(unsigned long ept_access,
unsigned long pte_ad,
enum ept_access_op op)
{
ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false,
/*expected_qual=*/-1);
}
static void ept_access_violation_paddr(unsigned long ept_access,
unsigned long pte_ad,
enum ept_access_op op,
u64 expected_qual)
{
ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true,
expected_qual);
}
static void ept_allowed_at_level_mkhuge(bool mkhuge, int level,
unsigned long clear,
unsigned long set,
enum ept_access_op op)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
/* No violation. Should proceed to vmcall. */
do_ept_access_op(op);
skip_exit_vmcall();
ept_untwiddle(data->gpa, level, orig_pte);
}
static void ept_allowed_at_level(int level, unsigned long clear,
unsigned long set, enum ept_access_op op)
{
ept_allowed_at_level_mkhuge(false, level, clear, set, op);
if (ept_huge_pages_supported(level))
ept_allowed_at_level_mkhuge(true, level, clear, set, op);
}
static void ept_allowed(unsigned long clear, unsigned long set,
enum ept_access_op op)
{
ept_allowed_at_level(1, clear, set, op);
ept_allowed_at_level(2, clear, set, op);
ept_allowed_at_level(3, clear, set, op);
ept_allowed_at_level(4, clear, set, op);
}
static void ept_ignored_bit(int bit)
{
/* Set the bit. */
ept_allowed(0, 1ul << bit, OP_READ);
ept_allowed(0, 1ul << bit, OP_WRITE);
ept_allowed(0, 1ul << bit, OP_EXEC);
/* Clear the bit. */
ept_allowed(1ul << bit, 0, OP_READ);
ept_allowed(1ul << bit, 0, OP_WRITE);
ept_allowed(1ul << bit, 0, OP_EXEC);
}
static void ept_access_allowed(unsigned long access, enum ept_access_op op)
{
ept_allowed(EPT_PRESENT, access, op);
}
static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level,
unsigned long clear,
unsigned long set,
enum ept_access_op op)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long orig_pte;
orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set);
do_ept_access_op(op);
assert_exit_reason(VMX_EPT_MISCONFIG);
/* Intel 27.2.1, "For all other VM exits, this field is cleared." */
#if 0
/* broken: */
TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0);
#endif
#if 0
/*
* broken:
* According to description of exit qual for EPT violation,
* EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid.
* However, I can't find anything that says GUEST_LINEAR_ADDRESS ought
* to be set for msiconfig.
*/
TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS),
(unsigned long) (
op == OP_EXEC ? data->gva + 1 : data->gva));
#endif
/* Fix the violation and resume the op loop. */
ept_untwiddle(data->gpa, level, orig_pte);
enter_guest();
skip_exit_vmcall();
}
static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level,
unsigned long clear,
unsigned long set)
{
/* The op shouldn't matter (read, write, exec), so try them all! */
ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ);
ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE);
ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC);
}
static void ept_misconfig_at_level(int level, unsigned long clear,
unsigned long set)
{
ept_misconfig_at_level_mkhuge(false, level, clear, set);
if (ept_huge_pages_supported(level))
ept_misconfig_at_level_mkhuge(true, level, clear, set);
}
static void ept_misconfig(unsigned long clear, unsigned long set)
{
ept_misconfig_at_level(1, clear, set);
ept_misconfig_at_level(2, clear, set);
ept_misconfig_at_level(3, clear, set);
ept_misconfig_at_level(4, clear, set);
}
static void ept_access_misconfig(unsigned long access)
{
ept_misconfig(EPT_PRESENT, access);
}
static void ept_reserved_bit_at_level_nohuge(int level, int bit)
{
/* Setting the bit causes a misconfig. */
ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit);
/* Making the entry non-present turns reserved bits into ignored. */
ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
static void ept_reserved_bit_at_level_huge(int level, int bit)
{
/* Setting the bit causes a misconfig. */
ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit);
/* Making the entry non-present turns reserved bits into ignored. */
ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
static void ept_reserved_bit_at_level(int level, int bit)
{
/* Setting the bit causes a misconfig. */
ept_misconfig_at_level(level, 0, 1ul << bit);
/* Making the entry non-present turns reserved bits into ignored. */
ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ,
EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
}
static void ept_reserved_bit(int bit)
{
ept_reserved_bit_at_level(1, bit);
ept_reserved_bit_at_level(2, bit);
ept_reserved_bit_at_level(3, bit);
ept_reserved_bit_at_level(4, bit);
}
#define PAGE_2M_ORDER 9
#define PAGE_1G_ORDER 18
static void *get_1g_page(void)
{
static void *alloc;
if (!alloc)
alloc = alloc_pages(PAGE_1G_ORDER);
return alloc;
}
static void ept_access_test_teardown(void *unused)
{
/* Exit the guest cleanly. */
do_ept_access_op(OP_EXIT);
}
static void ept_access_test_guest(void)
{
struct ept_access_test_data *data = &ept_access_test_data;
int (*code)(void) = (int (*)(void)) &data->gva[1];
while (true) {
switch (data->op) {
case OP_READ:
TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1);
break;
case OP_WRITE:
*data->gva = MAGIC_VAL_2;
TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2);
*data->gva = MAGIC_VAL_1;
break;
case OP_EXEC:
TEST_ASSERT_EQ(42, code());
break;
case OP_FLUSH_TLB:
write_cr3(read_cr3());
break;
case OP_EXIT:
return;
default:
TEST_ASSERT_MSG(false, "Unknown op %d", data->op);
}
vmcall();
}
}
static void ept_access_test_setup(void)
{
struct ept_access_test_data *data = &ept_access_test_data;
unsigned long npages = 1ul << PAGE_1G_ORDER;
unsigned long size = npages * PAGE_SIZE;
unsigned long *page_table = current_page_table();
unsigned long pte;
if (setup_ept(false))
test_skip("EPT not supported");
/* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */
if (cpuid_maxphyaddr() < 40)
test_skip("Test needs MAXPHYADDR >= 40");
test_set_guest(ept_access_test_guest);
test_add_teardown(ept_access_test_teardown, NULL);
data->hva = get_1g_page();
TEST_ASSERT(data->hva);
data->hpa = virt_to_phys(data->hva);
data->gpa = 1ul << 39;
data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2),
size);
TEST_ASSERT(!any_present_pages(page_table, data->gva, size));
install_pages(page_table, data->gpa, size, data->gva);
/*
* Make sure nothing's mapped here so the tests that screw with the
* pml4 entry don't inadvertently break something.
*/
TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0);
TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0);
install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT);
data->hva[0] = MAGIC_VAL_1;
memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start);
}
static void ept_access_test_not_present(void)
{
ept_access_test_setup();
/* --- */
ept_access_violation(0, OP_READ, EPT_VLT_RD);
ept_access_violation(0, OP_WRITE, EPT_VLT_WR);
ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH);
}
static void ept_access_test_read_only(void)
{
ept_access_test_setup();
/* r-- */
ept_access_allowed(EPT_RA, OP_READ);
ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD);
ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD);
}
static void ept_access_test_write_only(void)
{
ept_access_test_setup();
/* -w- */
ept_access_misconfig(EPT_WA);
}
static void ept_access_test_read_write(void)
{
ept_access_test_setup();
/* rw- */
ept_access_allowed(EPT_RA | EPT_WA, OP_READ);
ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE);
ept_access_violation(EPT_RA | EPT_WA, OP_EXEC,
EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR);
}
static void ept_access_test_execute_only(void)
{
ept_access_test_setup();
/* --x */
if (ept_execute_only_supported()) {
ept_access_violation(EPT_EA, OP_READ,
EPT_VLT_RD | EPT_VLT_PERM_EX);
ept_access_violation(EPT_EA, OP_WRITE,
EPT_VLT_WR | EPT_VLT_PERM_EX);
ept_access_allowed(EPT_EA, OP_EXEC);
} else {
ept_access_misconfig(EPT_EA);
}
}
static void ept_access_test_read_execute(void)
{
ept_access_test_setup();
/* r-x */
ept_access_allowed(EPT_RA | EPT_EA, OP_READ);
ept_access_violation(EPT_RA | EPT_EA, OP_WRITE,
EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX);
ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC);
}
static void ept_access_test_write_execute(void)
{
ept_access_test_setup();
/* -wx */
ept_access_misconfig(EPT_WA | EPT_EA);
}
static void ept_access_test_read_write_execute(void)
{
ept_access_test_setup();
/* rwx */
ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ);
ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE);
ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC);
}
static void ept_access_test_reserved_bits(void)
{
int i;
int maxphyaddr;
ept_access_test_setup();
/* Reserved bits above maxphyaddr. */
maxphyaddr = cpuid_maxphyaddr();
for (i = maxphyaddr; i <= 51; i++) {
report_prefix_pushf("reserved_bit=%d", i);
ept_reserved_bit(i);
report_prefix_pop();
}
/* Level-specific reserved bits. */
ept_reserved_bit_at_level_nohuge(2, 3);
ept_reserved_bit_at_level_nohuge(2, 4);
ept_reserved_bit_at_level_nohuge(2, 5);
ept_reserved_bit_at_level_nohuge(2, 6);
/* 2M alignment. */
for (i = 12; i < 20; i++) {
report_prefix_pushf("reserved_bit=%d", i);
ept_reserved_bit_at_level_huge(2, i);
report_prefix_pop();
}
ept_reserved_bit_at_level_nohuge(3, 3);
ept_reserved_bit_at_level_nohuge(3, 4);
ept_reserved_bit_at_level_nohuge(3, 5);
ept_reserved_bit_at_level_nohuge(3, 6);
/* 1G alignment. */
for (i = 12; i < 29; i++) {
report_prefix_pushf("reserved_bit=%d", i);
ept_reserved_bit_at_level_huge(3, i);
report_prefix_pop();
}
ept_reserved_bit_at_level(4, 3);
ept_reserved_bit_at_level(4, 4);
ept_reserved_bit_at_level(4, 5);
ept_reserved_bit_at_level(4, 6);
ept_reserved_bit_at_level(4, 7);
}
static void ept_access_test_ignored_bits(void)
{
ept_access_test_setup();
/*
* Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as
* far as translation is concerned even if AD bits are enabled in the
* EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution
* control is 0.
*/
ept_ignored_bit(8);
ept_ignored_bit(9);
ept_ignored_bit(10);
ept_ignored_bit(11);
ept_ignored_bit(52);
ept_ignored_bit(53);
ept_ignored_bit(54);
ept_ignored_bit(55);
ept_ignored_bit(56);
ept_ignored_bit(57);
ept_ignored_bit(58);
ept_ignored_bit(59);
ept_ignored_bit(60);
ept_ignored_bit(61);
ept_ignored_bit(62);
ept_ignored_bit(63);
}
static void ept_access_test_paddr_not_present_ad_disabled(void)
{
ept_access_test_setup();
ept_disable_ad_bits();
ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD);
ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD);
ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD);
}
static void ept_access_test_paddr_not_present_ad_enabled(void)
{
u64 qual = EPT_VLT_RD | EPT_VLT_WR;
ept_access_test_setup();
ept_enable_ad_bits_or_skip_test();
ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual);
ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual);
ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual);
}
static void ept_access_test_paddr_read_only_ad_disabled(void)
{
/*
* When EPT AD bits are disabled, all accesses to guest paging
* structures are reported separately as a read and (after
* translation of the GPA to host physical address) a read+write
* if the A/D bits have to be set.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
ept_access_test_setup();
ept_disable_ad_bits();
/* Can't update A bit, so all accesses fail. */
ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
/* AD bits disabled, so only writes try to update the D bit. */
ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC);
/* Both A and D already set, so read-only is OK. */
ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ);
ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE);
ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC);
}
static void ept_access_test_paddr_read_only_ad_enabled(void)
{
/*
* When EPT AD bits are enabled, all accesses to guest paging
* structures are considered writes as far as EPT translation
* is concerned.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD;
ept_access_test_setup();
ept_enable_ad_bits_or_skip_test();
ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual);
}
static void ept_access_test_paddr_read_write(void)
{
ept_access_test_setup();
/* Read-write access to paging structure. */
ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ);
ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE);
ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC);
}
static void ept_access_test_paddr_read_write_execute(void)
{
ept_access_test_setup();
/* RWX access to paging structure. */
ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ);
ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE);
ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC);
}
static void ept_access_test_paddr_read_execute_ad_disabled(void)
{
/*
* When EPT AD bits are disabled, all accesses to guest paging
* structures are reported separately as a read and (after
* translation of the GPA to host physical address) a read+write
* if the A/D bits have to be set.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
ept_access_test_setup();
ept_disable_ad_bits();
/* Can't update A bit, so all accesses fail. */
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
/* AD bits disabled, so only writes try to update the D bit. */
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC);
/* Both A and D already set, so read-only is OK. */
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ);
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE);
ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC);
}
static void ept_access_test_paddr_read_execute_ad_enabled(void)
{
/*
* When EPT AD bits are enabled, all accesses to guest paging
* structures are considered writes as far as EPT translation
* is concerned.
*/
u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX;
ept_access_test_setup();
ept_enable_ad_bits_or_skip_test();
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual);
ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual);
}
static void ept_access_test_paddr_not_present_page_fault(void)
{
ept_access_test_setup();
/*
* TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is
* page is read-only in EPT but GVA is also mapped read only in PT.
* Thus guest page fault before host takes EPT violation for trying to
* update A bit.
*/
}
static void ept_access_test_force_2m_page(void)
{
ept_access_test_setup();
TEST_ASSERT_EQ(ept_2m_supported(), true);
ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ);
ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE,
EPT_VLT_WR | EPT_VLT_PERM_RD |
EPT_VLT_LADDR_VLD | EPT_VLT_PADDR);
ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA);
}
static bool invvpid_valid(u64 type, u64 vpid, u64 gla)
{
if (!is_invvpid_type_supported(type))
return false;
if (vpid >> 16)
return false;
if (type != INVVPID_ALL && !vpid)
return false;
if (type == INVVPID_ADDR && !is_canonical(gla))
return false;
return true;
}
static void try_invvpid(u64 type, u64 vpid, u64 gla)
{
int rc;
bool valid = invvpid_valid(type, vpid, gla);
u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT
: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID;
/*
* Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so
* that we can tell if it is updated by INVVPID.
*/
vmcs_read(~0);
rc = __invvpid(type, vpid, gla);
report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type,
vpid, gla,
valid ? "passes" : "fails");
report(vmcs_read(VMX_INST_ERROR) == expected,
"After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)",
rc ? "failed" : "successful",
expected, vmcs_read(VMX_INST_ERROR));
}
static inline unsigned long get_first_supported_invvpid_type(void)
{
u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1;
__TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL);
return type;
}
static void ds_invvpid(void *data)
{
asm volatile("invvpid %0, %1"
:
: "m"(*(struct invvpid_operand *)data),
"r"(get_first_supported_invvpid_type()));
}
/*
* The SS override is ignored in 64-bit mode, so we use an addressing
* mode with %rsp as the base register to generate an implicit SS
* reference.
*/
static void ss_invvpid(void *data)
{
asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1"
: "+r"(data)
: "r"(get_first_supported_invvpid_type()));
}
static void invvpid_test_gp(void)
{
bool fault;
fault = test_for_exception(GP_VECTOR, &ds_invvpid,
(void *)NONCANONICAL);
report(fault, "INVVPID with non-canonical DS operand raises #GP");
}
static void invvpid_test_ss(void)
{
bool fault;
fault = test_for_exception(SS_VECTOR, &ss_invvpid,
(void *)NONCANONICAL);
report(fault, "INVVPID with non-canonical SS operand raises #SS");
}
static void invvpid_test_pf(void)
{
void *vpage = alloc_vpage();
bool fault;
fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage);
report(fault, "INVVPID with unmapped operand raises #PF");
}
static void try_compat_invvpid(void *unused)
{
struct far_pointer32 fp = {
.offset = (uintptr_t)&&invvpid,
.selector = KERNEL_CS32,
};
uintptr_t rsp;
asm volatile ("mov %%rsp, %0" : "=r"(rsp));
TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid,
"Code address too high.");
TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high.");
asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid);
return;
invvpid:
asm volatile (".code32;"
"invvpid (%eax), %eax;"
"lret;"
".code64");
__builtin_unreachable();
}
static void invvpid_test_compatibility_mode(void)
{
bool fault;
fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL);
report(fault, "Compatibility mode INVVPID raises #UD");
}
static void invvpid_test_not_in_vmx_operation(void)
{
bool fault;
TEST_ASSERT(!vmx_off());
fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL);
report(fault, "INVVPID outside of VMX operation raises #UD");
TEST_ASSERT(!vmx_on());
}
/*
* This does not test real-address mode, virtual-8086 mode, protected mode,
* or CPL > 0.
*/
static void invvpid_test(void)
{
int i;
unsigned types = 0;
unsigned type;
if (!is_vpid_supported())
test_skip("VPID not supported");
if (!is_invvpid_supported())
test_skip("INVVPID not supported.\n");
if (is_invvpid_type_supported(INVVPID_ADDR))
types |= 1u << INVVPID_ADDR;
if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL))
types |= 1u << INVVPID_CONTEXT_GLOBAL;
if (is_invvpid_type_supported(INVVPID_ALL))
types |= 1u << INVVPID_ALL;
if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL))
types |= 1u << INVVPID_CONTEXT_LOCAL;
if (!types)
test_skip("No INVVPID types supported.\n");
for (i = -127; i < 128; i++)
try_invvpid(i, 0xffff, 0);
/*
* VPID must not be more than 16 bits.
*/
for (i = 0; i < 64; i++)
for (type = 0; type < 4; type++)
if (types & (1u << type))
try_invvpid(type, 1ul << i, 0);
/*
* VPID must not be zero, except for "all contexts."
*/
for (type = 0; type < 4; type++)
if (types & (1u << type))
try_invvpid(type, 0, 0);
/*
* The gla operand is only validated for single-address INVVPID.
*/
if (types & (1u << INVVPID_ADDR))
try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL);
invvpid_test_gp();
invvpid_test_ss();
invvpid_test_pf();
invvpid_test_compatibility_mode();
invvpid_test_not_in_vmx_operation();
}
static void test_assert_vmlaunch_inst_error(u32 expected_error)
{
u32 vmx_inst_err = vmcs_read(VMX_INST_ERROR);
report(vmx_inst_err == expected_error,
"VMX inst error is %d (actual %d)", expected_error, vmx_inst_err);
}
/*
* This version is wildly unsafe and should _only_ be used to test VM-Fail
* scenarios involving HOST_RIP.
*/
static void test_vmx_vmlaunch_must_fail(u32 expected_error)
{
/* Read the function name. */
TEST_ASSERT(expected_error);
/*
* Don't bother with any prep work, if VMLAUNCH passes the VM-Fail
* consistency checks and generates a VM-Exit, then the test is doomed
* no matter what as it will jump to a garbage RIP.
*/
__asm__ __volatile__ ("vmlaunch");
test_assert_vmlaunch_inst_error(expected_error);
}
/*
* Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it
* at least as far as the guest-state checks. Returns false if the
* VMLAUNCH fails early and execution falls through to the next
* instruction.
*/
static bool vmlaunch(void)
{
u32 exit_reason;
/*
* Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to
* unsupported VMCS component"). The caller can then check
* to see if a failed VM-entry sets VMX_INST_ERR as expected.
*/
vmcs_write(~0u, 0);
vmcs_write(HOST_RIP, (uintptr_t)&&success);
__asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch"
:
: "r" ((u64)HOST_RSP)
: "cc", "memory"
: success);
return false;
success:
exit_reason = vmcs_read(EXI_REASON);
TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) ||
exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE));
return true;
}
/*
* Try to launch the current VMCS.
*/
static void test_vmx_vmlaunch(u32 xerror)
{
bool success = vmlaunch();
report(success == !xerror, "vmlaunch %s",
!xerror ? "succeeds" : "fails");
if (!success && xerror)
test_assert_vmlaunch_inst_error(xerror);
}
/*
* Try to launch the current VMCS, and expect one of two possible
* errors (or success) codes.
*/
static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2)
{
bool success = vmlaunch();
u32 vmx_inst_err;
if (!xerror1 == !xerror2)
report(success == !xerror1, "vmlaunch %s",
!xerror1 ? "succeeds" : "fails");
if (!success && (xerror1 || xerror2)) {
vmx_inst_err = vmcs_read(VMX_INST_ERROR);
report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2,
"VMX inst error is %d or %d (actual %d)", xerror1,
xerror2, vmx_inst_err);
}
}
static void test_vmx_invalid_controls(void)
{
test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD);
}
static void test_vmx_valid_controls(void)
{
test_vmx_vmlaunch(0);
}
/*
* Test a particular value of a VM-execution control bit, if the value
* is required or if the value is zero.
*/
static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr,
enum Encoding encoding, unsigned bit,
unsigned val)
{
u32 mask = 1u << bit;
bool expected;
u32 controls;
if (msr.set & mask)
TEST_ASSERT(msr.clr & mask);
/*
* We can't arbitrarily turn on a control bit, because it may
* introduce dependencies on other VMCS fields. So, we only
* test turning on bits that have a required setting.
*/
if (val && (msr.clr & mask) && !(msr.set & mask))
return;
report_prefix_pushf("%s %s bit %d",
val ? "Set" : "Clear", name, bit);
controls = vmcs_read(encoding);
if (val) {
vmcs_write(encoding, msr.set | mask);
expected = (msr.clr & mask);
} else {
vmcs_write(encoding, msr.set & ~mask);
expected = !(msr.set & mask);
}
if (expected)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
vmcs_write(encoding, controls);
report_prefix_pop();
}
/*
* Test reserved values of a VM-execution control bit, based on the
* allowed bit settings from the corresponding VMX capability MSR.
*/
static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr,
enum Encoding encoding, unsigned bit)
{
test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0);
test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1);
}
/*
* Reserved bits in the pin-based VM-execution controls must be set
* properly. Software may consult the VMX capability MSRs to determine
* the proper settings.
* [Intel SDM]
*/
static void test_pin_based_ctls(void)
{
unsigned bit;
printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" :
"MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val);
for (bit = 0; bit < 32; bit++)
test_rsvd_ctl_bit("pin-based controls",
ctrl_pin_rev, PIN_CONTROLS, bit);
}
/*
* Reserved bits in the primary processor-based VM-execution controls
* must be set properly. Software may consult the VMX capability MSRs
* to determine the proper settings.
* [Intel SDM]
*/
static void test_primary_processor_based_ctls(void)
{
unsigned bit;
printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" :
"MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val);
for (bit = 0; bit < 32; bit++)
test_rsvd_ctl_bit("primary processor-based controls",
ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit);
}
/*
* If the "activate secondary controls" primary processor-based
* VM-execution control is 1, reserved bits in the secondary
* processor-based VM-execution controls must be cleared. Software may
* consult the VMX capability MSRs to determine which bits are
* reserved.
* If the "activate secondary controls" primary processor-based
* VM-execution control is 0 (or if the processor does not support the
* 1-setting of that control), no checks are performed on the
* secondary processor-based VM-execution controls.
* [Intel SDM]
*/
static void test_secondary_processor_based_ctls(void)
{
u32 primary;
u32 secondary;
unsigned bit;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY))
return;
primary = vmcs_read(CPU_EXEC_CTRL0);
secondary = vmcs_read(CPU_EXEC_CTRL1);
vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val);
for (bit = 0; bit < 32; bit++)
test_rsvd_ctl_bit("secondary processor-based controls",
ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit);
/*
* When the "activate secondary controls" VM-execution control
* is clear, there are no checks on the secondary controls.
*/
vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, ~0);
report(vmlaunch(),
"Secondary processor-based controls ignored");
vmcs_write(CPU_EXEC_CTRL1, secondary);
vmcs_write(CPU_EXEC_CTRL0, primary);
}
static void try_cr3_target_count(unsigned i, unsigned max)
{
report_prefix_pushf("CR3 target count 0x%x", i);
vmcs_write(CR3_TARGET_COUNT, i);
if (i <= max)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
/*
* The CR3-target count must not be greater than 4. Future processors
* may support a different number of CR3-target values. Software
* should read the VMX capability MSR IA32_VMX_MISC to determine the
* number of values supported.
* [Intel SDM]
*/
static void test_cr3_targets(void)
{
unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff;
u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT);
unsigned i;
printf("\nSupported CR3 targets: %d\n", supported_targets);
TEST_ASSERT(supported_targets <= 256);
try_cr3_target_count(-1u, supported_targets);
try_cr3_target_count(0x80000000, supported_targets);
try_cr3_target_count(0x7fffffff, supported_targets);
for (i = 0; i <= supported_targets + 1; i++)
try_cr3_target_count(i, supported_targets);
vmcs_write(CR3_TARGET_COUNT, cr3_targets);
/* VMWRITE to nonexistent target fields should fail. */
for (i = supported_targets; i < 256; i++)
TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0));
}
/*
* Test a particular address setting in the VMCS
*/
static void test_vmcs_addr(const char *name,
enum Encoding encoding,
u64 align,
bool ignored,
bool skip_beyond_mapped_ram,
u64 addr)
{
report_prefix_pushf("%s = %lx", name, addr);
vmcs_write(encoding, addr);
if (skip_beyond_mapped_ram &&
addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align &&
addr < (1ul << cpuid_maxphyaddr()))
printf("Skipping physical address beyond mapped RAM\n");
else if (ignored || (IS_ALIGNED(addr, align) &&
addr < (1ul << cpuid_maxphyaddr())))
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
/*
* Test interesting values for a VMCS address
*/
static void test_vmcs_addr_values(const char *name,
enum Encoding encoding,
u64 align,
bool ignored,
bool skip_beyond_mapped_ram,
u32 bit_start, u32 bit_end)
{
unsigned i;
u64 orig_val = vmcs_read(encoding);
for (i = bit_start; i <= bit_end; i++)
test_vmcs_addr(name, encoding, align, ignored,
skip_beyond_mapped_ram, 1ul << i);
test_vmcs_addr(name, encoding, align, ignored,
skip_beyond_mapped_ram, PAGE_SIZE - 1);
test_vmcs_addr(name, encoding, align, ignored,
skip_beyond_mapped_ram, PAGE_SIZE);
test_vmcs_addr(name, encoding, align, ignored,
skip_beyond_mapped_ram,
(1ul << cpuid_maxphyaddr()) - PAGE_SIZE);
test_vmcs_addr(name, encoding, align, ignored,
skip_beyond_mapped_ram, -1ul);
vmcs_write(encoding, orig_val);
}
/*
* Test a physical address reference in the VMCS, when the corresponding
* feature is enabled and when the corresponding feature is disabled.
*/
static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field,
const char *field_name,
const char *control_name, u64 align,
bool skip_beyond_mapped_ram,
bool control_primary)
{
u32 primary = vmcs_read(CPU_EXEC_CTRL0);
u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
u64 page_addr;
if (control_primary) {
if (!(ctrl_cpu_rev[0].clr & control_bit))
return;
} else {
if (!(ctrl_cpu_rev[1].clr & control_bit))
return;
}
page_addr = vmcs_read(field);
report_prefix_pushf("%s enabled", control_name);
if (control_primary) {
vmcs_write(CPU_EXEC_CTRL0, primary | control_bit);
} else {
vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit);
}
test_vmcs_addr_values(field_name, field, align, false,
skip_beyond_mapped_ram, 0, 63);
report_prefix_pop();
report_prefix_pushf("%s disabled", control_name);
if (control_primary) {
vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit);
} else {
vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit);
}
test_vmcs_addr_values(field_name, field, align, true, false, 0, 63);
report_prefix_pop();
vmcs_write(field, page_addr);
vmcs_write(CPU_EXEC_CTRL0, primary);
vmcs_write(CPU_EXEC_CTRL1, secondary);
}
/*
* If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of
* each I/O-bitmap address must be 0. Neither address should set any
* bits beyond the processor's physical-address width.
* [Intel SDM]
*/
static void test_io_bitmaps(void)
{
test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A,
"I/O bitmap A", "Use I/O bitmaps",
PAGE_SIZE, false, true);
test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B,
"I/O bitmap B", "Use I/O bitmaps",
PAGE_SIZE, false, true);
}
/*
* If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of
* the MSR-bitmap address must be 0. The address should not set any
* bits beyond the processor's physical-address width.
* [Intel SDM]
*/
static void test_msr_bitmap(void)
{
test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP,
"MSR bitmap", "Use MSR bitmaps",
PAGE_SIZE, false, true);
}
/*
* If the "use TPR shadow" VM-execution control is 1, the virtual-APIC
* address must satisfy the following checks:
* - Bits 11:0 of the address must be 0.
* - The address should not set any bits beyond the processor's
* physical-address width.
* [Intel SDM]
*/
static void test_apic_virt_addr(void)
{
/*
* Ensure the processor will never use the virtual-APIC page, since
* we will point it to invalid RAM. Otherwise KVM is puzzled about
* what we're trying to achieve and fails vmentry.
*/
u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE);
test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR,
"virtual-APIC address", "Use TPR shadow",
PAGE_SIZE, false, true);
vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
}
/*
* If the "virtualize APIC-accesses" VM-execution control is 1, the
* APIC-access address must satisfy the following checks:
* - Bits 11:0 of the address must be 0.
* - The address should not set any bits beyond the processor's
* physical-address width.
* [Intel SDM]
*/
static void test_apic_access_addr(void)
{
void *apic_access_page = alloc_page();
vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page));
test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR,
"APIC-access address",
"virtualize APIC-accesses", PAGE_SIZE,
true, false);
}
static bool set_bit_pattern(u8 mask, u32 *secondary)
{
u8 i;
bool flag = false;
u32 test_bits[3] = {
CPU_VIRT_X2APIC,
CPU_APIC_REG_VIRT,
CPU_VINTD
};
for (i = 0; i < ARRAY_SIZE(test_bits); i++) {
if ((mask & (1u << i)) &&
(ctrl_cpu_rev[1].clr & test_bits[i])) {
*secondary |= test_bits[i];
flag = true;
}
}
return (flag);
}
/*
* If the "use TPR shadow" VM-execution control is 0, the following
* VM-execution controls must also be 0:
* - virtualize x2APIC mode
* - APIC-register virtualization
* - virtual-interrupt delivery
* [Intel SDM]
*
* 2. If the "virtualize x2APIC mode" VM-execution control is 1, the
* "virtualize APIC accesses" VM-execution control must be 0.
* [Intel SDM]
*/
static void test_apic_virtual_ctls(void)
{
u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
u32 primary = saved_primary;
u32 secondary = saved_secondary;
bool is_ctrl_valid = false;
char str[10] = "disabled";
u8 i = 0, j;
/*
* First test
*/
if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) ==
(CPU_SECONDARY | CPU_TPR_SHADOW)))
return;
primary |= CPU_SECONDARY;
primary &= ~CPU_TPR_SHADOW;
vmcs_write(CPU_EXEC_CTRL0, primary);
while (1) {
for (j = 1; j < 8; j++) {
secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD);
if (primary & CPU_TPR_SHADOW) {
is_ctrl_valid = true;
} else {
if (! set_bit_pattern(j, &secondary))
is_ctrl_valid = true;
else
is_ctrl_valid = false;
}
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s",
str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled");
if (is_ctrl_valid)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
if (i == 1)
break;
i++;
primary |= CPU_TPR_SHADOW;
vmcs_write(CPU_EXEC_CTRL0, primary);
strcpy(str, "enabled");
}
/*
* Second test
*/
u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES);
primary = saved_primary;
secondary = saved_secondary;
if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls))
return;
vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY);
secondary &= ~CPU_VIRT_APIC_ACCESSES;
vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC);
report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES);
report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC);
report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled");
test_vmx_invalid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES);
report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0, saved_primary);
vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
}
/*
* If the "virtual-interrupt delivery" VM-execution control is 1, the
* "external-interrupt exiting" VM-execution control must be 1.
* [Intel SDM]
*/
static void test_virtual_intr_ctls(void)
{
u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
u32 saved_pin = vmcs_read(PIN_CONTROLS);
u32 primary = saved_primary;
u32 secondary = saved_secondary;
u32 pin = saved_pin;
if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) &&
(ctrl_pin_rev.clr & PIN_EXTINT)))
return;
vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD);
vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD);
report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
test_vmx_invalid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT);
report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT);
report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled");
test_vmx_invalid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0, saved_primary);
vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
vmcs_write(PIN_CONTROLS, saved_pin);
}
static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid)
{
vmcs_write(POSTED_INTR_DESC_ADDR, addr);
report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr);
if (is_ctrl_valid)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
/*
* If the "process posted interrupts" VM-execution control is 1, the
* following must be true:
*
* - The "virtual-interrupt delivery" VM-execution control is 1.
* - The "acknowledge interrupt on exit" VM-exit control is 1.
* - The posted-interrupt notification vector has a value in the
* - range 0 - 255 (bits 15:8 are all 0).
* - Bits 5:0 of the posted-interrupt descriptor address are all 0.
* - The posted-interrupt descriptor address does not set any bits
* beyond the processor's physical-address width.
* [Intel SDM]
*/
static void test_posted_intr(void)
{
u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
u32 saved_pin = vmcs_read(PIN_CONTROLS);
u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS);
u32 primary = saved_primary;
u32 secondary = saved_secondary;
u32 pin = saved_pin;
u32 exit_ctl = exit_ctl_saved;
u16 vec;
int i;
if (!((ctrl_pin_rev.clr & PIN_POST_INTR) &&
(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
(ctrl_exit_rev.clr & EXI_INTA)))
return;
vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW);
/*
* Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit
*/
pin |= PIN_POST_INTR;
vmcs_write(PIN_CONTROLS, pin);
secondary &= ~CPU_VINTD;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled");
test_vmx_invalid_controls();
report_prefix_pop();
secondary |= CPU_VINTD;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled");
test_vmx_invalid_controls();
report_prefix_pop();
exit_ctl &= ~EXI_INTA;
vmcs_write(EXI_CONTROLS, exit_ctl);
report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled");
test_vmx_invalid_controls();
report_prefix_pop();
exit_ctl |= EXI_INTA;
vmcs_write(EXI_CONTROLS, exit_ctl);
report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
test_vmx_valid_controls();
report_prefix_pop();
secondary &= ~CPU_VINTD;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled");
test_vmx_invalid_controls();
report_prefix_pop();
secondary |= CPU_VINTD;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled");
test_vmx_valid_controls();
report_prefix_pop();
/*
* Test posted-interrupt notification vector
*/
for (i = 0; i < 8; i++) {
vec = (1ul << i);
vmcs_write(PINV, vec);
report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
test_vmx_valid_controls();
report_prefix_pop();
}
for (i = 8; i < 16; i++) {
vec = (1ul << i);
vmcs_write(PINV, vec);
report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
test_vmx_invalid_controls();
report_prefix_pop();
}
vec &= ~(0xff << 8);
vmcs_write(PINV, vec);
report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec);
test_vmx_valid_controls();
report_prefix_pop();
/*
* Test posted-interrupt descriptor address
*/
for (i = 0; i < 6; i++) {
test_pi_desc_addr(1ul << i, false);
}
test_pi_desc_addr(0xf0, false);
test_pi_desc_addr(0xff, false);
test_pi_desc_addr(0x0f, false);
test_pi_desc_addr(0x8000, true);
test_pi_desc_addr(0x00, true);
test_pi_desc_addr(0xc000, true);
test_vmcs_addr_values("process-posted interrupts",
POSTED_INTR_DESC_ADDR, 64,
false, false, 0, 63);
vmcs_write(CPU_EXEC_CTRL0, saved_primary);
vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
vmcs_write(PIN_CONTROLS, saved_pin);
}
static void test_apic_ctls(void)
{
test_apic_virt_addr();
test_apic_access_addr();
test_apic_virtual_ctls();
test_virtual_intr_ctls();
test_posted_intr();
}
/*
* If the "enable VPID" VM-execution control is 1, the value of the
* of the VPID VM-execution control field must not be 0000H.
* [Intel SDM]
*/
static void test_vpid(void)
{
u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0);
u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1);
u16 vpid = 0x0000;
int i;
if (!is_vpid_supported()) {
report_skip("%s : Secondary controls and/or VPID not supported", __func__);
return;
}
vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID);
vmcs_write(VPID, vpid);
report_prefix_pushf("VPID disabled; VPID value %x", vpid);
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID);
report_prefix_pushf("VPID enabled; VPID value %x", vpid);
test_vmx_invalid_controls();
report_prefix_pop();
for (i = 0; i < 16; i++) {
vpid = (short)1 << i;;
vmcs_write(VPID, vpid);
report_prefix_pushf("VPID enabled; VPID value %x", vpid);
test_vmx_valid_controls();
report_prefix_pop();
}
vmcs_write(CPU_EXEC_CTRL0, saved_primary);
vmcs_write(CPU_EXEC_CTRL1, saved_secondary);
}
static void set_vtpr(unsigned vtpr)
{
*(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr;
}
static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr)
{
bool valid = true;
u32 primary = vmcs_read(CPU_EXEC_CTRL0);
u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
if ((primary & CPU_TPR_SHADOW) &&
(!(primary & CPU_SECONDARY) ||
!(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf);
set_vtpr(vtpr);
report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x",
threshold, (vtpr >> 4) & 0xf);
if (valid)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
static void test_invalid_event_injection(void)
{
u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO);
u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR);
u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN);
u32 primary_save = vmcs_read(CPU_EXEC_CTRL0);
u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1);
u64 guest_cr0_save = vmcs_read(GUEST_CR0);
u32 ent_intr_info_base = INTR_INFO_VALID_MASK;
u32 ent_intr_info, ent_intr_err, ent_intr_len;
u32 cnt;
/* Setup */
report_prefix_push("invalid event injection");
vmcs_write(ENT_INTR_ERROR, 0x00000000);
vmcs_write(ENT_INST_LEN, 0x00000001);
/* The field's interruption type is not set to a reserved value. */
ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"RESERVED interruption type invalid [-]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR |
DE_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"RESERVED interruption type invalid [+]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_valid_controls();
report_prefix_pop();
/* If the interruption type is other event, the vector is 0. */
ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"(OTHER EVENT && vector != 0) invalid [-]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
/* If the interruption type is NMI, the vector is 2 (negative case). */
ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"(NMI && vector != 2) invalid [-]", ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
/* If the interruption type is NMI, the vector is 2 (positive case). */
ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"(NMI && vector == 2) valid [+]", ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_valid_controls();
report_prefix_pop();
/*
* If the interruption type
* is HW exception, the vector is at most 31.
*/
ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"(HW exception && vector > 31) invalid [-]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
/*
* deliver-error-code is 1 iff either
* (a) the "unrestricted guest" VM-execution control is 0
* (b) CR0.PE is set.
*/
/* Assert that unrestricted guest is disabled or unsupported */
assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(secondary_save & CPU_URG));
ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
GP_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"error code <-> (!URG || prot_mode) [-]",
ent_intr_info);
vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"error code <-> (!URG || prot_mode) [+]",
ent_intr_info);
vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_valid_controls();
report_prefix_pop();
if (enable_unrestricted_guest(false))
goto skip_unrestricted_guest;
ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"error code <-> (!URG || prot_mode) [-]",
ent_intr_info);
vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION |
GP_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"error code <-> (!URG || prot_mode) [-]",
ent_intr_info);
vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL1, secondary_save);
vmcs_write(CPU_EXEC_CTRL0, primary_save);
skip_unrestricted_guest:
vmcs_write(GUEST_CR0, guest_cr0_save);
/* deliver-error-code is 1 iff the interruption type is HW exception */
report_prefix_push("error code <-> HW exception");
for (cnt = 0; cnt < 8; cnt++) {
u32 exception_type_mask = cnt << 8;
u32 deliver_error_code_mask =
exception_type_mask != INTR_TYPE_HARD_EXCEPTION ?
INTR_INFO_DELIVER_CODE_MASK : 0;
ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
exception_type_mask | GP_VECTOR;
report_prefix_pushf("VM-entry intr info=0x%x [-]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
}
report_prefix_pop();
/*
* deliver-error-code is 1 iff the the vector
* indicates an exception that would normally deliver an error code
*/
report_prefix_push("error code <-> vector delivers error code");
for (cnt = 0; cnt < 32; cnt++) {
bool has_error_code = false;
u32 deliver_error_code_mask;
switch (cnt) {
case DF_VECTOR:
case TS_VECTOR:
case NP_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
case PF_VECTOR:
case AC_VECTOR:
has_error_code = true;
case CP_VECTOR:
/* Some CPUs have error code and some do not, skip */
continue;
}
/* Negative case */
deliver_error_code_mask = has_error_code ?
0 :
INTR_INFO_DELIVER_CODE_MASK;
ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
INTR_TYPE_HARD_EXCEPTION | cnt;
report_prefix_pushf("VM-entry intr info=0x%x [-]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
/* Positive case */
deliver_error_code_mask = has_error_code ?
INTR_INFO_DELIVER_CODE_MASK :
0;
ent_intr_info = ent_intr_info_base | deliver_error_code_mask |
INTR_TYPE_HARD_EXCEPTION | cnt;
report_prefix_pushf("VM-entry intr info=0x%x [+]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_valid_controls();
report_prefix_pop();
}
report_prefix_pop();
/* Reserved bits in the field (30:12) are 0. */
report_prefix_push("reserved bits clear");
for (cnt = 12; cnt <= 30; cnt++) {
ent_intr_info = ent_intr_info_base |
INTR_INFO_DELIVER_CODE_MASK |
INTR_TYPE_HARD_EXCEPTION | GP_VECTOR |
(1U << cnt);
report_prefix_pushf("VM-entry intr info=0x%x [-]",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
test_vmx_invalid_controls();
report_prefix_pop();
}
report_prefix_pop();
/*
* If deliver-error-code is 1
* bits 31:16 of the VM-entry exception error-code field are 0.
*/
ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK |
INTR_TYPE_HARD_EXCEPTION | GP_VECTOR;
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"VM-entry exception error code[31:16] clear",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
for (cnt = 16; cnt <= 31; cnt++) {
ent_intr_err = 1U << cnt;
report_prefix_pushf("VM-entry intr error=0x%x [-]",
ent_intr_err);
vmcs_write(ENT_INTR_ERROR, ent_intr_err);
test_vmx_invalid_controls();
report_prefix_pop();
}
vmcs_write(ENT_INTR_ERROR, 0x00000000);
report_prefix_pop();
/*
* If the interruption type is software interrupt, software exception,
* or privileged software exception, the VM-entry instruction-length
* field is in the range 0 - 15.
*/
for (cnt = 0; cnt < 3; cnt++) {
switch (cnt) {
case 0:
ent_intr_info = ent_intr_info_base |
INTR_TYPE_SOFT_INTR;
break;
case 1:
ent_intr_info = ent_intr_info_base |
INTR_TYPE_SOFT_EXCEPTION;
break;
case 2:
ent_intr_info = ent_intr_info_base |
INTR_TYPE_PRIV_SW_EXCEPTION;
break;
}
report_prefix_pushf("%s, VM-entry intr info=0x%x",
"VM-entry instruction-length check",
ent_intr_info);
vmcs_write(ENT_INTR_INFO, ent_intr_info);
/* Instruction length set to -1 (0xFFFFFFFF) should fail */
ent_intr_len = -1;
report_prefix_pushf("VM-entry intr length = 0x%x [-]",
ent_intr_len);
vmcs_write(ENT_INST_LEN, ent_intr_len);
test_vmx_invalid_controls();
report_prefix_pop();
/* Instruction length set to 16 should fail */
ent_intr_len = 0x00000010;
report_prefix_pushf("VM-entry intr length = 0x%x [-]",
ent_intr_len);
vmcs_write(ENT_INST_LEN, 0x00000010);
test_vmx_invalid_controls();
report_prefix_pop();
report_prefix_pop();
}
/* Cleanup */
vmcs_write(ENT_INTR_INFO, ent_intr_info_save);
vmcs_write(ENT_INTR_ERROR, ent_intr_error_save);
vmcs_write(ENT_INST_LEN, ent_inst_len_save);
vmcs_write(CPU_EXEC_CTRL0, primary_save);
vmcs_write(CPU_EXEC_CTRL1, secondary_save);
vmcs_write(GUEST_CR0, guest_cr0_save);
report_prefix_pop();
}
/*
* Test interesting vTPR values for a given TPR threshold.
*/
static void test_vtpr_values(unsigned threshold)
{
try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4);
try_tpr_threshold_and_vtpr(threshold, threshold << 4);
try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4);
}
static void try_tpr_threshold(unsigned threshold)
{
bool valid = true;
u32 primary = vmcs_read(CPU_EXEC_CTRL0);
u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) &&
(secondary & CPU_VINTD)))
valid = !(threshold >> 4);
set_vtpr(-1);
vmcs_write(TPR_THRESHOLD, threshold);
report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold);
if (valid)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
if (valid)
test_vtpr_values(threshold);
}
/*
* Test interesting TPR threshold values.
*/
static void test_tpr_threshold_values(void)
{
unsigned i;
for (i = 0; i < 0x10; i++)
try_tpr_threshold(i);
for (i = 4; i < 32; i++)
try_tpr_threshold(1u << i);
try_tpr_threshold(-1u);
try_tpr_threshold(0x7fffffff);
}
/*
* This test covers the following two VM entry checks:
*
* i) If the "use TPR shadow" VM-execution control is 1 and the
* "virtual-interrupt delivery" VM-execution control is 0, bits
* 31:4 of the TPR threshold VM-execution control field must
be 0.
* [Intel SDM]
*
* ii) If the "use TPR shadow" VM-execution control is 1, the
* "virtual-interrupt delivery" VM-execution control is 0
* and the "virtualize APIC accesses" VM-execution control
* is 0, the value of bits 3:0 of the TPR threshold VM-execution
* control field must not be greater than the value of bits
* 7:4 of VTPR.
* [Intel SDM]
*/
static void test_tpr_threshold(void)
{
u32 primary = vmcs_read(CPU_EXEC_CTRL0);
u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR);
u64 threshold = vmcs_read(TPR_THRESHOLD);
void *virtual_apic_page;
if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW))
return;
virtual_apic_page = alloc_page();
memset(virtual_apic_page, 0xff, PAGE_SIZE);
vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY));
report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW);
report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled");
test_tpr_threshold_values();
report_prefix_pop();
if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
(ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES))))
goto out;
u32 secondary = vmcs_read(CPU_EXEC_CTRL1);
if (ctrl_cpu_rev[1].clr & CPU_VINTD) {
vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD);
report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0,
vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled");
test_tpr_threshold_values();
report_prefix_pop();
}
if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) {
vmcs_write(CPU_EXEC_CTRL0,
vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES);
report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0,
vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
test_tpr_threshold_values();
report_prefix_pop();
}
if ((ctrl_cpu_rev[1].clr &
(CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) ==
(CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) {
vmcs_write(CPU_EXEC_CTRL0,
vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY);
vmcs_write(CPU_EXEC_CTRL1,
CPU_VINTD | CPU_VIRT_APIC_ACCESSES);
report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
test_tpr_threshold_values();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0,
vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY);
report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled");
test_tpr_threshold_values();
report_prefix_pop();
}
vmcs_write(CPU_EXEC_CTRL1, secondary);
out:
vmcs_write(TPR_THRESHOLD, threshold);
vmcs_write(APIC_VIRT_ADDR, apic_virt_addr);
vmcs_write(CPU_EXEC_CTRL0, primary);
}
/*
* This test verifies the following two vmentry checks:
*
* If the "NMI exiting" VM-execution control is 0, "Virtual NMIs"
* VM-execution control must be 0.
* [Intel SDM]
*
* If the "virtual NMIs" VM-execution control is 0, the "NMI-window
* exiting" VM-execution control must be 0.
* [Intel SDM]
*/
static void test_nmi_ctrls(void)
{
u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0;
if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) !=
(PIN_NMI | PIN_VIRT_NMI)) {
report_skip("%s : NMI exiting and/or Virtual NMIs not supported", __func__);
return;
}
/* Save the controls so that we can restore them after our tests */
pin_ctrls = vmcs_read(PIN_CONTROLS);
cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0);
test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI);
test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW;
vmcs_write(PIN_CONTROLS, test_pin_ctrls);
report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI);
report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled");
test_vmx_invalid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI);
report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled");
test_vmx_valid_controls();
report_prefix_pop();
if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
report_info("NMI-window exiting is not supported, skipping...");
goto done;
}
vmcs_write(PIN_CONTROLS, test_pin_ctrls);
vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled");
test_vmx_invalid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, test_pin_ctrls);
vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW);
report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI));
vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0);
report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled");
test_vmx_valid_controls();
report_prefix_pop();
/* Restore the controls to their original values */
vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0);
done:
vmcs_write(PIN_CONTROLS, pin_ctrls);
}
static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid)
{
vmcs_write(EPTP, eptp);
report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s",
(eptp & EPTP_AD_FLAG) ? "1": "0");
if (is_ctrl_valid)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
/*
* 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution"
* control field must satisfy the following checks:
*
* - The EPT memory type (bits 2:0) must be a value supported by the
* processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR.
* - Bits 5:3 (1 less than the EPT page-walk length) must indicate a
* supported EPT page-walk length.
* - Bit 6 (enable bit for accessed and dirty flags for EPT) must be
* 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0,
* indicating that the processor does not support accessed and dirty
* dirty flags for EPT.
* - Reserved bits 11:7 and 63:N (where N is the processor's
* physical-address width) must all be 0.
*
* 2. If the "unrestricted guest" VM-execution control is 1, the
* "enable EPT" VM-execution control must also be 1.
*/
static void test_ept_eptp(void)
{
u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
u64 eptp_saved = vmcs_read(EPTP);
u32 secondary;
u64 eptp;
u32 i, maxphysaddr;
u64 j, resv_bits_mask = 0;
if (__setup_ept(0xfed40000, false)) {
report_skip("%s : EPT not supported", __func__);
return;
}
test_vmx_valid_controls();
setup_dummy_ept();
secondary = vmcs_read(CPU_EXEC_CTRL1);
eptp = vmcs_read(EPTP);
for (i = 0; i < 8; i++) {
eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i;
vmcs_write(EPTP, eptp);
report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu",
eptp & EPT_MEM_TYPE_MASK);
if (is_ept_memtype_supported(i))
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul;
/*
* Page walk length (bits 5:3). Note, the value in VMCS.EPTP "is 1
* less than the EPT page-walk length".
*/
for (i = 0; i < 8; i++) {
eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
(i << EPTP_PG_WALK_LEN_SHIFT);
vmcs_write(EPTP, eptp);
report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu",
eptp & EPTP_PG_WALK_LEN_MASK);
if (i == 3 || (i == 4 && is_5_level_ept_supported()))
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) |
3ul << EPTP_PG_WALK_LEN_SHIFT;
/*
* Accessed and dirty flag (bit 6)
*/
if (ept_ad_bits_supported()) {
report_info("Processor supports accessed and dirty flag");
eptp &= ~EPTP_AD_FLAG;
test_eptp_ad_bit(eptp, true);
eptp |= EPTP_AD_FLAG;
test_eptp_ad_bit(eptp, true);
} else {
report_info("Processor does not supports accessed and dirty flag");
eptp &= ~EPTP_AD_FLAG;
test_eptp_ad_bit(eptp, true);
eptp |= EPTP_AD_FLAG;
test_eptp_ad_bit(eptp, false);
}
/*
* Reserved bits [11:7] and [63:N]
*/
for (i = 0; i < 32; i++) {
eptp = (eptp &
~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) |
(i << EPTP_RESERV_BITS_SHIFT);
vmcs_write(EPTP, eptp);
report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu",
(eptp >> EPTP_RESERV_BITS_SHIFT) &
EPTP_RESERV_BITS_MASK);
if (i == 0)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT));
maxphysaddr = cpuid_maxphyaddr();
for (i = 0; i < (63 - maxphysaddr + 1); i++) {
resv_bits_mask |= 1ul << i;
}
for (j = maxphysaddr - 1; j <= 63; j++) {
eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) |
(j < maxphysaddr ? 0 : 1ul << j);
vmcs_write(EPTP, eptp);
report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu",
(eptp >> maxphysaddr) & resv_bits_mask);
if (j < maxphysaddr)
test_vmx_valid_controls();
else
test_vmx_invalid_controls();
report_prefix_pop();
}
secondary &= ~(CPU_EPT | CPU_URG);
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled");
test_vmx_valid_controls();
report_prefix_pop();
if (!(ctrl_cpu_rev[1].clr & CPU_URG))
goto skip_unrestricted_guest;
secondary |= CPU_URG;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled");
test_vmx_invalid_controls();
report_prefix_pop();
secondary |= CPU_EPT;
setup_dummy_ept();
report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled");
test_vmx_valid_controls();
report_prefix_pop();
skip_unrestricted_guest:
secondary &= ~CPU_URG;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(CPU_EXEC_CTRL0, primary_saved);
vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
vmcs_write(EPTP, eptp_saved);
}
/*
* If the 'enable PML' VM-execution control is 1, the 'enable EPT'
* VM-execution control must also be 1. In addition, the PML address
* must satisfy the following checks:
*
* * Bits 11:0 of the address must be 0.
* * The address should not set any bits beyond the processor's
* physical-address width.
*
* [Intel SDM]
*/
static void test_pml(void)
{
u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0);
u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1);
u32 primary = primary_saved;
u32 secondary = secondary_saved;
if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) &&
(ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) {
report_skip("%s : \"Secondary execution\" or \"enable EPT\" or \"enable PML\" control not supported", __func__);
return;
}
primary |= CPU_SECONDARY;
vmcs_write(CPU_EXEC_CTRL0, primary);
secondary &= ~(CPU_PML | CPU_EPT);
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("enable-PML disabled, enable-EPT disabled");
test_vmx_valid_controls();
report_prefix_pop();
secondary |= CPU_PML;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("enable-PML enabled, enable-EPT disabled");
test_vmx_invalid_controls();
report_prefix_pop();
secondary |= CPU_EPT;
setup_dummy_ept();
report_prefix_pushf("enable-PML enabled, enable-EPT enabled");
test_vmx_valid_controls();
report_prefix_pop();
secondary &= ~CPU_PML;
vmcs_write(CPU_EXEC_CTRL1, secondary);
report_prefix_pushf("enable-PML disabled, enable EPT enabled");
test_vmx_valid_controls();
report_prefix_pop();
test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML",
PAGE_SIZE, false, false);
vmcs_write(CPU_EXEC_CTRL0, primary_saved);
vmcs_write(CPU_EXEC_CTRL1, secondary_saved);
}
/*
* If the "activate VMX-preemption timer" VM-execution control is 0, the
* the "save VMX-preemption timer value" VM-exit control must also be 0.
*
* [Intel SDM]
*/
static void test_vmx_preemption_timer(void)
{
u32 saved_pin = vmcs_read(PIN_CONTROLS);
u32 saved_exit = vmcs_read(EXI_CONTROLS);
u32 pin = saved_pin;
u32 exit = saved_exit;
if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) ||
(ctrl_pin_rev.clr & PIN_PREEMPT))) {
report_skip("%s : \"Save-VMX-preemption-timer\" and/or \"Enable-VMX-preemption-timer\" control not supported", __func__);
return;
}
pin |= PIN_PREEMPT;
vmcs_write(PIN_CONTROLS, pin);
exit &= ~EXI_SAVE_PREEMPT;
vmcs_write(EXI_CONTROLS, exit);
report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled");
test_vmx_valid_controls();
report_prefix_pop();
exit |= EXI_SAVE_PREEMPT;
vmcs_write(EXI_CONTROLS, exit);
report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled");
test_vmx_valid_controls();
report_prefix_pop();
pin &= ~PIN_PREEMPT;
vmcs_write(PIN_CONTROLS, pin);
report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled");
test_vmx_invalid_controls();
report_prefix_pop();
exit &= ~EXI_SAVE_PREEMPT;
vmcs_write(EXI_CONTROLS, exit);
report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled");
test_vmx_valid_controls();
report_prefix_pop();
vmcs_write(PIN_CONTROLS, saved_pin);
vmcs_write(EXI_CONTROLS, saved_exit);
}
extern unsigned char test_mtf1;
extern unsigned char test_mtf2;
extern unsigned char test_mtf3;
extern unsigned char test_mtf4;
static void test_mtf_guest(void)
{
asm ("vmcall;\n\t"
"out %al, $0x80;\n\t"
"test_mtf1:\n\t"
"vmcall;\n\t"
"out %al, $0x80;\n\t"
"test_mtf2:\n\t"
/*
* Prepare for the 'MOV CR3' test. Attempt to induce a
* general-protection fault by moving a non-canonical address into
* CR3. The 'MOV CR3' instruction does not take an imm64 operand,
* so we must MOV the desired value into a register first.
*
* MOV RAX is done before the VMCALL such that MTF is only enabled
* for the instruction under test.
*/
"mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t"
"vmcall;\n\t"
"mov %rax, %cr3;\n\t"
"test_mtf3:\n\t"
"vmcall;\n\t"
/*
* ICEBP/INT1 instruction. Though the instruction is now
* documented, don't rely on assemblers enumerating the
* instruction. Resort to hand assembly.
*/
".byte 0xf1;\n\t"
"vmcall;\n\t"
"test_mtf4:\n\t"
"mov $0, %eax;\n\t");
}
static void test_mtf_gp_handler(struct ex_regs *regs)
{
regs->rip = (unsigned long) &test_mtf3;
}
static void test_mtf_db_handler(struct ex_regs *regs)
{
}
static void enable_mtf(void)
{
u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF);
}
static void disable_mtf(void)
{
u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF);
}
static void enable_tf(void)
{
unsigned long rflags = vmcs_read(GUEST_RFLAGS);
vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF);
}
static void disable_tf(void)
{
unsigned long rflags = vmcs_read(GUEST_RFLAGS);
vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF);
}
static void report_mtf(const char *insn_name, unsigned long exp_rip)
{
unsigned long rip = vmcs_read(GUEST_RIP);
assert_exit_reason(VMX_MTF);
report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)",
insn_name, rip, exp_rip);
}
static void vmx_mtf_test(void)
{
unsigned long pending_dbg;
handler old_gp, old_db;
if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__);
return;
}
test_set_guest(test_mtf_guest);
/* Expect an MTF VM-exit after OUT instruction */
enter_guest();
skip_exit_vmcall();
enable_mtf();
enter_guest();
report_mtf("OUT", (unsigned long) &test_mtf1);
disable_mtf();
/*
* Concurrent #DB trap and MTF on instruction boundary. Expect MTF
* VM-exit with populated 'pending debug exceptions' VMCS field.
*/
enter_guest();
skip_exit_vmcall();
enable_mtf();
enable_tf();
enter_guest();
report_mtf("OUT", (unsigned long) &test_mtf2);
pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
report(pending_dbg & DR6_BS,
"'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)",
pending_dbg, (unsigned long) DR6_BS);
disable_mtf();
disable_tf();
vmcs_write(GUEST_PENDING_DEBUG, 0);
/*
* #GP exception takes priority over MTF. Expect MTF VM-exit with RIP
* advanced to first instruction of #GP handler.
*/
enter_guest();
skip_exit_vmcall();
old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler);
enable_mtf();
enter_guest();
report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR]));
disable_mtf();
/*
* Concurrent MTF and privileged software exception (i.e. ICEBP/INT1).
* MTF should follow the delivery of #DB trap, though the SDM doesn't
* provide clear indication of the relative priority.
*/
enter_guest();
skip_exit_vmcall();
handle_exception(GP_VECTOR, old_gp);
old_db = handle_exception(DB_VECTOR, test_mtf_db_handler);
enable_mtf();
enter_guest();
report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR]));
disable_mtf();
enter_guest();
skip_exit_vmcall();
handle_exception(DB_VECTOR, old_db);
vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT);
enter_guest();
report_mtf("injected MTF", (unsigned long) &test_mtf4);
enter_guest();
}
extern char vmx_mtf_pdpte_guest_begin;
extern char vmx_mtf_pdpte_guest_end;
asm("vmx_mtf_pdpte_guest_begin:\n\t"
"mov %cr0, %rax\n\t" /* save CR0 with PG=1 */
"vmcall\n\t" /* on return from this CR0.PG=0 */
"mov %rax, %cr0\n\t" /* restore CR0.PG=1 to enter PAE mode */
"vmcall\n\t"
"retq\n\t"
"vmx_mtf_pdpte_guest_end:");
static void vmx_mtf_pdpte_test(void)
{
void *test_mtf_pdpte_guest;
pteval_t *pdpt;
u32 guest_ar_cs;
u64 guest_efer;
pteval_t *pte;
u64 guest_cr0;
u64 guest_cr3;
u64 guest_cr4;
u64 ent_ctls;
int i;
if (setup_ept(false))
return;
if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) {
report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__);
return;
}
if (!(ctrl_cpu_rev[1].clr & CPU_URG)) {
report_skip("%s : \"Unrestricted guest\" exec control not supported", __func__);
return;
}
vmcs_write(EXC_BITMAP, ~0);
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG);
/*
* Copy the guest code to an identity-mapped page.
*/
test_mtf_pdpte_guest = alloc_page();
memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin,
&vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin);
test_set_guest(test_mtf_pdpte_guest);
enter_guest();
skip_exit_vmcall();
/*
* Put the guest in non-paged 32-bit protected mode, ready to enter
* PAE mode when CR0.PG is set. CR4.PAE will already have been set
* when the guest started out in long mode.
*/
ent_ctls = vmcs_read(ENT_CONTROLS);
vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64);
guest_efer = vmcs_read(GUEST_EFER);
vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME));
/*
* Set CS access rights bits for 32-bit protected mode:
* 3:0 B execute/read/accessed
* 4 1 code or data
* 6:5 0 descriptor privilege level
* 7 1 present
* 11:8 0 reserved
* 12 0 available for use by system software
* 13 0 64 bit mode not active
* 14 1 default operation size 32-bit segment
* 15 1 page granularity: segment limit in 4K units
* 16 0 segment usable
* 31:17 0 reserved
*/
guest_ar_cs = vmcs_read(GUEST_AR_CS);
vmcs_write(GUEST_AR_CS, 0xc09b);
guest_cr0 = vmcs_read(GUEST_CR0);
vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG);
guest_cr4 = vmcs_read(GUEST_CR4);
vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE);
guest_cr3 = vmcs_read(GUEST_CR3);
/*
* Turn the 4-level page table into a PAE page table by following the 0th
* PML4 entry to a PDPT page, and grab the first four PDPTEs from that
* page.
*
* Why does this work?
*
* PAE uses 32-bit addressing which implies:
* Bits 11:0 page offset
* Bits 20:12 entry into 512-entry page table
* Bits 29:21 entry into a 512-entry directory table
* Bits 31:30 entry into the page directory pointer table.
* Bits 63:32 zero
*
* As only 2 bits are needed to select the PDPTEs for the entire
* 32-bit address space, take the first 4 PDPTEs in the level 3 page
* directory pointer table. It doesn't matter which of these PDPTEs
* are present because they must cover the guest code given that it
* has already run successfully.
*
* Get a pointer to PTE for GVA=0 in the page directory pointer table
*/
pte = get_pte_level(
(pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0,
PDPT_LEVEL);
/*
* Need some memory for the 4-entry PAE page directory pointer
* table. Use the end of the identity-mapped page where the guest code
* is stored. There is definitely space as the guest code is only a
* few bytes.
*/
pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t);
/*
* Copy the first four PDPTEs into the PAE page table with reserved
* bits cleared. Note that permission bits from the PML4E and PDPTE
* are not propagated.
*/
for (i = 0; i < 4; i++) {
TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK),
"PDPTE has invalid reserved bits");
TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK),
"Cannot use 1GB super pages for PAE");
pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK);
}
vmcs_write(GUEST_CR3, virt_to_phys(pdpt));
enable_mtf();
enter_guest();
assert_exit_reason(VMX_MTF);
disable_mtf();
/*
* The four PDPTEs should have been loaded into the VMCS when
* the guest set CR0.PG to enter PAE mode.
*/
for (i = 0; i < 4; i++) {
u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i);
report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)",
i, pdpte, pdpt[i]);
}
/*
* Now, try to enter the guest in PAE mode. If the PDPTEs in the
* vmcs are wrong, this will fail.
*/
enter_guest();
skip_exit_vmcall();
/*
* Return guest to 64-bit mode and wrap up.
*/
vmcs_write(ENT_CONTROLS, ent_ctls);
vmcs_write(GUEST_EFER, guest_efer);
vmcs_write(GUEST_AR_CS, guest_ar_cs);
vmcs_write(GUEST_CR0, guest_cr0);
vmcs_write(GUEST_CR4, guest_cr4);
vmcs_write(GUEST_CR3, guest_cr3);
enter_guest();
}
/*
* Tests for VM-execution control fields
*/
static void test_vm_execution_ctls(void)
{
test_pin_based_ctls();
test_primary_processor_based_ctls();
test_secondary_processor_based_ctls();
test_cr3_targets();
test_io_bitmaps();
test_msr_bitmap();
test_apic_ctls();
test_tpr_threshold();
test_nmi_ctrls();
test_pml();
test_vpid();
test_ept_eptp();
test_vmx_preemption_timer();
}
/*
* The following checks are performed for the VM-entry MSR-load address if
* the VM-entry MSR-load count field is non-zero:
*
* - The lower 4 bits of the VM-entry MSR-load address must be 0.
* The address should not set any bits beyond the processor's
* physical-address width.
*
* - The address of the last byte in the VM-entry MSR-load area
* should not set any bits beyond the processor's physical-address
* width. The address of this last byte is VM-entry MSR-load address
* + (MSR count * 16) - 1. (The arithmetic used for the computation
* uses more bits than the processor's physical-address width.)
*
*
* [Intel SDM]
*/
static void test_entry_msr_load(void)
{
entry_msr_load = alloc_page();
u64 tmp;
u32 entry_msr_ld_cnt = 1;
int i;
u32 addr_len = 64;
vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt);
/* Check first 4 bits of VM-entry MSR-load address */
for (i = 0; i < 4; i++) {
tmp = (u64)entry_msr_load | 1ull << i;
vmcs_write(ENTER_MSR_LD_ADDR, tmp);
report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx",
tmp & 0xf);
test_vmx_invalid_controls();
report_prefix_pop();
}
if (basic.val & (1ul << 48))
addr_len = 32;
test_vmcs_addr_values("VM-entry-MSR-load address",
ENTER_MSR_LD_ADDR, 16, false, false,
4, addr_len - 1);
/*
* Check last byte of VM-entry MSR-load address
*/
entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf);
for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
i < 64; i++) {
tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) |
1ul << i;
vmcs_write(ENTER_MSR_LD_ADDR,
tmp - (entry_msr_ld_cnt * 16 - 1));
test_vmx_invalid_controls();
}
vmcs_write(ENT_MSR_LD_CNT, 2);
vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
test_vmx_invalid_controls();
vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
test_vmx_valid_controls();
vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
test_vmx_valid_controls();
}
static struct vmx_state_area_test_data {
u32 msr;
u64 exp;
bool enabled;
} vmx_state_area_test_data;
static void guest_state_test_main(void)
{
u64 obs;
struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
while (1) {
if (vmx_get_test_stage() == 2)
break;
if (data->enabled) {
obs = rdmsr(data->msr);
report(data->exp == obs,
"Guest state is 0x%lx (expected 0x%lx)",
obs, data->exp);
}
vmcall();
}
asm volatile("fnop");
}
static void test_guest_state(const char *test, bool xfail, u64 field,
const char * field_name)
{
struct vmentry_result result;
u8 abort_flags;
abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL;
if (!xfail)
abort_flags = ABORT_ON_INVALID_GUEST_STATE;
__enter_guest(abort_flags, &result);
report(result.exit_reason.failed_vmentry == xfail &&
((xfail && result.exit_reason.basic == VMX_FAIL_STATE) ||
(!xfail && result.exit_reason.basic == VMX_VMCALL)) &&
(!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT),
"%s, %s = %lx", test, field_name, field);
if (!result.exit_reason.failed_vmentry)
skip_exit_insn();
}
/*
* Tests for VM-entry control fields
*/
static void test_vm_entry_ctls(void)
{
test_invalid_event_injection();
test_entry_msr_load();
}
/*
* The following checks are performed for the VM-exit MSR-store address if
* the VM-exit MSR-store count field is non-zero:
*
* - The lower 4 bits of the VM-exit MSR-store address must be 0.
* The address should not set any bits beyond the processor's
* physical-address width.
*
* - The address of the last byte in the VM-exit MSR-store area
* should not set any bits beyond the processor's physical-address
* width. The address of this last byte is VM-exit MSR-store address
* + (MSR count * 16) - 1. (The arithmetic used for the computation
* uses more bits than the processor's physical-address width.)
*
* If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits
* in the range 63:32.
*
* [Intel SDM]
*/
static void test_exit_msr_store(void)
{
exit_msr_store = alloc_page();
u64 tmp;
u32 exit_msr_st_cnt = 1;
int i;
u32 addr_len = 64;
vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt);
/* Check first 4 bits of VM-exit MSR-store address */
for (i = 0; i < 4; i++) {
tmp = (u64)exit_msr_store | 1ull << i;
vmcs_write(EXIT_MSR_ST_ADDR, tmp);
report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx",
tmp & 0xf);
test_vmx_invalid_controls();
report_prefix_pop();
}
if (basic.val & (1ul << 48))
addr_len = 32;
test_vmcs_addr_values("VM-exit-MSR-store address",
EXIT_MSR_ST_ADDR, 16, false, false,
4, addr_len - 1);
/*
* Check last byte of VM-exit MSR-store address
*/
exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf);
for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len);
i < 64; i++) {
tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) |
1ul << i;
vmcs_write(EXIT_MSR_ST_ADDR,
tmp - (exit_msr_st_cnt * 16 - 1));
test_vmx_invalid_controls();
}
vmcs_write(EXI_MSR_ST_CNT, 2);
vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16);
test_vmx_invalid_controls();
vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32);
test_vmx_valid_controls();
vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48);
test_vmx_valid_controls();
}
/*
* Tests for VM-exit controls
*/
static void test_vm_exit_ctls(void)
{
test_exit_msr_store();
}
/*
* Check that the virtual CPU checks all of the VMX controls as
* documented in the Intel SDM.
*/
static void vmx_controls_test(void)
{
/*
* Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
* fail due to invalid guest state, should we make it that
* far.
*/
vmcs_write(GUEST_RFLAGS, 0);
test_vm_execution_ctls();
test_vm_exit_ctls();
test_vm_entry_ctls();
}
struct apic_reg_virt_config {
bool apic_register_virtualization;
bool use_tpr_shadow;
bool virtualize_apic_accesses;
bool virtualize_x2apic_mode;
bool activate_secondary_controls;
};
struct apic_reg_test {
const char *name;
struct apic_reg_virt_config apic_reg_virt_config;
};
struct apic_reg_virt_expectation {
enum Reason rd_exit_reason;
enum Reason wr_exit_reason;
u32 val;
u32 (*virt_fn)(u32);
/*
* If false, accessing the APIC access address from L2 is treated as a
* normal memory operation, rather than triggering virtualization.
*/
bool virtualize_apic_accesses;
};
static u32 apic_virt_identity(u32 val)
{
return val;
}
static u32 apic_virt_nibble1(u32 val)
{
return val & 0xf0;
}
static u32 apic_virt_byte3(u32 val)
{
return val & (0xff << 24);
}
static bool apic_reg_virt_exit_expectation(
u32 reg, struct apic_reg_virt_config *config,
struct apic_reg_virt_expectation *expectation)
{
/* Good configs, where some L2 APIC accesses are virtualized. */
bool virtualize_apic_accesses_only =
config->virtualize_apic_accesses &&
!config->use_tpr_shadow &&
!config->apic_register_virtualization &&
!config->virtualize_x2apic_mode &&
config->activate_secondary_controls;
bool virtualize_apic_accesses_and_use_tpr_shadow =
config->virtualize_apic_accesses &&
config->use_tpr_shadow &&
!config->apic_register_virtualization &&
!config->virtualize_x2apic_mode &&
config->activate_secondary_controls;
bool apic_register_virtualization =
config->virtualize_apic_accesses &&
config->use_tpr_shadow &&
config->apic_register_virtualization &&
!config->virtualize_x2apic_mode &&
config->activate_secondary_controls;
expectation->val = MAGIC_VAL_1;
expectation->virt_fn = apic_virt_identity;
expectation->virtualize_apic_accesses =
config->virtualize_apic_accesses &&
config->activate_secondary_controls;
if (virtualize_apic_accesses_only) {
expectation->rd_exit_reason = VMX_APIC_ACCESS;
expectation->wr_exit_reason = VMX_APIC_ACCESS;
} else if (virtualize_apic_accesses_and_use_tpr_shadow) {
switch (reg) {
case APIC_TASKPRI:
expectation->rd_exit_reason = VMX_VMCALL;
expectation->wr_exit_reason = VMX_VMCALL;
expectation->virt_fn = apic_virt_nibble1;
break;
default:
expectation->rd_exit_reason = VMX_APIC_ACCESS;
expectation->wr_exit_reason = VMX_APIC_ACCESS;
}
} else if (apic_register_virtualization) {
expectation->rd_exit_reason = VMX_VMCALL;
switch (reg) {
case APIC_ID:
case APIC_EOI:
case APIC_LDR:
case APIC_DFR:
case APIC_SPIV:
case APIC_ESR:
case APIC_ICR:
case APIC_LVTT:
case APIC_LVTTHMR:
case APIC_LVTPC:
case APIC_LVT0:
case APIC_LVT1:
case APIC_LVTERR:
case APIC_TMICT:
case APIC_TDCR:
expectation->wr_exit_reason = VMX_APIC_WRITE;
break;
case APIC_LVR:
case APIC_ISR ... APIC_ISR + 0x70:
case APIC_TMR ... APIC_TMR + 0x70:
case APIC_IRR ... APIC_IRR + 0x70:
expectation->wr_exit_reason = VMX_APIC_ACCESS;
break;
case APIC_TASKPRI:
expectation->wr_exit_reason = VMX_VMCALL;
expectation->virt_fn = apic_virt_nibble1;
break;
case APIC_ICR2:
expectation->wr_exit_reason = VMX_VMCALL;
expectation->virt_fn = apic_virt_byte3;
break;
default:
expectation->rd_exit_reason = VMX_APIC_ACCESS;
expectation->wr_exit_reason = VMX_APIC_ACCESS;
}
} else if (!expectation->virtualize_apic_accesses) {
/*
* No APIC registers are directly virtualized. This includes
* VTPR, which can be virtualized through MOV to/from CR8 via
* the use TPR shadow control, but not through directly
* accessing VTPR.
*/
expectation->rd_exit_reason = VMX_VMCALL;
expectation->wr_exit_reason = VMX_VMCALL;
} else {
printf("Cannot parse APIC register virtualization config:\n"
"\tvirtualize_apic_accesses: %d\n"
"\tuse_tpr_shadow: %d\n"
"\tapic_register_virtualization: %d\n"
"\tvirtualize_x2apic_mode: %d\n"
"\tactivate_secondary_controls: %d\n",
config->virtualize_apic_accesses,
config->use_tpr_shadow,
config->apic_register_virtualization,
config->virtualize_x2apic_mode,
config->activate_secondary_controls);
return false;
}
return true;
}
struct apic_reg_test apic_reg_tests[] = {
/* Good configs, where some L2 APIC accesses are virtualized. */
{
.name = "Virtualize APIC accesses",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = false,
.apic_register_virtualization = false,
.virtualize_x2apic_mode = false,
.activate_secondary_controls = true,
},
},
{
.name = "Virtualize APIC accesses + Use TPR shadow",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = true,
.apic_register_virtualization = false,
.virtualize_x2apic_mode = false,
.activate_secondary_controls = true,
},
},
{
.name = "APIC-register virtualization",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = true,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = false,
.activate_secondary_controls = true,
},
},
/*
* Test that the secondary processor-based VM-execution controls are
* correctly ignored when "activate secondary controls" is disabled.
*/
{
.name = "Activate secondary controls off",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = false,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = false,
},
},
{
.name = "Activate secondary controls off + Use TPR shadow",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = true,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = false,
},
},
/*
* Test that the APIC access address is treated like an arbitrary memory
* address when "virtualize APIC accesses" is disabled.
*/
{
.name = "Virtualize APIC accesses off + Use TPR shadow",
.apic_reg_virt_config = {
.virtualize_apic_accesses = false,
.use_tpr_shadow = true,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
/*
* Test that VM entry fails due to invalid controls when
* "APIC-register virtualization" is enabled while "use TPR shadow" is
* disabled.
*/
{
.name = "APIC-register virtualization + Use TPR shadow off",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = false,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = false,
.activate_secondary_controls = true,
},
},
/*
* Test that VM entry fails due to invalid controls when
* "Virtualize x2APIC mode" is enabled while "use TPR shadow" is
* disabled.
*/
{
.name = "Virtualize x2APIC mode + Use TPR shadow off",
.apic_reg_virt_config = {
.virtualize_apic_accesses = false,
.use_tpr_shadow = false,
.apic_register_virtualization = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
{
.name = "Virtualize x2APIC mode + Use TPR shadow off v2",
.apic_reg_virt_config = {
.virtualize_apic_accesses = false,
.use_tpr_shadow = false,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
/*
* Test that VM entry fails due to invalid controls when
* "virtualize x2APIC mode" is enabled while "virtualize APIC accesses"
* is enabled.
*/
{
.name = "Virtualize x2APIC mode + Virtualize APIC accesses",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = true,
.apic_register_virtualization = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
{
.name = "Virtualize x2APIC mode + Virtualize APIC accesses v2",
.apic_reg_virt_config = {
.virtualize_apic_accesses = true,
.use_tpr_shadow = true,
.apic_register_virtualization = true,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
};
enum Apic_op {
APIC_OP_XAPIC_RD,
APIC_OP_XAPIC_WR,
TERMINATE,
};
static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg)
{
return *(volatile u32 *)((uintptr_t)apic_access_address + reg);
}
static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val)
{
*(volatile u32 *)((uintptr_t)apic_access_address + reg) = val;
}
struct apic_reg_virt_guest_args {
enum Apic_op op;
u32 *apic_access_address;
u32 reg;
u32 val;
bool check_rd;
u32 (*virt_fn)(u32);
} apic_reg_virt_guest_args;
static void apic_reg_virt_guest(void)
{
volatile struct apic_reg_virt_guest_args *args =
&apic_reg_virt_guest_args;
for (;;) {
enum Apic_op op = args->op;
u32 *apic_access_address = args->apic_access_address;
u32 reg = args->reg;
u32 val = args->val;
bool check_rd = args->check_rd;
u32 (*virt_fn)(u32) = args->virt_fn;
if (op == TERMINATE)
break;
if (op == APIC_OP_XAPIC_RD) {
u32 ret = vmx_xapic_read(apic_access_address, reg);
if (check_rd) {
u32 want = virt_fn(val);
u32 got = virt_fn(ret);
report(got == want,
"read 0x%x, expected 0x%x.", got, want);
}
} else if (op == APIC_OP_XAPIC_WR) {
vmx_xapic_write(apic_access_address, reg, val);
}
/*
* The L1 should always execute a vmcall after it's done testing
* an individual APIC operation. This helps to validate that the
* L1 and L2 are in sync with each other, as expected.
*/
vmcall();
}
}
static void test_xapic_rd(
u32 reg, struct apic_reg_virt_expectation *expectation,
u32 *apic_access_address, u32 *virtual_apic_page)
{
u32 val = expectation->val;
u32 exit_reason_want = expectation->rd_exit_reason;
struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
report_prefix_pushf("xapic - reading 0x%03x", reg);
/* Configure guest to do an xapic read */
args->op = APIC_OP_XAPIC_RD;
args->apic_access_address = apic_access_address;
args->reg = reg;
args->val = val;
args->check_rd = exit_reason_want == VMX_VMCALL;
args->virt_fn = expectation->virt_fn;
/* Setup virtual APIC page */
if (!expectation->virtualize_apic_accesses) {
apic_access_address[apic_reg_index(reg)] = val;
virtual_apic_page[apic_reg_index(reg)] = 0;
} else if (exit_reason_want == VMX_VMCALL) {
apic_access_address[apic_reg_index(reg)] = 0;
virtual_apic_page[apic_reg_index(reg)] = val;
}
/* Enter guest */
enter_guest();
/*
* Validate the behavior and
* pass a magic value back to the guest.
*/
if (exit_reason_want == VMX_APIC_ACCESS) {
u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
assert_exit_reason(exit_reason_want);
report(apic_page_offset == reg,
"got APIC access exit @ page offset 0x%03x, want 0x%03x",
apic_page_offset, reg);
skip_exit_insn();
/* Reenter guest so it can consume/check rcx and exit again. */
enter_guest();
} else if (exit_reason_want != VMX_VMCALL) {
report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
}
skip_exit_vmcall();
report_prefix_pop();
}
static void test_xapic_wr(
u32 reg, struct apic_reg_virt_expectation *expectation,
u32 *apic_access_address, u32 *virtual_apic_page)
{
u32 val = expectation->val;
u32 exit_reason_want = expectation->wr_exit_reason;
struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
bool virtualized =
expectation->virtualize_apic_accesses &&
(exit_reason_want == VMX_APIC_WRITE ||
exit_reason_want == VMX_VMCALL);
bool checked = false;
report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg);
/* Configure guest to do an xapic read */
args->op = APIC_OP_XAPIC_WR;
args->apic_access_address = apic_access_address;
args->reg = reg;
args->val = val;
/* Setup virtual APIC page */
if (virtualized || !expectation->virtualize_apic_accesses) {
apic_access_address[apic_reg_index(reg)] = 0;
virtual_apic_page[apic_reg_index(reg)] = 0;
}
/* Enter guest */
enter_guest();
/*
* Validate the behavior and
* pass a magic value back to the guest.
*/
if (exit_reason_want == VMX_APIC_ACCESS) {
u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff;
assert_exit_reason(exit_reason_want);
report(apic_page_offset == reg,
"got APIC access exit @ page offset 0x%03x, want 0x%03x",
apic_page_offset, reg);
skip_exit_insn();
/* Reenter guest so it can consume/check rcx and exit again. */
enter_guest();
} else if (exit_reason_want == VMX_APIC_WRITE) {
assert_exit_reason(exit_reason_want);
report(virtual_apic_page[apic_reg_index(reg)] == val,
"got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x",
apic_reg_index(reg),
virtual_apic_page[apic_reg_index(reg)], val);
checked = true;
/* Reenter guest so it can consume/check rcx and exit again. */
enter_guest();
} else if (exit_reason_want != VMX_VMCALL) {
report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
}
assert_exit_reason(VMX_VMCALL);
if (virtualized && !checked) {
u32 want = expectation->virt_fn(val);
u32 got = virtual_apic_page[apic_reg_index(reg)];
got = expectation->virt_fn(got);
report(got == want, "exitless write; val is 0x%x, want 0x%x",
got, want);
} else if (!expectation->virtualize_apic_accesses && !checked) {
u32 got = apic_access_address[apic_reg_index(reg)];
report(got == val,
"non-virtualized write; val is 0x%x, want 0x%x", got,
val);
} else if (!expectation->virtualize_apic_accesses && checked) {
report_fail("Non-virtualized write was prematurely checked!");
}
skip_exit_vmcall();
report_prefix_pop();
}
enum Config_type {
CONFIG_TYPE_GOOD,
CONFIG_TYPE_UNSUPPORTED,
CONFIG_TYPE_VMENTRY_FAILS_EARLY,
};
static enum Config_type configure_apic_reg_virt_test(
struct apic_reg_virt_config *apic_reg_virt_config)
{
u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
/* Configs where L2 entry fails early, due to invalid controls. */
bool use_tpr_shadow_incorrectly_off =
!apic_reg_virt_config->use_tpr_shadow &&
(apic_reg_virt_config->apic_register_virtualization ||
apic_reg_virt_config->virtualize_x2apic_mode) &&
apic_reg_virt_config->activate_secondary_controls;
bool virtualize_apic_accesses_incorrectly_on =
apic_reg_virt_config->virtualize_apic_accesses &&
apic_reg_virt_config->virtualize_x2apic_mode &&
apic_reg_virt_config->activate_secondary_controls;
bool vmentry_fails_early =
use_tpr_shadow_incorrectly_off ||
virtualize_apic_accesses_incorrectly_on;
if (apic_reg_virt_config->activate_secondary_controls) {
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
printf("VM-execution control \"activate secondary controls\" NOT supported.\n");
return CONFIG_TYPE_UNSUPPORTED;
}
cpu_exec_ctrl0 |= CPU_SECONDARY;
} else {
cpu_exec_ctrl0 &= ~CPU_SECONDARY;
}
if (apic_reg_virt_config->virtualize_apic_accesses) {
if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) {
printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n");
return CONFIG_TYPE_UNSUPPORTED;
}
cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES;
} else {
cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES;
}
if (apic_reg_virt_config->use_tpr_shadow) {
if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
printf("VM-execution control \"use TPR shadow\" NOT supported.\n");
return CONFIG_TYPE_UNSUPPORTED;
}
cpu_exec_ctrl0 |= CPU_TPR_SHADOW;
} else {
cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW;
}
if (apic_reg_virt_config->apic_register_virtualization) {
if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) {
printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n");
return CONFIG_TYPE_UNSUPPORTED;
}
cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT;
} else {
cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT;
}
if (apic_reg_virt_config->virtualize_x2apic_mode) {
if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) {
printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n");
return CONFIG_TYPE_UNSUPPORTED;
}
cpu_exec_ctrl1 |= CPU_VIRT_X2APIC;
} else {
cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC;
}
vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
if (vmentry_fails_early)
return CONFIG_TYPE_VMENTRY_FAILS_EARLY;
return CONFIG_TYPE_GOOD;
}
static bool cpu_has_apicv(void)
{
return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) &&
(ctrl_cpu_rev[1].clr & CPU_VINTD) &&
(ctrl_pin_rev.clr & PIN_POST_INTR));
}
/* Validates APIC register access across valid virtualization configurations. */
static void apic_reg_virt_test(void)
{
u32 *apic_access_address;
u32 *virtual_apic_page;
u64 control;
u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
int i;
struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args;
if (!cpu_has_apicv()) {
report_skip("%s : Not all required APICv bits supported", __func__);
return;
}
control = cpu_exec_ctrl1;
control &= ~CPU_VINTD;
vmcs_write(CPU_EXEC_CTRL1, control);
test_set_guest(apic_reg_virt_guest);
/*
* From the SDM: The 1-setting of the "virtualize APIC accesses"
* VM-execution is guaranteed to apply only if translations to the
* APIC-access address use a 4-KByte page.
*/
apic_access_address = alloc_page();
force_4k_page(apic_access_address);
vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address));
virtual_apic_page = alloc_page();
vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) {
struct apic_reg_test *apic_reg_test = &apic_reg_tests[i];
struct apic_reg_virt_config *apic_reg_virt_config =
&apic_reg_test->apic_reg_virt_config;
enum Config_type config_type;
u32 reg;
printf("--- %s test ---\n", apic_reg_test->name);
config_type =
configure_apic_reg_virt_test(apic_reg_virt_config);
if (config_type == CONFIG_TYPE_UNSUPPORTED) {
printf("Skip because of missing features.\n");
continue;
}
if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
enter_guest_with_bad_controls();
continue;
}
for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
struct apic_reg_virt_expectation expectation = {};
bool ok;
ok = apic_reg_virt_exit_expectation(
reg, apic_reg_virt_config, &expectation);
if (!ok) {
report_fail("Malformed test.");
break;
}
test_xapic_rd(reg, &expectation, apic_access_address,
virtual_apic_page);
test_xapic_wr(reg, &expectation, apic_access_address,
virtual_apic_page);
}
}
/* Terminate the guest */
vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
args->op = TERMINATE;
enter_guest();
assert_exit_reason(VMX_VMCALL);
}
struct virt_x2apic_mode_config {
struct apic_reg_virt_config apic_reg_virt_config;
bool virtual_interrupt_delivery;
bool use_msr_bitmaps;
bool disable_x2apic_msr_intercepts;
bool disable_x2apic;
};
struct virt_x2apic_mode_test_case {
const char *name;
struct virt_x2apic_mode_config virt_x2apic_mode_config;
};
enum Virt_x2apic_mode_behavior_type {
X2APIC_ACCESS_VIRTUALIZED,
X2APIC_ACCESS_PASSED_THROUGH,
X2APIC_ACCESS_TRIGGERS_GP,
};
struct virt_x2apic_mode_expectation {
enum Reason rd_exit_reason;
enum Reason wr_exit_reason;
/*
* RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of
* the x2APIC registers are 32 bits. Notice:
* 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers.
* 2. vmx_x2apic_write() expects the val arg to be well-formed.
*/
u64 rd_val;
u64 wr_val;
/*
* Compares input to virtualized output;
* 1st arg is pointer to return expected virtualization output.
*/
u64 (*virt_fn)(u64);
enum Virt_x2apic_mode_behavior_type rd_behavior;
enum Virt_x2apic_mode_behavior_type wr_behavior;
bool wr_only;
};
static u64 virt_x2apic_mode_identity(u64 val)
{
return val;
}
static u64 virt_x2apic_mode_nibble1(u64 val)
{
return val & 0xf0;
}
static void virt_x2apic_mode_rd_expectation(
u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
bool apic_register_virtualization, bool virtual_interrupt_delivery,
struct virt_x2apic_mode_expectation *expectation)
{
enum x2apic_reg_semantics semantics = get_x2apic_reg_semantics(reg);
expectation->rd_exit_reason = VMX_VMCALL;
expectation->virt_fn = virt_x2apic_mode_identity;
if (virt_x2apic_mode_on && apic_register_virtualization) {
expectation->rd_val = MAGIC_VAL_1;
if (reg == APIC_PROCPRI && virtual_interrupt_delivery)
expectation->virt_fn = virt_x2apic_mode_nibble1;
else if (reg == APIC_TASKPRI)
expectation->virt_fn = virt_x2apic_mode_nibble1;
expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
} else if (virt_x2apic_mode_on && !apic_register_virtualization &&
reg == APIC_TASKPRI) {
expectation->rd_val = MAGIC_VAL_1;
expectation->virt_fn = virt_x2apic_mode_nibble1;
expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED;
} else if (!disable_x2apic && (semantics & X2APIC_READABLE)) {
expectation->rd_val = apic_read(reg);
expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH;
} else {
expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP;
}
}
/*
* get_x2apic_wr_val() creates an innocuous write value for an x2APIC register.
*
* For writable registers, get_x2apic_wr_val() deposits the write value into the
* val pointer arg and returns true. For non-writable registers, val is not
* modified and get_x2apic_wr_val() returns false.
*/
static bool get_x2apic_wr_val(u32 reg, u64 *val)
{
switch (reg) {
case APIC_TASKPRI:
/* Bits 31:8 are reserved. */
*val &= 0xff;
break;
case APIC_EOI:
case APIC_ESR:
case APIC_TMICT:
/*
* EOI, ESR: WRMSR of a non-zero value causes #GP(0).
* TMICT: A write of 0 to the initial-count register effectively
* stops the local APIC timer, in both one-shot and
* periodic mode.
*/
*val = 0;
break;
case APIC_SPIV:
case APIC_LVTT:
case APIC_LVTTHMR:
case APIC_LVTPC:
case APIC_LVT0:
case APIC_LVT1:
case APIC_LVTERR:
case APIC_TDCR:
/*
* To avoid writing a 1 to a reserved bit or causing some other
* unintended side effect, read the current value and use it as
* the write value.
*/
*val = apic_read(reg);
break;
case APIC_CMCI:
if (!apic_lvt_entry_supported(6))
return false;
*val = apic_read(reg);
break;
case APIC_ICR:
*val = 0x40000 | 0xf1;
break;
case APIC_SELF_IPI:
/*
* With special processing (i.e., virtualize x2APIC mode +
* virtual interrupt delivery), writing zero causes an
* APIC-write VM exit. We plan to add a test for enabling
* "virtual-interrupt delivery" in VMCS12, and that's where we
* will test a self IPI with special processing.
*/
*val = 0x0;
break;
default:
return false;
}
return true;
}
static bool special_processing_applies(u32 reg, u64 *val,
bool virt_int_delivery)
{
bool special_processing =
(reg == APIC_TASKPRI) ||
(virt_int_delivery &&
(reg == APIC_EOI || reg == APIC_SELF_IPI));
if (special_processing) {
TEST_ASSERT(get_x2apic_wr_val(reg, val));
return true;
}
return false;
}
static void virt_x2apic_mode_wr_expectation(
u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic,
bool virt_int_delivery,
struct virt_x2apic_mode_expectation *expectation)
{
expectation->wr_exit_reason = VMX_VMCALL;
expectation->wr_val = MAGIC_VAL_1;
expectation->wr_only = false;
if (virt_x2apic_mode_on &&
special_processing_applies(reg, &expectation->wr_val,
virt_int_delivery)) {
expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED;
if (reg == APIC_SELF_IPI)
expectation->wr_exit_reason = VMX_APIC_WRITE;
} else if (!disable_x2apic &&
get_x2apic_wr_val(reg, &expectation->wr_val)) {
expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH;
if (reg == APIC_EOI || reg == APIC_SELF_IPI)
expectation->wr_only = true;
if (reg == APIC_ICR)
expectation->wr_exit_reason = VMX_EXTINT;
} else {
expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP;
/*
* Writing 1 to a reserved bit triggers a #GP.
* Thus, set the write value to 0, which seems
* the most likely to detect a missed #GP.
*/
expectation->wr_val = 0;
}
}
static void virt_x2apic_mode_exit_expectation(
u32 reg, struct virt_x2apic_mode_config *config,
struct virt_x2apic_mode_expectation *expectation)
{
struct apic_reg_virt_config *base_config =
&config->apic_reg_virt_config;
bool virt_x2apic_mode_on =
base_config->virtualize_x2apic_mode &&
config->use_msr_bitmaps &&
config->disable_x2apic_msr_intercepts &&
base_config->activate_secondary_controls;
virt_x2apic_mode_wr_expectation(
reg, virt_x2apic_mode_on, config->disable_x2apic,
config->virtual_interrupt_delivery, expectation);
virt_x2apic_mode_rd_expectation(
reg, virt_x2apic_mode_on, config->disable_x2apic,
base_config->apic_register_virtualization,
config->virtual_interrupt_delivery, expectation);
}
struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = {
/*
* Baseline "virtualize x2APIC mode" configuration:
* - virtualize x2APIC mode
* - virtual-interrupt delivery
* - APIC-register virtualization
* - x2APIC MSR intercepts disabled
*
* Reads come from virtual APIC page, special processing applies to
* VTPR, EOI, and SELF IPI, and all other writes pass through to L1
* APIC.
*/
{
.name = "Baseline",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = false,
.apic_reg_virt_config = {
.apic_register_virtualization = true,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
},
{
.name = "Baseline w/ x2apic disabled",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = true,
.apic_reg_virt_config = {
.apic_register_virtualization = true,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
},
/*
* Baseline, minus virtual-interrupt delivery. Reads come from virtual
* APIC page, special processing applies to VTPR, and all other writes
* pass through to L1 APIC.
*/
{
.name = "Baseline - virtual interrupt delivery",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = false,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = false,
.apic_reg_virt_config = {
.apic_register_virtualization = true,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
},
/*
* Baseline, minus APIC-register virtualization. x2APIC reads pass
* through to L1's APIC, unless reading VTPR
*/
{
.name = "Virtualize x2APIC mode, no APIC reg virt",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = false,
.apic_reg_virt_config = {
.apic_register_virtualization = false,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
},
{
.name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = true,
.apic_reg_virt_config = {
.apic_register_virtualization = false,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = true,
},
},
},
/*
* Enable "virtualize x2APIC mode" and "APIC-register virtualization",
* and disable intercepts for the x2APIC MSRs, but fail to enable
* "activate secondary controls" (i.e. L2 gets access to L1's x2APIC
* MSRs).
*/
{
.name = "Fail to enable activate secondary controls",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = false,
.apic_reg_virt_config = {
.apic_register_virtualization = true,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = true,
.activate_secondary_controls = false,
},
},
},
/*
* Enable "APIC-register virtualization" and enable "activate secondary
* controls" and disable intercepts for the x2APIC MSRs, but do not
* enable the "virtualize x2APIC mode" VM-execution control (i.e. L2
* gets access to L1's x2APIC MSRs).
*/
{
.name = "Fail to enable virtualize x2APIC mode",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = false,
.apic_reg_virt_config = {
.apic_register_virtualization = true,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = false,
.activate_secondary_controls = true,
},
},
},
/*
* Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and
* enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs.
*/
{
.name = "Baseline",
.virt_x2apic_mode_config = {
.virtual_interrupt_delivery = true,
.use_msr_bitmaps = true,
.disable_x2apic_msr_intercepts = true,
.disable_x2apic = false,
.apic_reg_virt_config = {
.apic_register_virtualization = true,
.use_tpr_shadow = true,
.virtualize_apic_accesses = false,
.virtualize_x2apic_mode = false,
.activate_secondary_controls = true,
},
},
},
};
enum X2apic_op {
X2APIC_OP_RD,
X2APIC_OP_WR,
X2APIC_TERMINATE,
};
static u64 vmx_x2apic_read(u32 reg)
{
u32 msr_addr = x2apic_msr(reg);
u64 val;
val = rdmsr(msr_addr);
return val;
}
static void vmx_x2apic_write(u32 reg, u64 val)
{
u32 msr_addr = x2apic_msr(reg);
wrmsr(msr_addr, val);
}
struct virt_x2apic_mode_guest_args {
enum X2apic_op op;
u32 reg;
u64 val;
bool should_gp;
u64 (*virt_fn)(u64);
} virt_x2apic_mode_guest_args;
static volatile bool handle_x2apic_gp_ran;
static volatile u32 handle_x2apic_gp_insn_len;
static void handle_x2apic_gp(struct ex_regs *regs)
{
handle_x2apic_gp_ran = true;
regs->rip += handle_x2apic_gp_insn_len;
}
static handler setup_x2apic_gp_handler(void)
{
handler old_handler;
old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp);
/* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */
handle_x2apic_gp_insn_len = 2;
return old_handler;
}
static void teardown_x2apic_gp_handler(handler old_handler)
{
handle_exception(GP_VECTOR, old_handler);
/*
* Defensively reset instruction length, so that if the handler is
* incorrectly used, it will loop infinitely, rather than run off into
* la la land.
*/
handle_x2apic_gp_insn_len = 0;
handle_x2apic_gp_ran = false;
}
static void virt_x2apic_mode_guest(void)
{
volatile struct virt_x2apic_mode_guest_args *args =
&virt_x2apic_mode_guest_args;
for (;;) {
enum X2apic_op op = args->op;
u32 reg = args->reg;
u64 val = args->val;
bool should_gp = args->should_gp;
u64 (*virt_fn)(u64) = args->virt_fn;
handler old_handler;
if (op == X2APIC_TERMINATE)
break;
if (should_gp) {
TEST_ASSERT(!handle_x2apic_gp_ran);
old_handler = setup_x2apic_gp_handler();
}
if (op == X2APIC_OP_RD) {
u64 ret = vmx_x2apic_read(reg);
if (!should_gp) {
u64 want = virt_fn(val);
u64 got = virt_fn(ret);
report(got == want,
"APIC read; got 0x%lx, want 0x%lx.",
got, want);
}
} else if (op == X2APIC_OP_WR) {
vmx_x2apic_write(reg, val);
}
if (should_gp) {
report(handle_x2apic_gp_ran,
"x2APIC op triggered GP.");
teardown_x2apic_gp_handler(old_handler);
}
/*
* The L1 should always execute a vmcall after it's done testing
* an individual APIC operation. This helps to validate that the
* L1 and L2 are in sync with each other, as expected.
*/
vmcall();
}
}
static void test_x2apic_rd(
u32 reg, struct virt_x2apic_mode_expectation *expectation,
u32 *virtual_apic_page)
{
u64 val = expectation->rd_val;
u32 exit_reason_want = expectation->rd_exit_reason;
struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
report_prefix_pushf("x2apic - reading 0x%03x", reg);
/* Configure guest to do an x2apic read */
args->op = X2APIC_OP_RD;
args->reg = reg;
args->val = val;
args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP;
args->virt_fn = expectation->virt_fn;
/* Setup virtual APIC page */
if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED)
virtual_apic_page[apic_reg_index(reg)] = (u32)val;
/* Enter guest */
enter_guest();
if (exit_reason_want != VMX_VMCALL) {
report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
}
skip_exit_vmcall();
report_prefix_pop();
}
static volatile bool handle_x2apic_ipi_ran;
static void handle_x2apic_ipi(isr_regs_t *regs)
{
handle_x2apic_ipi_ran = true;
eoi();
}
static void test_x2apic_wr(
u32 reg, struct virt_x2apic_mode_expectation *expectation,
u32 *virtual_apic_page)
{
u64 val = expectation->wr_val;
u32 exit_reason_want = expectation->wr_exit_reason;
struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
int ipi_vector = 0xf1;
u32 restore_val = 0;
report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg);
/* Configure guest to do an x2apic read */
args->op = X2APIC_OP_WR;
args->reg = reg;
args->val = val;
args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP;
/* Setup virtual APIC page */
if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED)
virtual_apic_page[apic_reg_index(reg)] = 0;
if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only)
restore_val = apic_read(reg);
/* Setup IPI handler */
handle_x2apic_ipi_ran = false;
handle_irq(ipi_vector, handle_x2apic_ipi);
/* Enter guest */
enter_guest();
/*
* Validate the behavior and
* pass a magic value back to the guest.
*/
if (exit_reason_want == VMX_EXTINT) {
assert_exit_reason(exit_reason_want);
/* Clear the external interrupt. */
sti_nop_cli();
report(handle_x2apic_ipi_ran,
"Got pending interrupt after IRQ enabled.");
enter_guest();
} else if (exit_reason_want == VMX_APIC_WRITE) {
assert_exit_reason(exit_reason_want);
report(virtual_apic_page[apic_reg_index(reg)] == val,
"got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx",
apic_reg_index(reg),
virtual_apic_page[apic_reg_index(reg)], val);
/* Reenter guest so it can consume/check rcx and exit again. */
enter_guest();
} else if (exit_reason_want != VMX_VMCALL) {
report_fail("Oops, bad exit expectation: %u.", exit_reason_want);
}
assert_exit_reason(VMX_VMCALL);
if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) {
u64 want = val;
u32 got = virtual_apic_page[apic_reg_index(reg)];
report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got,
want);
} else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) {
if (!expectation->wr_only) {
u32 got = apic_read(reg);
bool ok;
/*
* When L1's TPR is passed through to L2, the lower
* nibble can be lost. For example, if L2 executes
* WRMSR(0x808, 0x78), then, L1 might read 0x70.
*
* Here's how the lower nibble can get lost:
* 1. L2 executes WRMSR(0x808, 0x78).
* 2. L2 exits to L0 with a WRMSR exit.
* 3. L0 emulates WRMSR, by writing L1's TPR.
* 4. L0 re-enters L2.
* 5. L2 exits to L0 (reason doesn't matter).
* 6. L0 reflects L2's exit to L1.
* 7. Before entering L1, L0 exits to user-space
* (e.g., to satisfy TPR access reporting).
* 8. User-space executes KVM_SET_REGS ioctl, which
* clears the lower nibble of L1's TPR.
*/
if (reg == APIC_TASKPRI) {
got = apic_virt_nibble1(got);
val = apic_virt_nibble1(val);
}
ok = got == val;
report(ok,
"non-virtualized write; val is 0x%x, want 0x%lx",
got, val);
apic_write(reg, restore_val);
} else {
report_pass("non-virtualized and write-only OK");
}
}
skip_exit_insn();
report_prefix_pop();
}
static enum Config_type configure_virt_x2apic_mode_test(
struct virt_x2apic_mode_config *virt_x2apic_mode_config,
u8 *msr_bitmap_page)
{
int msr;
u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
/* x2apic-specific VMCS config */
if (virt_x2apic_mode_config->use_msr_bitmaps) {
/* virt_x2apic_mode_test() checks for MSR bitmaps support */
cpu_exec_ctrl0 |= CPU_MSR_BITMAP;
} else {
cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP;
}
if (virt_x2apic_mode_config->virtual_interrupt_delivery) {
if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) {
report_skip("%s : \"virtual-interrupt delivery\" exec control not supported", __func__);
return CONFIG_TYPE_UNSUPPORTED;
}
cpu_exec_ctrl1 |= CPU_VINTD;
} else {
cpu_exec_ctrl1 &= ~CPU_VINTD;
}
vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
/* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */
for (msr = 0x800; msr <= 0x8ff; msr++) {
if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) {
clear_bit(msr, msr_bitmap_page + 0x000);
clear_bit(msr, msr_bitmap_page + 0x800);
} else {
set_bit(msr, msr_bitmap_page + 0x000);
set_bit(msr, msr_bitmap_page + 0x800);
}
}
/* x2APIC mode can impact virtualization */
reset_apic();
if (!virt_x2apic_mode_config->disable_x2apic)
enable_x2apic();
return configure_apic_reg_virt_test(
&virt_x2apic_mode_config->apic_reg_virt_config);
}
static void virt_x2apic_mode_test(void)
{
u32 *virtual_apic_page;
u8 *msr_bitmap_page;
u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0);
u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1);
int i;
struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args;
if (!cpu_has_apicv()) {
report_skip("%s : Not all required APICv bits supported", __func__);
return;
}
/*
* This is to exercise an issue in KVM's logic to merge L0's and L1's
* MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by
* writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would
* then proceed to manipulate the MSR bitmaps, as if VMCS12 had the
* "Virtualize x2APIC mod" control set, even when it didn't.
*/
if (this_cpu_has(X86_FEATURE_SPEC_CTRL))
wrmsr(MSR_IA32_SPEC_CTRL, 1);
/*
* Check that VMCS12 supports:
* - "Virtual-APIC address", indicated by "use TPR shadow"
* - "MSR-bitmap address", indicated by "use MSR bitmaps"
*/
if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) {
report_skip("%s : \"Use TPR shadow\" exec control not supported", __func__);
return;
} else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) {
report_skip("%s : \"Use MSR bitmaps\" exec control not supported", __func__);
return;
}
test_set_guest(virt_x2apic_mode_guest);
virtual_apic_page = alloc_page();
vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page));
msr_bitmap_page = alloc_page();
memset(msr_bitmap_page, 0xff, PAGE_SIZE);
vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page));
for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) {
struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case =
&virt_x2apic_mode_tests[i];
struct virt_x2apic_mode_config *virt_x2apic_mode_config =
&virt_x2apic_mode_test_case->virt_x2apic_mode_config;
enum Config_type config_type;
u32 reg;
printf("--- %s test ---\n", virt_x2apic_mode_test_case->name);
config_type =
configure_virt_x2apic_mode_test(virt_x2apic_mode_config,
msr_bitmap_page);
if (config_type == CONFIG_TYPE_UNSUPPORTED) {
report_skip("Skip because of missing features.");
continue;
} else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) {
enter_guest_with_bad_controls();
continue;
}
for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) {
struct virt_x2apic_mode_expectation expectation;
virt_x2apic_mode_exit_expectation(
reg, virt_x2apic_mode_config, &expectation);
test_x2apic_rd(reg, &expectation, virtual_apic_page);
test_x2apic_wr(reg, &expectation, virtual_apic_page);
}
}
/* Terminate the guest */
vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0);
vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1);
args->op = X2APIC_TERMINATE;
enter_guest();
assert_exit_reason(VMX_VMCALL);
}
static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1)
{
u64 val;
u64 cr_saved = vmcs_read(cr);
int i;
val = fixed0 & fixed1;
if (cr == HOST_CR4)
vmcs_write(cr, val | X86_CR4_PAE);
else
vmcs_write(cr, val);
report_prefix_pushf("%s %lx", cr_name, val);
if (val == fixed0)
test_vmx_vmlaunch(0);
else
test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
report_prefix_pop();
for (i = 0; i < 64; i++) {
/* Set a bit when the corresponding bit in fixed1 is 0 */
if ((fixed1 & (1ull << i)) == 0) {
if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP ||
(1ull << i) & X86_CR4_SMAP))
continue;
vmcs_write(cr, cr_saved | (1ull << i));
report_prefix_pushf("%s %llx", cr_name,
cr_saved | (1ull << i));
test_vmx_vmlaunch(
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
report_prefix_pop();
}
/* Unset a bit when the corresponding bit in fixed0 is 1 */
if (fixed0 & (1ull << i)) {
vmcs_write(cr, cr_saved & ~(1ull << i));
report_prefix_pushf("%s %llx", cr_name,
cr_saved & ~(1ull << i));
test_vmx_vmlaunch(
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
report_prefix_pop();
}
}
vmcs_write(cr, cr_saved);
}
/*
* 1. The CR0 field must not set any bit to a value not supported in VMX
* operation.
* 2. The CR4 field must not set any bit to a value not supported in VMX
* operation.
* 3. On processors that support Intel 64 architecture, the CR3 field must
* be such that bits 63:52 and bits in the range 51:32 beyond the
* processor's physical-address width must be 0.
*
* [Intel SDM]
*/
static void test_host_ctl_regs(void)
{
u64 fixed0, fixed1, cr3, cr3_saved;
int i;
/* Test CR0 */
fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0);
fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1);
test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1);
/* Test CR4 */
fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) &
~(X86_CR4_SMEP | X86_CR4_SMAP);
test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1);
/* Test CR3 */
cr3_saved = vmcs_read(HOST_CR3);
for (i = cpuid_maxphyaddr(); i < 64; i++) {
cr3 = cr3_saved | (1ul << i);
vmcs_write(HOST_CR3, cr3);
report_prefix_pushf("HOST_CR3 %lx", cr3);
test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
report_prefix_pop();
}
vmcs_write(HOST_CR3, cr3_saved);
}
static void test_efer_vmlaunch(u32 fld, bool ok)
{
if (fld == HOST_EFER) {
if (ok)
test_vmx_vmlaunch(0);
else
test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD,
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
} else {
test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER");
}
}
static void test_efer_one(u32 fld, const char * fld_name, u64 efer,
u32 ctrl_fld, u64 ctrl,
int i, const char *efer_bit_name)
{
bool ok;
ok = true;
if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) {
if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64))
ok = false;
if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64))
ok = false;
}
if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) {
/* Check LMA too since CR0.PG is set. */
if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64))
ok = false;
if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64))
ok = false;
}
/*
* Skip the test if it would enter the guest in 32-bit mode.
* Perhaps write the test in assembly and make sure it
* can be run in either mode?
*/
if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64))
return;
vmcs_write(ctrl_fld, ctrl);
vmcs_write(fld, efer);
report_prefix_pushf("%s %s bit turned %s, controls %s",
fld_name, efer_bit_name,
(i & 1) ? "on" : "off",
(i & 2) ? "on" : "off");
test_efer_vmlaunch(fld, ok);
report_prefix_pop();
}
static void test_efer_bit(u32 fld, const char * fld_name,
u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit,
const char *efer_bit_name)
{
u64 efer_saved = vmcs_read(fld);
u32 ctrl_saved = vmcs_read(ctrl_fld);
int i;
for (i = 0; i < 4; i++) {
u64 efer = efer_saved & ~efer_bit;
u64 ctrl = ctrl_saved & ~ctrl_bit;
if (i & 1)
efer |= efer_bit;
if (i & 2)
ctrl |= ctrl_bit;
test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl,
i, efer_bit_name);
}
vmcs_write(ctrl_fld, ctrl_saved);
vmcs_write(fld, efer_saved);
}
static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld,
u64 ctrl_bit1, u64 ctrl_bit2)
{
u64 efer_saved = vmcs_read(fld);
u32 ctrl_saved = vmcs_read(ctrl_fld);
u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
u64 i;
u64 efer;
if (this_cpu_has(X86_FEATURE_NX))
efer_reserved_bits &= ~EFER_NX;
if (!ctrl_bit1) {
report_skip("%s : \"Load-IA32-EFER\" exit control not supported", __func__);
goto test_entry_exit_mode;
}
report_prefix_pushf("%s %lx", fld_name, efer_saved);
test_efer_vmlaunch(fld, true);
report_prefix_pop();
/*
* Check reserved bits
*/
vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1);
for (i = 0; i < 64; i++) {
if ((1ull << i) & efer_reserved_bits) {
efer = efer_saved | (1ull << i);
vmcs_write(fld, efer);
report_prefix_pushf("%s %lx", fld_name, efer);
test_efer_vmlaunch(fld, true);
report_prefix_pop();
}
}
vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1);
for (i = 0; i < 64; i++) {
if ((1ull << i) & efer_reserved_bits) {
efer = efer_saved | (1ull << i);
vmcs_write(fld, efer);
report_prefix_pushf("%s %lx", fld_name, efer);
test_efer_vmlaunch(fld, false);
report_prefix_pop();
}
}
vmcs_write(ctrl_fld, ctrl_saved);
vmcs_write(fld, efer_saved);
/*
* Check LMA and LME bits
*/
test_efer_bit(fld, fld_name,
ctrl_fld, ctrl_bit1,
EFER_LMA,
"EFER_LMA");
test_efer_bit(fld, fld_name,
ctrl_fld, ctrl_bit1,
EFER_LME,
"EFER_LME");
test_entry_exit_mode:
test_efer_bit(fld, fld_name,
ctrl_fld, ctrl_bit2,
EFER_LMA,
"EFER_LMA");
test_efer_bit(fld, fld_name,
ctrl_fld, ctrl_bit2,
EFER_LME,
"EFER_LME");
}
/*
* If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the 'host address-space size' VM-exit control.
*
* [Intel SDM]
*/
static void test_host_efer(void)
{
test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS,
ctrl_exit_rev.clr & EXI_LOAD_EFER,
EXI_HOST_64);
}
/*
* If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the 'IA32e-mode guest' VM-exit control.
*/
static void test_guest_efer(void)
{
if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) {
report_skip("%s : \"Load-IA32-EFER\" entry control not supported", __func__);
return;
}
vmcs_write(GUEST_EFER, rdmsr(MSR_EFER));
test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS,
ctrl_enter_rev.clr & ENT_LOAD_EFER,
ENT_GUEST_64);
}
/*
* PAT values higher than 8 are uninteresting since they're likely lumped
* in with "8". We only test values above 8 one bit at a time,
* in order to reduce the number of VM-Entries and keep the runtime reasonable.
*/
#define PAT_VAL_LIMIT 8
static void test_pat(u32 field, const char * field_name, u32 ctrl_field,
u64 ctrl_bit)
{
u32 ctrl_saved = vmcs_read(ctrl_field);
u64 pat_saved = vmcs_read(field);
u64 i, val;
u32 j;
int error;
vmcs_clear_bits(ctrl_field, ctrl_bit);
for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
/* Test PAT0..PAT7 fields */
for (j = 0; j < (i ? 8 : 1); j++) {
val = i << j * 8;
vmcs_write(field, val);
if (field == HOST_PAT) {
report_prefix_pushf("%s %lx", field_name, val);
test_vmx_vmlaunch(0);
report_prefix_pop();
} else { // GUEST_PAT
test_guest_state("ENT_LOAD_PAT enabled", false,
val, "GUEST_PAT");
}
}
}
vmcs_set_bits(ctrl_field, ctrl_bit);
for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) {
/* Test PAT0..PAT7 fields */
for (j = 0; j < (i ? 8 : 1); j++) {
val = i << j * 8;
vmcs_write(field, val);
if (field == HOST_PAT) {
report_prefix_pushf("%s %lx", field_name, val);
if (i == 0x2 || i == 0x3 || i >= 0x8)
error =
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
else
error = 0;
test_vmx_vmlaunch(error);
report_prefix_pop();
} else { // GUEST_PAT
error = (i == 0x2 || i == 0x3 || i >= 0x8);
test_guest_state("ENT_LOAD_PAT enabled", !!error,
val, "GUEST_PAT");
}
}
}
vmcs_write(ctrl_field, ctrl_saved);
vmcs_write(field, pat_saved);
}
/*
* If the "load IA32_PAT" VM-exit control is 1, the value of the field
* for the IA32_PAT MSR must be one that could be written by WRMSR
* without fault at CPL 0. Specifically, each of the 8 bytes in the
* field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
* 6 (WB), or 7 (UC-).
*
* [Intel SDM]
*/
static void test_load_host_pat(void)
{
/*
* "load IA32_PAT" VM-exit control
*/
if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) {
report_skip("%s : \"Load-IA32-PAT\" exit control not supported", __func__);
return;
}
test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT);
}
union cpuidA_eax {
struct {
unsigned int version_id:8;
unsigned int num_counters_gp:8;
unsigned int bit_width:8;
unsigned int mask_length:8;
} split;
unsigned int full;
};
union cpuidA_edx {
struct {
unsigned int num_counters_fixed:5;
unsigned int bit_width_fixed:8;
unsigned int reserved:9;
} split;
unsigned int full;
};
static bool valid_pgc(u64 val)
{
struct cpuid id;
union cpuidA_eax eax;
union cpuidA_edx edx;
u64 mask;
id = cpuid(0xA);
eax.full = id.a;
edx.full = id.d;
mask = ~(((1ull << eax.split.num_counters_gp) - 1) |
(((1ull << edx.split.num_counters_fixed) - 1) << 32));
return !(val & mask);
}
static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host)
{
u32 inst_err;
u64 obs;
bool success;
struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
if (host) {
success = vmlaunch();
obs = rdmsr(data->msr);
if (!success) {
inst_err = vmcs_read(VMX_INST_ERROR);
report(xerror == inst_err, "vmlaunch failed, "
"VMX Inst Error is %d (expected %d)",
inst_err, xerror);
} else {
report(!data->enabled || data->exp == obs,
"Host state is 0x%lx (expected 0x%lx)",
obs, data->exp);
report(success != xfail, "vmlaunch succeeded");
}
} else {
test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail,
GUEST_PERF_GLOBAL_CTRL,
"GUEST_PERF_GLOBAL_CTRL");
}
}
/*
* test_load_perf_global_ctrl is a generic function for testing the
* "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function
* tests the provided ctrl_val when disabled and enabled.
*
* @nr: VMCS field number corresponding to the host/guest state field
* @name: Name of the above VMCS field for printing in test report
* @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control
* @ctrl_val: Bit to set on the ctrl_field
*/
static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr,
const char *ctrl_name, u64 ctrl_val)
{
u64 ctrl_saved = vmcs_read(ctrl_nr);
u64 pgc_saved = vmcs_read(nr);
u64 i, val;
bool host = nr == HOST_PERF_GLOBAL_CTRL;
struct vmx_state_area_test_data *data = &vmx_state_area_test_data;
data->msr = MSR_CORE_PERF_GLOBAL_CTRL;
msr_bmp_init();
vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val);
data->enabled = false;
report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s",
ctrl_name);
for (i = 0; i < 64; i++) {
val = 1ull << i;
vmcs_write(nr, val);
report_prefix_pushf("%s = 0x%lx", name, val);
test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
report_prefix_pop();
}
report_prefix_pop();
vmcs_write(ctrl_nr, ctrl_saved | ctrl_val);
data->enabled = true;
report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s",
ctrl_name);
for (i = 0; i < 64; i++) {
val = 1ull << i;
data->exp = val;
vmcs_write(nr, val);
report_prefix_pushf("%s = 0x%lx", name, val);
if (valid_pgc(val)) {
test_pgc_vmlaunch(0, VMX_VMCALL, false, host);
} else {
if (host)
test_pgc_vmlaunch(
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD,
0,
true,
host);
else
test_pgc_vmlaunch(
0,
VMX_ENTRY_FAILURE | VMX_FAIL_STATE,
true,
host);
}
report_prefix_pop();
}
data->enabled = false;
report_prefix_pop();
vmcs_write(ctrl_nr, ctrl_saved);
vmcs_write(nr, pgc_saved);
}
static void test_load_host_perf_global_ctrl(void)
{
if (!this_cpu_has_perf_global_ctrl()) {
report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__);
return;
}
if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) {
report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" exit control not supported", __func__);
return;
}
test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL",
EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF);
}
static void test_load_guest_perf_global_ctrl(void)
{
if (!this_cpu_has_perf_global_ctrl()) {
report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__);
return;
}
if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) {
report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" entry control not supported", __func__);
return;
}
test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL",
ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF);
}
/*
* test_vmcs_field - test a value for the given VMCS field
* @field: VMCS field
* @field_name: string name of VMCS field
* @bit_start: starting bit
* @bit_end: ending bit
* @val: value that the bit range must or must not contain
* @valid_val: whether value given in 'val' must be valid or not
* @error: expected VMCS error when vmentry fails for an invalid value
*/
static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start,
u32 bit_end, u64 val, bool valid_val, u32 error)
{
u64 field_saved = vmcs_read(field);
u32 i;
u64 tmp;
u32 bit_on;
u64 mask = ~0ull;
mask = (mask >> bit_end) << bit_end;
mask = mask | ((1 << bit_start) - 1);
tmp = (field_saved & mask) | (val << bit_start);
vmcs_write(field, tmp);
report_prefix_pushf("%s %lx", field_name, tmp);
if (valid_val)
test_vmx_vmlaunch(0);
else
test_vmx_vmlaunch(error);
report_prefix_pop();
for (i = bit_start; i <= bit_end; i = i + 2) {
bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1;
if (bit_on)
tmp = field_saved | (1ull << i);
else
tmp = field_saved & ~(1ull << i);
vmcs_write(field, tmp);
report_prefix_pushf("%s %lx", field_name, tmp);
if (valid_val)
test_vmx_vmlaunch(error);
else
test_vmx_vmlaunch(0);
report_prefix_pop();
}
vmcs_write(field, field_saved);
}
static void test_canonical(u64 field, const char * field_name, bool host)
{
u64 addr_saved = vmcs_read(field);
/*
* Use the existing value if possible. Writing a random canonical
* value is not an option as doing so would corrupt the field being
* tested and likely hose the test.
*/
if (is_canonical(addr_saved)) {
if (host) {
report_prefix_pushf("%s %lx", field_name, addr_saved);
test_vmx_vmlaunch(0);
report_prefix_pop();
} else {
test_guest_state("Test canonical address", false,
addr_saved, field_name);
}
}
vmcs_write(field, NONCANONICAL);
if (host) {
report_prefix_pushf("%s %llx", field_name, NONCANONICAL);
test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
report_prefix_pop();
} else {
test_guest_state("Test non-canonical address", true,
NONCANONICAL, field_name);
}
vmcs_write(field, addr_saved);
}
#define TEST_RPL_TI_FLAGS(reg, name) \
test_vmcs_field(reg, name, 0, 2, 0x0, true, \
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
#define TEST_CS_TR_FLAGS(reg, name) \
test_vmcs_field(reg, name, 3, 15, 0x0000, false, \
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
/*
* 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the
* RPL (bits 1:0) and the TI flag (bit 2) must be 0.
* 2. The selector fields for CS and TR cannot be 0000H.
* 3. The selector field for SS cannot be 0000H if the "host address-space
* size" VM-exit control is 0.
* 4. On processors that support Intel 64 architecture, the base-address
* fields for FS, GS and TR must contain canonical addresses.
*/
static void test_host_segment_regs(void)
{
u16 selector_saved;
/*
* Test RPL and TI flags
*/
TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS");
TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS");
TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES");
TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS");
TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS");
TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
/*
* Test that CS and TR fields can not be 0x0000
*/
TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS");
TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR");
/*
* SS field can not be 0x0000 if "host address-space size" VM-exit
* control is 0
*/
selector_saved = vmcs_read(HOST_SEL_SS);
vmcs_write(HOST_SEL_SS, 0);
report_prefix_pushf("HOST_SEL_SS 0");
if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) {
test_vmx_vmlaunch(0);
} else {
test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
}
report_prefix_pop();
vmcs_write(HOST_SEL_SS, selector_saved);
/*
* Base address for FS, GS and TR must be canonical
*/
test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true);
test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true);
test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true);
}
/*
* On processors that support Intel 64 architecture, the base-address
* fields for GDTR and IDTR must contain canonical addresses.
*/
static void test_host_desc_tables(void)
{
test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true);
test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true);
}
/*
* If the "host address-space size" VM-exit control is 0, the following must
* hold:
* - The "IA-32e mode guest" VM-entry control is 0.
* - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
* - Bits 63:32 in the RIP field are 0.
*
* If the "host address-space size" VM-exit control is 1, the following must
* hold:
* - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
* - The RIP field contains a canonical address.
*
*/
static void test_host_addr_size(void)
{
u64 cr4_saved = vmcs_read(HOST_CR4);
u64 rip_saved = vmcs_read(HOST_RIP);
u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS);
assert(vmcs_read(EXI_CONTROLS) & EXI_HOST_64);
assert(cr4_saved & X86_CR4_PAE);
vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
report_prefix_pushf("\"IA-32e mode guest\" enabled");
test_vmx_vmlaunch(0);
report_prefix_pop();
if (this_cpu_has(X86_FEATURE_PCID)) {
vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE);
report_prefix_pushf("\"CR4.PCIDE\" set");
test_vmx_vmlaunch(0);
report_prefix_pop();
}
vmcs_write(HOST_CR4, cr4_saved & ~X86_CR4_PAE);
report_prefix_pushf("\"CR4.PAE\" unset");
test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
vmcs_write(HOST_CR4, cr4_saved);
report_prefix_pop();
vmcs_write(HOST_RIP, NONCANONICAL);
report_prefix_pushf("HOST_RIP %llx", NONCANONICAL);
test_vmx_vmlaunch_must_fail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
report_prefix_pop();
vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64);
vmcs_write(HOST_RIP, rip_saved);
vmcs_write(HOST_CR4, cr4_saved);
/*
* Restore host's active CR4 and RIP values by triggering a VM-Exit.
* The original CR4 and RIP values in the VMCS are restored between
* testcases as needed, but don't guarantee a VM-Exit and so the active
* CR4 and RIP may still hold a test value. Running with the test CR4
* and RIP values at some point is unavoidable, and the active values
* are unlikely to affect VM-Enter, so the above doesn't force a VM-exit
* between testcases. Note, if VM-Enter is surrounded by CALL+RET then
* the active RIP will already be restored, but that's also not
* guaranteed, and CR4 needs to be restored regardless.
*/
report_prefix_pushf("restore host state");
test_vmx_vmlaunch(0);
report_prefix_pop();
}
/*
* Check that the virtual CPU checks the VMX Host State Area as
* documented in the Intel SDM.
*/
static void vmx_host_state_area_test(void)
{
/*
* Bit 1 of the guest's RFLAGS must be 1, or VM-entry will
* fail due to invalid guest state, should we make it that
* far.
*/
vmcs_write(GUEST_RFLAGS, 0);
test_host_ctl_regs();
test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true);
test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true);
test_host_efer();
test_load_host_pat();
test_host_segment_regs();
test_host_desc_tables();
test_host_addr_size();
test_load_host_perf_global_ctrl();
}
/*
* If the "load debug controls" VM-entry control is 1, bits 63:32 in
* the DR7 field must be 0.
*
* [Intel SDM]
*/
static void test_guest_dr7(void)
{
u32 ent_saved = vmcs_read(ENT_CONTROLS);
u64 dr7_saved = vmcs_read(GUEST_DR7);
u64 val;
int i;
if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) {
vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
for (i = 0; i < 64; i++) {
val = 1ull << i;
vmcs_write(GUEST_DR7, val);
test_guest_state("ENT_LOAD_DBGCTLS disabled", false,
val, "GUEST_DR7");
}
}
if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) {
vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS);
for (i = 0; i < 64; i++) {
val = 1ull << i;
vmcs_write(GUEST_DR7, val);
test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32,
val, "GUEST_DR7");
}
}
vmcs_write(GUEST_DR7, dr7_saved);
vmcs_write(ENT_CONTROLS, ent_saved);
}
/*
* If the "load IA32_PAT" VM-entry control is 1, the value of the field
* for the IA32_PAT MSR must be one that could be written by WRMSR
* without fault at CPL 0. Specifically, each of the 8 bytes in the
* field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
* 6 (WB), or 7 (UC-).
*
* [Intel SDM]
*/
static void test_load_guest_pat(void)
{
/*
* "load IA32_PAT" VM-entry control
*/
if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) {
report_skip("%s : \"Load-IA32-PAT\" entry control not supported", __func__);
return;
}
test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT);
}
#define MSR_IA32_BNDCFGS_RSVD_MASK 0x00000ffc
/*
* If the "load IA32_BNDCFGS" VM-entry control is 1, the following
* checks are performed on the field for the IA32_BNDCFGS MSR:
*
* - Bits reserved in the IA32_BNDCFGS MSR must be 0.
* - The linear address in bits 63:12 must be canonical.
*
* [Intel SDM]
*/
static void test_load_guest_bndcfgs(void)
{
u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS);
u64 bndcfgs;
if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) {
report_skip("%s : \"Load-IA32-BNDCFGS\" entry control not supported", __func__);
return;
}
vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
GUEST_BNDCFGS, "GUEST_BNDCFGS");
bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
vmcs_write(GUEST_BNDCFGS, bndcfgs);
test_guest_state("ENT_LOAD_BNDCFGS disabled", false,
GUEST_BNDCFGS, "GUEST_BNDCFGS");
vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS);
vmcs_write(GUEST_BNDCFGS, NONCANONICAL);
test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
GUEST_BNDCFGS, "GUEST_BNDCFGS");
bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK;
vmcs_write(GUEST_BNDCFGS, bndcfgs);
test_guest_state("ENT_LOAD_BNDCFGS enabled", true,
GUEST_BNDCFGS, "GUEST_BNDCFGS");
vmcs_write(GUEST_BNDCFGS, bndcfgs_saved);
}
#define GUEST_SEG_UNUSABLE_MASK (1u << 16)
#define GUEST_SEG_SEL_TI_MASK (1u << 2)
#define TEST_SEGMENT_SEL(test, xfail, sel, val) \
do { \
vmcs_write(sel, val); \
test_guest_state(test " segment", xfail, val, xstr(sel)); \
} while (0)
#define TEST_INVALID_SEG_SEL(sel, val) \
TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val);
#define TEST_VALID_SEG_SEL(sel, val) \
TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val);
/*
* The following checks are done on the Selector field of the Guest Segment
* Registers:
* - TR. The TI flag (bit 2) must be 0.
* - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0.
* - SS. If the guest will not be virtual-8086 and the "unrestricted
* guest" VM-execution control is 0, the RPL (bits 1:0) must equal
* the RPL of the selector field for CS.
*
* [Intel SDM]
*/
static void test_guest_segment_sel_fields(void)
{
u16 sel_saved;
u32 ar_saved;
u32 cpu_ctrl0_saved;
u32 cpu_ctrl1_saved;
u16 cs_rpl_bits;
/*
* Test for GUEST_SEL_TR
*/
sel_saved = vmcs_read(GUEST_SEL_TR);
TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK);
vmcs_write(GUEST_SEL_TR, sel_saved);
/*
* Test for GUEST_SEL_LDTR
*/
sel_saved = vmcs_read(GUEST_SEL_LDTR);
ar_saved = vmcs_read(GUEST_AR_LDTR);
/* LDTR is set unusable */
vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
/* LDTR is set usable */
vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK);
TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK);
vmcs_write(GUEST_AR_LDTR, ar_saved);
vmcs_write(GUEST_SEL_LDTR, sel_saved);
/*
* Test for GUEST_SEL_SS
*/
cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0);
cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1);
ar_saved = vmcs_read(GUEST_AR_SS);
/* Turn off "unrestricted guest" vm-execution control */
vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG);
cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3;
sel_saved = vmcs_read(GUEST_SEL_SS);
TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
/* Make SS usable if it's unusable or vice-versa */
if (ar_saved & GUEST_SEG_UNUSABLE_MASK)
vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
else
vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
/* Need a valid EPTP as the passing case fully enters the guest. */
if (enable_unrestricted_guest(true))
goto skip_ss_tests;
TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
/* Make SS usable if it's unusable or vice-versa */
if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK)
vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
else
vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3)));
TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3)));
skip_ss_tests:
vmcs_write(GUEST_AR_SS, ar_saved);
vmcs_write(GUEST_SEL_SS, sel_saved);
vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved);
vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved);
}
#define TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base) \
do { \
addr_saved = vmcs_read(seg_base); \
for (i = 32; i < 63; i = i + 4) { \
addr = addr_saved | 1ull << i; \
vmcs_write(seg_base, addr); \
test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail), \
xfail, addr, xstr(seg_base)); \
} \
vmcs_write(seg_base, addr_saved); \
} while (0)
#define TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base) \
do { \
addr_saved = vmcs_read(seg_base); \
vmcs_write(seg_base, NONCANONICAL); \
test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \
xfail, NONCANONICAL, xstr(seg_base)); \
vmcs_write(seg_base, addr_saved); \
} while (0)
/*
* The following checks are done on the Base Address field of the Guest
* Segment Registers on processors that support Intel 64 architecture:
* - TR, FS, GS : The address must be canonical.
* - LDTR : If LDTR is usable, the address must be canonical.
* - CS : Bits 63:32 of the address must be zero.
* - SS, DS, ES : If the register is usable, bits 63:32 of the address
* must be zero.
*
* [Intel SDM]
*/
static void test_guest_segment_base_addr_fields(void)
{
u64 addr_saved;
u64 addr;
u32 ar_saved;
int i;
/*
* The address of TR, FS, GS and LDTR must be canonical.
*/
TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR);
TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS);
TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS);
ar_saved = vmcs_read(GUEST_AR_LDTR);
/* Make LDTR unusable */
vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR);
/* Make LDTR usable */
vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR);
vmcs_write(GUEST_AR_LDTR, ar_saved);
/*
* Bits 63:32 in CS, SS, DS and ES base address must be zero
*/
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS);
ar_saved = vmcs_read(GUEST_AR_SS);
/* Make SS unusable */
vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS);
/* Make SS usable */
vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS);
vmcs_write(GUEST_AR_SS, ar_saved);
ar_saved = vmcs_read(GUEST_AR_DS);
/* Make DS unusable */
vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS);
/* Make DS usable */
vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS);
vmcs_write(GUEST_AR_DS, ar_saved);
ar_saved = vmcs_read(GUEST_AR_ES);
/* Make ES unusable */
vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES);
/* Make ES usable */
vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK);
TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES);
vmcs_write(GUEST_AR_ES, ar_saved);
}
/*
* Check that the virtual CPU checks the VMX Guest State Area as
* documented in the Intel SDM.
*/
static void vmx_guest_state_area_test(void)
{
vmx_set_test_stage(1);
test_set_guest(guest_state_test_main);
/*
* The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field
* must each contain a canonical address.
*/
test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false);
test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false);
test_guest_dr7();
test_load_guest_pat();
test_guest_efer();
test_load_guest_perf_global_ctrl();
test_load_guest_bndcfgs();
test_guest_segment_sel_fields();
test_guest_segment_base_addr_fields();
test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false);
test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false);
u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR);
int i;
for (i = 16; i <= 31; i++) {
u32 tmp = guest_desc_limit_saved | (1ull << i);
vmcs_write(GUEST_LIMIT_GDTR, tmp);
test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR");
}
vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved);
guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR);
for (i = 16; i <= 31; i++) {
u32 tmp = guest_desc_limit_saved | (1ull << i);
vmcs_write(GUEST_LIMIT_IDTR, tmp);
test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR");
}
vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved);
/*
* Let the guest finish execution
*/
vmx_set_test_stage(2);
enter_guest();
}
extern void unrestricted_guest_main(void);
asm (".code32\n"
"unrestricted_guest_main:\n"
"vmcall\n"
"nop\n"
"mov $1, %edi\n"
"call hypercall\n"
".code64\n");
static void setup_unrestricted_guest(void)
{
vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG));
vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64);
vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA);
vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main));
}
static void unsetup_unrestricted_guest(void)
{
vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG);
vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64);
vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA);
vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP)));
vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP)));
}
/*
* If "unrestricted guest" secondary VM-execution control is set, guests
* can run in unpaged protected mode.
*/
static void vmentry_unrestricted_guest_test(void)
{
if (enable_unrestricted_guest(true)) {
report_skip("%s: \"Unrestricted guest\" exec control not supported", __func__);
return;
}
test_set_guest(unrestricted_guest_main);
setup_unrestricted_guest();
test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG");
/*
* Let the guest finish execution as a regular guest
*/
unsetup_unrestricted_guest();
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG);
enter_guest();
}
static bool valid_vmcs_for_vmentry(void)
{
struct vmcs *current_vmcs = NULL;
if (vmcs_save(&current_vmcs))
return false;
return current_vmcs && !current_vmcs->hdr.shadow_vmcs;
}
static void try_vmentry_in_movss_shadow(void)
{
u32 vm_inst_err;
u32 flags;
bool early_failure = false;
u32 expected_flags = X86_EFLAGS_FIXED;
bool valid_vmcs = valid_vmcs_for_vmentry();
expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF;
/*
* Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to
* unsupported VMCS component").
*/
vmcs_write(~0u, 0);
__asm__ __volatile__ ("mov %[host_rsp], %%edx;"
"vmwrite %%rsp, %%rdx;"
"mov 0f, %%rax;"
"mov %[host_rip], %%edx;"
"vmwrite %%rax, %%rdx;"
"mov $-1, %%ah;"
"sahf;"
"mov %%ss, %%ax;"
"mov %%ax, %%ss;"
"vmlaunch;"
"mov $1, %[early_failure];"
"0: lahf;"
"movzbl %%ah, %[flags]"
: [early_failure] "+r" (early_failure),
[flags] "=&a" (flags)
: [host_rsp] "i" (HOST_RSP),
[host_rip] "i" (HOST_RIP)
: "rdx", "cc", "memory");
vm_inst_err = vmcs_read(VMX_INST_ERROR);
report(early_failure, "Early VM-entry failure");
report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)",
expected_flags, flags);
if (valid_vmcs)
report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS,
"VM-instruction error is %d (actual %d)",
VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err);
}
static void vmentry_movss_shadow_test(void)
{
struct vmcs *orig_vmcs;
TEST_ASSERT(!vmcs_save(&orig_vmcs));
/*
* Set the launched flag on the current VMCS to verify the correct
* error priority, below.
*/
test_set_guest(v2_null_test_guest);
enter_guest();
/*
* With bit 1 of the guest's RFLAGS clear, VM-entry should
* fail due to invalid guest state (if we make it that far).
*/
vmcs_write(GUEST_RFLAGS, 0);
/*
* "VM entry with events blocked by MOV SS" takes precedence over
* "VMLAUNCH with non-clear VMCS."
*/
report_prefix_push("valid current-VMCS");
try_vmentry_in_movss_shadow();
report_prefix_pop();
/*
* VMfailInvalid takes precedence over "VM entry with events
* blocked by MOV SS."
*/
TEST_ASSERT(!vmcs_clear(orig_vmcs));
report_prefix_push("no current-VMCS");
try_vmentry_in_movss_shadow();
report_prefix_pop();
TEST_ASSERT(!make_vmcs_current(orig_vmcs));
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
}
static void vmx_ldtr_test_guest(void)
{
u16 ldtr = sldt();
report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)",
NP_SEL, ldtr);
}
/*
* Ensure that the L1 LDTR is set to 0 on VM-exit.
*/
static void vmx_ldtr_test(void)
{
const u8 ldt_ar = 0x82; /* Present LDT */
u16 sel = FIRST_SPARE_SEL;
/* Set up a non-zero L1 LDTR prior to VM-entry. */
set_gdt_entry(sel, 0, 0, ldt_ar, 0);
lldt(sel);
test_set_guest(vmx_ldtr_test_guest);
/*
* Set up a different LDTR for L2. The actual GDT contents are
* irrelevant, since we stuff the hidden descriptor state
* straight into the VMCS rather than reading it from the GDT.
*/
vmcs_write(GUEST_SEL_LDTR, NP_SEL);
vmcs_write(GUEST_AR_LDTR, ldt_ar);
enter_guest();
/*
* VM-exit should clear LDTR (and make it unusable, but we
* won't verify that here).
*/
sel = sldt();
report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel);
}
static void vmx_single_vmcall_guest(void)
{
vmcall();
}
static void vmx_cr_load_test(void)
{
unsigned long cr3, cr4, orig_cr3, orig_cr4;
u32 ctrls[2] = {0};
pgd_t *pml5;
orig_cr4 = read_cr4();
orig_cr3 = read_cr3();
if (!this_cpu_has(X86_FEATURE_PCID)) {
report_skip("%s : PCID not detected", __func__);
return;
}
if (!this_cpu_has(X86_FEATURE_MCE)) {
report_skip("%s : MCE not detected", __func__);
return;
}
TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK));
/* Enable PCID for L1. */
cr4 = orig_cr4 | X86_CR4_PCIDE;
cr3 = orig_cr3 | 0x1;
TEST_ASSERT(!write_cr4_safe(cr4));
write_cr3(cr3);
test_set_guest(vmx_single_vmcall_guest);
vmcs_write(HOST_CR4, cr4);
vmcs_write(HOST_CR3, cr3);
enter_guest();
/*
* No exception is expected.
*
* NB. KVM loads the last guest write to CR4 into CR4 read
* shadow. In order to trigger an exit to KVM, we can toggle a
* bit that is owned by KVM. We use CR4.MCE, which shall
* have no side effect because normally no guest MCE (e.g., as the
* result of bad memory) would happen during this test.
*/
TEST_ASSERT(!write_cr4_safe(cr4 ^ X86_CR4_MCE));
/* Cleanup L1 state. */
write_cr3(orig_cr3);
TEST_ASSERT(!write_cr4_safe(orig_cr4));
if (!this_cpu_has(X86_FEATURE_LA57))
goto done;
/*
* Allocate a full page for PML5 to guarantee alignment, though only
* the first entry needs to be filled (the test's virtual addresses
* most definitely do not have any of bits 56:48 set).
*/
pml5 = alloc_page();
*pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK;
/*
* Transition to/from 5-level paging in the host via VM-Exit. CR4.LA57
* can't be toggled while long is active via MOV CR4, but there are no
* such restrictions on VM-Exit.
*/
lol_5level:
vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57);
vmcs_write(HOST_CR3, virt_to_phys(pml5));
enter_guest();
/*
* VMREAD with a memory operand to verify KVM detects the LA57 change,
* e.g. uses the correct guest root level in gva_to_gpa().
*/
TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5));
TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57));
vmcs_write(HOST_CR4, orig_cr4);
vmcs_write(HOST_CR3, orig_cr3);
enter_guest();
TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3);
TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4);
/*
* And now do the same LA57 shenanigans with EPT enabled. KVM uses
* two separate MMUs when L1 uses TDP, whereas the above shadow paging
* version shares an MMU between L1 and L2.
*
* If the saved execution controls are non-zero then the EPT version
* has already run. In that case, restore the old controls. If EPT
* setup fails, e.g. EPT isn't supported, fall through and finish up.
*/
if (ctrls[0]) {
vmcs_write(CPU_EXEC_CTRL0, ctrls[0]);
vmcs_write(CPU_EXEC_CTRL1, ctrls[1]);
} else if (!setup_ept(false)) {
ctrls[0] = vmcs_read(CPU_EXEC_CTRL0);
ctrls[1] = vmcs_read(CPU_EXEC_CTRL1);
goto lol_5level;
}
free_page(pml5);
done:
skip_exit_vmcall();
enter_guest();
}
static void vmx_cr4_osxsave_test_guest(void)
{
write_cr4(read_cr4() & ~X86_CR4_OSXSAVE);
}
/*
* Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE
* after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different
* value than in L1.
*/
static void vmx_cr4_osxsave_test(void)
{
if (!this_cpu_has(X86_FEATURE_XSAVE)) {
report_skip("%s : XSAVE not detected", __func__);
return;
}
if (!(read_cr4() & X86_CR4_OSXSAVE)) {
unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE;
write_cr4(cr4);
vmcs_write(GUEST_CR4, cr4);
vmcs_write(HOST_CR4, cr4);
}
TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE));
test_set_guest(vmx_cr4_osxsave_test_guest);
enter_guest();
TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE));
}
/*
* FNOP with both CR0.TS and CR0.EM clear should not generate #NM, and the L2
* guest should exit normally.
*/
static void vmx_no_nm_test(void)
{
test_set_guest(fnop);
vmcs_write(GUEST_CR0, read_cr0() & ~(X86_CR0_TS | X86_CR0_EM));
enter_guest();
}
bool vmx_pending_event_ipi_fired;
static void vmx_pending_event_ipi_isr(isr_regs_t *regs)
{
vmx_pending_event_ipi_fired = true;
eoi();
}
bool vmx_pending_event_guest_run;
static void vmx_pending_event_guest(void)
{
vmcall();
vmx_pending_event_guest_run = true;
}
static void vmx_pending_event_test_core(bool guest_hlt)
{
int ipi_vector = 0xf1;
vmx_pending_event_ipi_fired = false;
handle_irq(ipi_vector, vmx_pending_event_ipi_isr);
vmx_pending_event_guest_run = false;
test_set_guest(vmx_pending_event_guest);
vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
enter_guest();
skip_exit_vmcall();
if (guest_hlt)
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
cli();
apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
APIC_DM_FIXED | ipi_vector,
0);
enter_guest();
assert_exit_reason(VMX_EXTINT);
report(!vmx_pending_event_guest_run,
"Guest did not run before host received IPI");
sti_nop_cli();
report(vmx_pending_event_ipi_fired,
"Got pending interrupt after IRQ enabled");
if (guest_hlt)
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
enter_guest();
report(vmx_pending_event_guest_run,
"Guest finished running when no interrupt");
}
static void vmx_pending_event_test(void)
{
vmx_pending_event_test_core(false);
}
static void vmx_pending_event_hlt_test(void)
{
vmx_pending_event_test_core(true);
}
static int vmx_window_test_db_count;
static void vmx_window_test_db_handler(struct ex_regs *regs)
{
vmx_window_test_db_count++;
}
static void vmx_nmi_window_test_guest(void)
{
handle_exception(DB_VECTOR, vmx_window_test_db_handler);
asm volatile("vmcall\n\t"
"nop\n\t");
handle_exception(DB_VECTOR, NULL);
}
static void verify_nmi_window_exit(u64 rip)
{
u32 exit_reason = vmcs_read(EXI_REASON);
report(exit_reason == VMX_NMI_WINDOW,
"Exit reason (%d) is 'NMI window'", exit_reason);
report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
vmcs_read(GUEST_RIP), rip);
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
}
static void vmx_nmi_window_test(void)
{
u64 nop_addr;
void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) {
report_skip("%s : \"Virtual NMIs\" exec control not supported", __func__);
return;
}
if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) {
report_skip("%s : \"NMI-window exiting\" exec control not supported", __func__);
return;
}
vmx_window_test_db_count = 0;
report_prefix_push("NMI-window");
test_set_guest(vmx_nmi_window_test_guest);
vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI);
enter_guest();
skip_exit_vmcall();
nop_addr = vmcs_read(GUEST_RIP);
/*
* Ask for "NMI-window exiting," and expect an immediate VM-exit.
* RIP will not advance.
*/
report_prefix_push("active, no blocking");
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
enter_guest();
verify_nmi_window_exit(nop_addr);
report_prefix_pop();
/*
* Ask for "NMI-window exiting" in a MOV-SS shadow, and expect
* a VM-exit on the next instruction after the nop. (The nop
* is one byte.)
*/
report_prefix_push("active, blocking by MOV-SS");
vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
enter_guest();
verify_nmi_window_exit(nop_addr + 1);
report_prefix_pop();
/*
* Ask for "NMI-window exiting" (with event injection), and
* expect a VM-exit after the event is injected. (RIP should
* be at the address specified in the IDT entry for #DB.)
*/
report_prefix_push("active, no blocking, injecting #DB");
vmcs_write(ENT_INTR_INFO,
INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
enter_guest();
verify_nmi_window_exit((u64)db_fault_addr);
report_prefix_pop();
/*
* Ask for "NMI-window exiting" with NMI blocking, and expect
* a VM-exit after the next IRET (i.e. after the #DB handler
* returns). So, RIP should be back at one byte past the nop.
*/
report_prefix_push("active, blocking by NMI");
vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI);
enter_guest();
verify_nmi_window_exit(nop_addr + 1);
report(vmx_window_test_db_count == 1,
"#DB handler executed once (actual %d times)",
vmx_window_test_db_count);
report_prefix_pop();
if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
report_skip("CPU does not support activity state HLT.");
} else {
/*
* Ask for "NMI-window exiting" when entering activity
* state HLT, and expect an immediate VM-exit. RIP is
* still one byte past the nop.
*/
report_prefix_push("halted, no blocking");
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
enter_guest();
verify_nmi_window_exit(nop_addr + 1);
report_prefix_pop();
/*
* Ask for "NMI-window exiting" when entering activity
* state HLT (with event injection), and expect a
* VM-exit after the event is injected. (RIP should be
* at the address specified in the IDT entry for #DB.)
*/
report_prefix_push("halted, no blocking, injecting #DB");
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
vmcs_write(ENT_INTR_INFO,
INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
DB_VECTOR);
enter_guest();
verify_nmi_window_exit((u64)db_fault_addr);
report_prefix_pop();
}
vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW);
enter_guest();
report_prefix_pop();
}
static void vmx_intr_window_test_guest(void)
{
handle_exception(DB_VECTOR, vmx_window_test_db_handler);
/*
* The two consecutive STIs are to ensure that only the first
* one has a shadow. Note that NOP and STI are one byte
* instructions.
*/
asm volatile("vmcall\n\t"
"nop\n\t"
"sti\n\t"
"sti\n\t");
handle_exception(DB_VECTOR, NULL);
}
static void verify_intr_window_exit(u64 rip)
{
u32 exit_reason = vmcs_read(EXI_REASON);
report(exit_reason == VMX_INTR_WINDOW,
"Exit reason (%d) is 'interrupt window'", exit_reason);
report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx",
vmcs_read(GUEST_RIP), rip);
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
}
static void vmx_intr_window_test(void)
{
u64 vmcall_addr;
u64 nop_addr;
unsigned int orig_db_gate_type;
void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]);
if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) {
report_skip("%s : \"Interrupt-window exiting\" exec control not supported", __func__);
return;
}
/*
* Change the IDT entry for #DB from interrupt gate to trap gate,
* so that it won't clear RFLAGS.IF. We don't want interrupts to
* be disabled after vectoring a #DB.
*/
orig_db_gate_type = boot_idt[DB_VECTOR].type;
boot_idt[DB_VECTOR].type = 15;
report_prefix_push("interrupt-window");
test_set_guest(vmx_intr_window_test_guest);
enter_guest();
assert_exit_reason(VMX_VMCALL);
vmcall_addr = vmcs_read(GUEST_RIP);
/*
* Ask for "interrupt-window exiting" with RFLAGS.IF set and
* no blocking; expect an immediate VM-exit. Note that we have
* not advanced past the vmcall instruction yet, so RIP should
* point to the vmcall instruction.
*/
report_prefix_push("active, no blocking, RFLAGS.IF=1");
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF);
enter_guest();
verify_intr_window_exit(vmcall_addr);
report_prefix_pop();
/*
* Ask for "interrupt-window exiting" (with event injection)
* with RFLAGS.IF set and no blocking; expect a VM-exit after
* the event is injected. That is, RIP should should be at the
* address specified in the IDT entry for #DB.
*/
report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB");
vmcs_write(ENT_INTR_INFO,
INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
vmcall_addr = vmcs_read(GUEST_RIP);
enter_guest();
verify_intr_window_exit((u64)db_fault_addr);
report_prefix_pop();
/*
* Let the L2 guest run through the IRET, back to the VMCALL.
* We have to clear the "interrupt-window exiting"
* VM-execution control, or it would just keep causing
* VM-exits. Then, advance past the VMCALL and set the
* "interrupt-window exiting" VM-execution control again.
*/
vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
enter_guest();
skip_exit_vmcall();
nop_addr = vmcs_read(GUEST_RIP);
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
/*
* Ask for "interrupt-window exiting" in a MOV-SS shadow with
* RFLAGS.IF set, and expect a VM-exit on the next
* instruction. (NOP is one byte.)
*/
report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1");
vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
enter_guest();
verify_intr_window_exit(nop_addr + 1);
report_prefix_pop();
/*
* Back up to the NOP and ask for "interrupt-window exiting"
* in an STI shadow with RFLAGS.IF set, and expect a VM-exit
* on the next instruction. (NOP is one byte.)
*/
report_prefix_push("active, blocking by STI, RFLAGS.IF=1");
vmcs_write(GUEST_RIP, nop_addr);
vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI);
enter_guest();
verify_intr_window_exit(nop_addr + 1);
report_prefix_pop();
/*
* Ask for "interrupt-window exiting" with RFLAGS.IF clear,
* and expect a VM-exit on the instruction following the STI
* shadow. Only the first STI (which is one byte past the NOP)
* should have a shadow. The second STI (which is two bytes
* past the NOP) has no shadow. Therefore, the interrupt
* window opens at three bytes past the NOP.
*/
report_prefix_push("active, RFLAGS.IF = 0");
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
enter_guest();
verify_intr_window_exit(nop_addr + 3);
report_prefix_pop();
if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) {
report_skip("CPU does not support activity state HLT.");
} else {
/*
* Ask for "interrupt-window exiting" when entering
* activity state HLT, and expect an immediate
* VM-exit. RIP is still three bytes past the nop.
*/
report_prefix_push("halted, no blocking");
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
enter_guest();
verify_intr_window_exit(nop_addr + 3);
report_prefix_pop();
/*
* Ask for "interrupt-window exiting" when entering
* activity state HLT (with event injection), and
* expect a VM-exit after the event is injected. That
* is, RIP should should be at the address specified
* in the IDT entry for #DB.
*/
report_prefix_push("halted, no blocking, injecting #DB");
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
vmcs_write(ENT_INTR_INFO,
INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION |
DB_VECTOR);
enter_guest();
verify_intr_window_exit((u64)db_fault_addr);
report_prefix_pop();
}
boot_idt[DB_VECTOR].type = orig_db_gate_type;
vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW);
enter_guest();
report_prefix_pop();
}
#define GUEST_TSC_OFFSET (1u << 30)
static u64 guest_tsc;
static void vmx_store_tsc_test_guest(void)
{
guest_tsc = rdtsc();
}
/*
* This test ensures that when IA32_TSC is in the VM-exit MSR-store
* list, the value saved is not subject to the TSC offset that is
* applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution.
*/
static void vmx_store_tsc_test(void)
{
struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC };
u64 low, high;
if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) {
report_skip("%s : \"Use TSC offsetting\" exec control not supported", __func__);
return;
}
test_set_guest(vmx_store_tsc_test_guest);
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
vmcs_write(EXI_MSR_ST_CNT, 1);
vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry));
vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET);
low = rdtsc();
enter_guest();
high = rdtsc();
report(low + GUEST_TSC_OFFSET <= guest_tsc &&
guest_tsc <= high + GUEST_TSC_OFFSET,
"RDTSC value in the guest (%lu) is in range [%lu, %lu]",
guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET);
report(low <= msr_entry.value && msr_entry.value <= high,
"IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]",
msr_entry.value, low, high);
}
static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs)
{
}
static void vmx_preemption_timer_zero_test_guest(void)
{
while (vmx_get_test_stage() < 3)
vmcall();
}
static void vmx_preemption_timer_zero_activate_preemption_timer(void)
{
vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
vmcs_write(PREEMPT_TIMER_VALUE, 0);
}
static void vmx_preemption_timer_zero_advance_past_vmcall(void)
{
vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
enter_guest();
skip_exit_vmcall();
}
static void vmx_preemption_timer_zero_inject_db(bool intercept_db)
{
vmx_preemption_timer_zero_activate_preemption_timer();
vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK |
INTR_TYPE_HARD_EXCEPTION | DB_VECTOR);
vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0);
enter_guest();
}
static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap)
{
vmx_preemption_timer_zero_activate_preemption_timer();
vmcs_write(GUEST_PENDING_DEBUG, PENDING_DBG_TRAP | DR6_TRAP1);
vmcs_write(EXC_BITMAP, exception_bitmap);
enter_guest();
}
static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip)
{
u32 reason = (u32)vmcs_read(EXI_REASON);
u64 guest_rip = vmcs_read(GUEST_RIP);
report(reason == VMX_PREEMPT && guest_rip == expected_rip,
"Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).",
reason, VMX_PREEMPT, guest_rip, expected_rip);
}
/*
* This test ensures that when the VMX preemption timer is zero at
* VM-entry, a VM-exit occurs after any event injection and after any
* pending debug exceptions are raised, but before execution of any
* guest instructions.
*/
static void vmx_preemption_timer_zero_test(void)
{
u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]);
handler old_db;
u32 reason;
if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__);
return;
}
/*
* Install a custom #DB handler that doesn't abort.
*/
old_db = handle_exception(DB_VECTOR,
vmx_preemption_timer_zero_test_db_handler);
test_set_guest(vmx_preemption_timer_zero_test_guest);
/*
* VMX-preemption timer should fire after event injection.
*/
vmx_set_test_stage(0);
vmx_preemption_timer_zero_inject_db(0);
vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
vmx_preemption_timer_zero_advance_past_vmcall();
/*
* VMX-preemption timer should fire after event injection.
* Exception bitmap is irrelevant, since you can't intercept
* an event that you injected.
*/
vmx_set_test_stage(1);
vmx_preemption_timer_zero_inject_db(true);
vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
vmx_preemption_timer_zero_advance_past_vmcall();
/*
* VMX-preemption timer should fire after pending debug exceptions
* have delivered a #DB trap.
*/
vmx_set_test_stage(2);
vmx_preemption_timer_zero_set_pending_dbg(0);
vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address);
vmx_preemption_timer_zero_advance_past_vmcall();
/*
* VMX-preemption timer would fire after pending debug exceptions
* have delivered a #DB trap, but in this case, the #DB trap is
* intercepted.
*/
vmx_set_test_stage(3);
vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR);
reason = (u32)vmcs_read(EXI_REASON);
report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)",
reason, VMX_EXC_NMI);
vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
enter_guest();
handle_exception(DB_VECTOR, old_db);
}
static u64 vmx_preemption_timer_tf_test_prev_rip;
static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs)
{
extern char vmx_preemption_timer_tf_test_endloop;
if (vmx_get_test_stage() == 2) {
/*
* Stage 2 means that we're done, one way or another.
* Arrange for the iret to drop us out of the wbinvd
* loop and stop single-stepping.
*/
regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop;
regs->rflags &= ~X86_EFLAGS_TF;
} else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) {
/*
* The RIP should alternate between the wbinvd and the
* jmp instruction in the code below. If we ever see
* the same instruction twice in a row, that means a
* single-step trap has been dropped. Let the
* hypervisor know about the failure by executing a
* VMCALL.
*/
vmcall();
}
vmx_preemption_timer_tf_test_prev_rip = regs->rip;
}
static void vmx_preemption_timer_tf_test_guest(void)
{
/*
* The hypervisor doesn't intercept WBINVD, so the loop below
* shouldn't be a problem--it's just two instructions
* executing in VMX non-root mode. However, when the
* hypervisor is running in a virtual environment, the parent
* hypervisor might intercept WBINVD and emulate it. If the
* parent hypervisor is broken, the single-step trap after the
* WBINVD might be lost.
*/
asm volatile("vmcall\n\t"
"0: wbinvd\n\t"
"1: jmp 0b\n\t"
"vmx_preemption_timer_tf_test_endloop:");
}
/*
* Ensure that the delivery of a "VMX-preemption timer expired"
* VM-exit doesn't disrupt single-stepping in the guest. Note that
* passing this test doesn't ensure correctness, because the test will
* only fail if the VMX-preemtion timer fires at the right time (or
* the wrong time, as it were).
*/
static void vmx_preemption_timer_tf_test(void)
{
handler old_db;
u32 reason;
int i;
if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__);
return;
}
old_db = handle_exception(DB_VECTOR,
vmx_preemption_timer_tf_test_db_handler);
test_set_guest(vmx_preemption_timer_tf_test_guest);
enter_guest();
skip_exit_vmcall();
vmx_set_test_stage(1);
vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
vmcs_write(PREEMPT_TIMER_VALUE, 50000);
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
/*
* The only exit we should see is "VMX-preemption timer
* expired." If we get a VMCALL exit, that means the #DB
* handler has detected a missing single-step trap. It doesn't
* matter where the guest RIP is when the VMX-preemption timer
* expires (whether it's in the WBINVD loop or in the #DB
* handler)--a single-step trap should never be discarded.
*/
for (i = 0; i < 10000; i++) {
enter_guest();
reason = (u32)vmcs_read(EXI_REASON);
if (reason == VMX_PREEMPT)
continue;
TEST_ASSERT(reason == VMX_VMCALL);
skip_exit_insn();
break;
}
report(reason == VMX_PREEMPT, "No single-step traps skipped");
vmx_set_test_stage(2);
vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
enter_guest();
handle_exception(DB_VECTOR, old_db);
}
#define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000
static u64 vmx_preemption_timer_expiry_start;
static u64 vmx_preemption_timer_expiry_finish;
static void vmx_preemption_timer_expiry_test_guest(void)
{
vmcall();
vmx_preemption_timer_expiry_start = fenced_rdtsc();
while (vmx_get_test_stage() == 0)
vmx_preemption_timer_expiry_finish = fenced_rdtsc();
}
/*
* Test that the VMX-preemption timer is not excessively delayed.
*
* Per the SDM, volume 3, VM-entry starts the VMX-preemption timer
* with the unsigned value in the VMX-preemption timer-value field,
* and the VMX-preemption timer counts down by 1 every time bit X in
* the TSC changes due to a TSC increment (where X is
* IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state
* other than the wait-for-SIPI state, the logical processor
* transitions to the C0 C-state and causes a VM-exit.
*
* The guest code above reads the starting TSC after VM-entry. At this
* point, the VMX-preemption timer has already been activated. Next,
* the guest code reads the current TSC in a loop, storing the value
* read to memory.
*
* If the RDTSC in the loop reads a value past the VMX-preemption
* timer deadline, then the VMX-preemption timer VM-exit must be
* delivered before the next instruction retires. Even if a higher
* priority SMI is delivered first, the VMX-preemption timer VM-exit
* must be delivered before the next instruction retires. Hence, a TSC
* value past the VMX-preemption timer deadline might be read, but it
* cannot be stored. If a TSC value past the deadline *is* stored,
* then the architectural specification has been violated.
*/
static void vmx_preemption_timer_expiry_test(void)
{
u32 preemption_timer_value;
union vmx_misc misc;
u64 tsc_deadline;
u32 reason;
if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__);
return;
}
test_set_guest(vmx_preemption_timer_expiry_test_guest);
enter_guest();
skip_exit_vmcall();
misc.val = rdmsr(MSR_IA32_VMX_MISC);
preemption_timer_value =
VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit;
vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT);
vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value);
vmx_set_test_stage(0);
enter_guest();
reason = (u32)vmcs_read(EXI_REASON);
TEST_ASSERT(reason == VMX_PREEMPT);
tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) <<
misc.pt_bit) + (preemption_timer_value << misc.pt_bit);
report(vmx_preemption_timer_expiry_finish < tsc_deadline,
"Last stored guest TSC (%lu) < TSC deadline (%lu)",
vmx_preemption_timer_expiry_finish, tsc_deadline);
vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT);
vmx_set_test_stage(1);
enter_guest();
}
static void vmx_db_test_guest(void)
{
/*
* For a hardware generated single-step #DB.
*/
asm volatile("vmcall;"
"nop;"
".Lpost_nop:");
/*
* ...in a MOVSS shadow, with pending debug exceptions.
*/
asm volatile("vmcall;"
"nop;"
".Lpost_movss_nop:");
/*
* For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and
* emulates it in software.)
*/
asm volatile("vmcall;"
"wbinvd;"
".Lpost_wbinvd:");
/*
* ...in a MOVSS shadow, with pending debug exceptions.
*/
asm volatile("vmcall;"
"wbinvd;"
".Lpost_movss_wbinvd:");
/*
* For a hardware generated single-step #DB in a transactional region.
*/
asm volatile("vmcall;"
".Lxbegin: xbegin .Lskip_rtm;"
"xend;"
".Lskip_rtm:");
}
/*
* Clear the pending debug exceptions and RFLAGS.TF and re-enter
* L2. No #DB is delivered and L2 continues to the next point of
* interest.
*/
static void dismiss_db(void)
{
vmcs_write(GUEST_PENDING_DEBUG, 0);
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED);
enter_guest();
}
/*
* Check a variety of VMCS fields relevant to an intercepted #DB exception.
* Then throw away the #DB exception and resume L2.
*/
static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg,
void *expected_rip, u64 expected_exit_qual,
u64 expected_dr6)
{
u32 reason = vmcs_read(EXI_REASON);
u32 intr_info = vmcs_read(EXI_INTR_INFO);
u64 exit_qual = vmcs_read(EXI_QUALIFICATION);
u64 guest_rip = vmcs_read(GUEST_RIP);
u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG);
u64 dr6 = read_dr6();
const u32 expected_intr_info = INTR_INFO_VALID_MASK |
INTR_TYPE_HARD_EXCEPTION | DB_VECTOR;
report(reason == VMX_EXC_NMI && intr_info == expected_intr_info,
"Expected #DB VM-exit");
report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)",
expected_rip, guest_rip);
report_xfail(xfail_pdbg, 0 == guest_pending_dbg,
"Expected pending debug exceptions 0 (actual %lx)",
guest_pending_dbg);
report_xfail(xfail_qual, expected_exit_qual == exit_qual,
"Expected exit qualification %lx (actual %lx)",
expected_exit_qual, exit_qual);
report_xfail(xfail_dr6, expected_dr6 == dr6,
"Expected DR6 %lx (actual %lx)", expected_dr6, dr6);
dismiss_db();
}
/*
* Assuming the guest has just exited on a VMCALL instruction, skip
* over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If
* pending debug exceptions are non-zero, set the VMCS up as if the
* previous instruction was a MOVSS that generated the indicated
* pending debug exceptions. Then enter L2.
*/
static void single_step_guest(const char *test_name, u64 starting_dr6,
u64 pending_debug_exceptions)
{
printf("\n%s\n", test_name);
skip_exit_vmcall();
write_dr6(starting_dr6);
vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF);
if (pending_debug_exceptions) {
vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions);
vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS);
}
enter_guest();
}
/*
* When L1 intercepts #DB, verify that a single-step trap clears
* pending debug exceptions, populates the exit qualification field
* properly, and that DR6 is not prematurely clobbered. In a
* (simulated) MOVSS shadow, make sure that the pending debug
* exception bits are properly accumulated into the exit qualification
* field.
*/
static void vmx_db_test(void)
{
/*
* We are going to set a few arbitrary bits in DR6 to verify that
* (a) DR6 is not modified by an intercepted #DB, and
* (b) stale bits in DR6 (DR6.BD, in particular) don't leak into
* the exit qualification field for a subsequent #DB exception.
*/
const u64 starting_dr6 = DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP3 | DR6_TRAP1;
extern char post_nop asm(".Lpost_nop");
extern char post_movss_nop asm(".Lpost_movss_nop");
extern char post_wbinvd asm(".Lpost_wbinvd");
extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd");
extern char xbegin asm(".Lxbegin");
extern char skip_rtm asm(".Lskip_rtm");
/*
* L1 wants to intercept #DB exceptions encountered in L2.
*/
vmcs_write(EXC_BITMAP, BIT(DB_VECTOR));
/*
* Start L2 and run it up to the first point of interest.
*/
test_set_guest(vmx_db_test_guest);
enter_guest();
/*
* Hardware-delivered #DB trap for single-step sets the
* standard that L0 has to follow for emulated instructions.
*/
single_step_guest("Hardware delivered single-step", starting_dr6, 0);
check_db_exit(false, false, false, &post_nop, DR6_BS, starting_dr6);
/*
* Hardware-delivered #DB trap for single-step in MOVSS shadow
* also sets the standard that L0 has to follow for emulated
* instructions. Here, we establish the VMCS pending debug
* exceptions to indicate that the simulated MOVSS triggered a
* data breakpoint as well as the single-step trap.
*/
single_step_guest("Hardware delivered single-step in MOVSS shadow",
starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0);
check_db_exit(false, false, false, &post_movss_nop, DR6_BS | DR6_TRAP0,
starting_dr6);
/*
* L0 synthesized #DB trap for single-step is buggy, because
* kvm (a) clobbers DR6 too early, and (b) tries its best to
* reconstitute the exit qualification from the prematurely
* modified DR6, but fails miserably.
*/
single_step_guest("Software synthesized single-step", starting_dr6, 0);
check_db_exit(false, false, false, &post_wbinvd, DR6_BS, starting_dr6);
/*
* L0 synthesized #DB trap for single-step in MOVSS shadow is
* even worse, because L0 also leaves the pending debug
* exceptions in the VMCS instead of accumulating them into
* the exit qualification field for the #DB exception.
*/
single_step_guest("Software synthesized single-step in MOVSS shadow",
starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0);
check_db_exit(true, false, true, &post_movss_wbinvd, DR6_BS | DR6_TRAP0,
starting_dr6);
/*
* Optional RTM test for hardware that supports RTM, to
* demonstrate that the current volume 3 of the SDM
* (325384-067US), table 27-1 is incorrect. Bit 16 of the exit
* qualification for debug exceptions is not reserved. It is
* set to 1 if a debug exception (#DB) or a breakpoint
* exception (#BP) occurs inside an RTM region while advanced
* debugging of RTM transactional regions is enabled.
*/
if (this_cpu_has(X86_FEATURE_RTM)) {
vmcs_write(ENT_CONTROLS,
vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS);
/*
* Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15]
* in the guest to enable advanced debugging of RTM
* transactional regions.
*/
vmcs_write(GUEST_DR7, BIT(11));
vmcs_write(GUEST_DEBUGCTL, BIT(15));
single_step_guest("Hardware delivered single-step in "
"transactional region", starting_dr6, 0);
check_db_exit(false, false, false, &xbegin, BIT(16),
starting_dr6);
} else {
vmcs_write(GUEST_RIP, (u64)&skip_rtm);
enter_guest();
}
}
static void enable_vid(void)
{
void *virtual_apic_page;
assert(cpu_has_apicv());
disable_intercept_for_x2apic_msrs();
virtual_apic_page = alloc_page();
vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page);
vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT);
vmcs_write(EOI_EXIT_BITMAP0, 0x0);
vmcs_write(EOI_EXIT_BITMAP1, 0x0);
vmcs_write(EOI_EXIT_BITMAP2, 0x0);
vmcs_write(EOI_EXIT_BITMAP3, 0x0);
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW);
vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC);
}
static void trigger_ioapic_scan_thread(void *data)
{
/* Wait until other CPU entered L2 */
while (vmx_get_test_stage() != 1)
;
/* Trigger ioapic scan */
ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL);
vmx_set_test_stage(2);
}
static void irq_79_handler_guest(isr_regs_t *regs)
{
eoi();
/* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */
vmcall();
}
/*
* Constant for num of busy-loop iterations after which
* a timer interrupt should have happened in host
*/
#define TIMER_INTERRUPT_DELAY 100000000
static void vmx_eoi_bitmap_ioapic_scan_test_guest(void)
{
handle_irq(0x79, irq_79_handler_guest);
sti();
/* Signal to L1 CPU to trigger ioapic scan */
vmx_set_test_stage(1);
/* Wait until L1 CPU to trigger ioapic scan */
while (vmx_get_test_stage() != 2)
;
/*
* Wait for L0 timer interrupt to be raised while we run in L2
* such that L0 will process the IOAPIC scan request before
* resuming L2
*/
delay(TIMER_INTERRUPT_DELAY);
asm volatile ("int $0x79");
}
static void vmx_eoi_bitmap_ioapic_scan_test(void)
{
if (!cpu_has_apicv() || (cpu_count() < 2)) {
report_skip("%s : Not all required APICv bits supported or CPU count < 2", __func__);
return;
}
enable_vid();
on_cpu_async(1, trigger_ioapic_scan_thread, NULL);
test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest);
/*
* Launch L2.
* We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED).
* In case the reason isn't VMX_VMCALL, the assertion inside
* skip_exit_vmcall() will fail.
*/
enter_guest();
skip_exit_vmcall();
/* Let L2 finish */
enter_guest();
report_pass(__func__);
}
#define HLT_WITH_RVI_VECTOR (0xf1)
bool vmx_hlt_with_rvi_guest_isr_fired;
static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs)
{
vmx_hlt_with_rvi_guest_isr_fired = true;
eoi();
}
static void vmx_hlt_with_rvi_guest(void)
{
handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr);
sti_nop();
asm volatile ("nop");
vmcall();
}
static void vmx_hlt_with_rvi_test(void)
{
if (!cpu_has_apicv()) {
report_skip("%s : Not all required APICv bits supported", __func__);
return;
}
enable_vid();
vmx_hlt_with_rvi_guest_isr_fired = false;
test_set_guest(vmx_hlt_with_rvi_guest);
enter_guest();
skip_exit_vmcall();
vmcs_write(GUEST_ACTV_STATE, ACTV_HLT);
vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR);
enter_guest();
report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest");
}
static void set_irq_line_thread(void *data)
{
/* Wait until other CPU entered L2 */
while (vmx_get_test_stage() != 1)
;
/* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */
ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
vmx_set_test_stage(2);
}
static bool irq_78_handler_vmcall_before_eoi;
static void irq_78_handler_guest(isr_regs_t *regs)
{
set_irq_line(0xf, 0);
if (irq_78_handler_vmcall_before_eoi)
vmcall();
eoi();
vmcall();
}
static void vmx_apic_passthrough_guest(void)
{
handle_irq(0x78, irq_78_handler_guest);
sti();
/* If requested, wait for other CPU to trigger ioapic scan */
if (vmx_get_test_stage() < 1) {
vmx_set_test_stage(1);
while (vmx_get_test_stage() != 2)
;
}
set_irq_line(0xf, 1);
}
static void vmx_apic_passthrough(bool set_irq_line_from_thread)
{
if (set_irq_line_from_thread && (cpu_count() < 2)) {
report_skip("%s : CPU count < 2", __func__);
return;
}
/* Test device is required for generating IRQs */
if (!test_device_enabled()) {
report_skip("%s : No test device enabled", __func__);
return;
}
u64 cpu_ctrl_0 = CPU_SECONDARY;
u64 cpu_ctrl_1 = 0;
disable_intercept_for_x2apic_msrs();
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
if (set_irq_line_from_thread) {
irq_78_handler_vmcall_before_eoi = false;
on_cpu_async(1, set_irq_line_thread, NULL);
} else {
irq_78_handler_vmcall_before_eoi = true;
ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL);
vmx_set_test_stage(2);
}
test_set_guest(vmx_apic_passthrough_guest);
if (irq_78_handler_vmcall_before_eoi) {
/* Before EOI remote_irr should still be set */
enter_guest();
skip_exit_vmcall();
TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr,
"IOAPIC pass-through: remote_irr=1 before EOI");
}
/* After EOI remote_irr should be cleared */
enter_guest();
skip_exit_vmcall();
TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr,
"IOAPIC pass-through: remote_irr=0 after EOI");
/* Let L2 finish */
enter_guest();
report_pass(__func__);
}
static void vmx_apic_passthrough_test(void)
{
vmx_apic_passthrough(false);
}
static void vmx_apic_passthrough_thread_test(void)
{
vmx_apic_passthrough(true);
}
static void vmx_apic_passthrough_tpr_threshold_guest(void)
{
cli();
apic_set_tpr(0);
}
static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired;
static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs)
{
vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true;
eoi();
}
static void vmx_apic_passthrough_tpr_threshold_test(void)
{
int ipi_vector = 0xe1;
disable_intercept_for_x2apic_msrs();
vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT);
/* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */
cli();
apic_set_tpr((ipi_vector >> 4) + 1);
apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
APIC_DM_FIXED | ipi_vector,
0);
test_set_guest(vmx_apic_passthrough_tpr_threshold_guest);
enter_guest();
report(apic_get_tpr() == 0, "TPR was zero by guest");
/* Clean pending self-IPI */
vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false;
handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr);
sti_nop();
report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired");
report_pass(__func__);
}
static u64 init_signal_test_exit_reason;
static bool init_signal_test_thread_continued;
static void init_signal_test_thread(void *data)
{
struct vmcs *test_vmcs = data;
/* Enter VMX operation (i.e. exec VMXON) */
u64 *ap_vmxon_region = alloc_page();
enable_vmx();
init_vmx(ap_vmxon_region);
TEST_ASSERT(!__vmxon_safe(ap_vmxon_region));
/* Signal CPU have entered VMX operation */
vmx_set_test_stage(1);
/* Wait for BSP CPU to send INIT signal */
while (vmx_get_test_stage() != 2)
;
/*
* Signal that we continue as usual as INIT signal
* should be blocked while CPU is in VMX operation
*/
vmx_set_test_stage(3);
/* Wait for signal to enter VMX non-root mode */
while (vmx_get_test_stage() != 4)
;
/* Enter VMX non-root mode */
test_set_guest(v2_null_test_guest);
make_vmcs_current(test_vmcs);
enter_guest();
/* Save exit reason for BSP CPU to compare to expected result */
init_signal_test_exit_reason = vmcs_read(EXI_REASON);
/* VMCLEAR test-vmcs so it could be loaded by BSP CPU */
vmcs_clear(test_vmcs);
launched = false;
/* Signal that CPU exited to VMX root mode */
vmx_set_test_stage(5);
/* Wait for BSP CPU to signal to exit VMX operation */
while (vmx_get_test_stage() != 6)
;
/* Exit VMX operation (i.e. exec VMXOFF) */
vmx_off();
/*
* Signal to BSP CPU that we continue as usual as INIT signal
* should have been consumed by VMX_INIT exit from guest
*/
vmx_set_test_stage(7);
/* Wait for BSP CPU to signal to enter VMX operation */
while (vmx_get_test_stage() != 8)
;
/* Enter VMX operation (i.e. exec VMXON) */
TEST_ASSERT(!__vmxon_safe(ap_vmxon_region));
/* Signal to BSP we are in VMX operation */
vmx_set_test_stage(9);
/* Wait for BSP CPU to send INIT signal */
while (vmx_get_test_stage() != 10)
;
/* Exit VMX operation (i.e. exec VMXOFF) */
vmx_off();
/*
* Exiting VMX operation should result in latched
* INIT signal being processed. Therefore, we should
* never reach the below code. Thus, signal to BSP
* CPU if we have reached here so it is able to
* report an issue if it happens.
*/
init_signal_test_thread_continued = true;
}
#define INIT_SIGNAL_TEST_DELAY 100000000ULL
static void vmx_init_signal_test(void)
{
struct vmcs *test_vmcs;
if (cpu_count() < 2) {
report_skip("%s : CPU count < 2", __func__);
return;
}
/* VMCLEAR test-vmcs so it could be loaded by other CPU */
vmcs_save(&test_vmcs);
vmcs_clear(test_vmcs);
vmx_set_test_stage(0);
on_cpu_async(1, init_signal_test_thread, test_vmcs);
/* Wait for other CPU to enter VMX operation */
while (vmx_get_test_stage() != 1)
;
/* Send INIT signal to other CPU */
apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
id_map[1]);
/* Signal other CPU we have sent INIT signal */
vmx_set_test_stage(2);
/*
* Wait reasonable amount of time for INIT signal to
* be received on other CPU and verify that other CPU
* have proceed as usual to next test stage as INIT
* signal should be blocked while other CPU in
* VMX operation
*/
delay(INIT_SIGNAL_TEST_DELAY);
report(vmx_get_test_stage() == 3,
"INIT signal blocked when CPU in VMX operation");
/* No point to continue if we failed at this point */
if (vmx_get_test_stage() != 3)
return;
/* Signal other CPU to enter VMX non-root mode */
init_signal_test_exit_reason = -1ull;
vmx_set_test_stage(4);
/*
* Wait reasonable amount of time for other CPU
* to exit to VMX root mode
*/
delay(INIT_SIGNAL_TEST_DELAY);
if (vmx_get_test_stage() != 5) {
report_fail("Pending INIT signal didn't result in VMX exit");
return;
}
report(init_signal_test_exit_reason == VMX_INIT,
"INIT signal during VMX non-root mode result in exit-reason %s (%lu)",
exit_reason_description(init_signal_test_exit_reason),
init_signal_test_exit_reason);
/* Run guest to completion */
make_vmcs_current(test_vmcs);
enter_guest();
/* Signal other CPU to exit VMX operation */
init_signal_test_thread_continued = false;
vmx_set_test_stage(6);
/* Wait reasonable amount of time for other CPU to exit VMX operation */
delay(INIT_SIGNAL_TEST_DELAY);
report(vmx_get_test_stage() == 7,
"INIT signal consumed on VMX_INIT exit");
/* No point to continue if we failed at this point */
if (vmx_get_test_stage() != 7)
return;
/* Signal other CPU to enter VMX operation */
vmx_set_test_stage(8);
/* Wait for other CPU to enter VMX operation */
while (vmx_get_test_stage() != 9)
;
/* Send INIT signal to other CPU */
apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
id_map[1]);
/* Signal other CPU we have sent INIT signal */
vmx_set_test_stage(10);
/*
* Wait reasonable amount of time for other CPU
* to exit VMX operation and process INIT signal
*/
delay(INIT_SIGNAL_TEST_DELAY);
report(!init_signal_test_thread_continued,
"INIT signal processed after exit VMX operation");
/*
* TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S)
* to re-init it to kvm-unit-tests standard environment.
* Somehow (?) verify that SIPI was indeed received.
*/
}
#define SIPI_SIGNAL_TEST_DELAY 100000000ULL
static void vmx_sipi_test_guest(void)
{
if (apic_id() == 0) {
/* wait AP enter guest with activity=WAIT_SIPI */
while (vmx_get_test_stage() != 1)
;
delay(SIPI_SIGNAL_TEST_DELAY);
/* First SIPI signal */
apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]);
/* wait AP enter guest */
while (vmx_get_test_stage() != 2)
;
delay(SIPI_SIGNAL_TEST_DELAY);
/* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */
apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]);
report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]);
/* Delay a while to check whether second SIPI would cause VMExit */
delay(SIPI_SIGNAL_TEST_DELAY);
/* Test is done, notify AP to exit test */
vmx_set_test_stage(3);
/* wait AP exit non-root mode */
while (vmx_get_test_stage() != 5)
;
} else {
/* wait BSP notify test is done */
while (vmx_get_test_stage() != 3)
;
/* AP exit guest */
vmx_set_test_stage(4);
}
}
static void sipi_test_ap_thread(void *data)
{
struct vmcs *ap_vmcs;
u64 *ap_vmxon_region;
void *ap_stack, *ap_syscall_stack;
u64 cpu_ctrl_0 = CPU_SECONDARY;
u64 cpu_ctrl_1 = 0;
/* Enter VMX operation (i.e. exec VMXON) */
ap_vmxon_region = alloc_page();
enable_vmx();
init_vmx(ap_vmxon_region);
TEST_ASSERT(!__vmxon_safe(ap_vmxon_region));
init_vmcs(&ap_vmcs);
make_vmcs_current(ap_vmcs);
/* Set stack for AP */
ap_stack = alloc_page();
ap_syscall_stack = alloc_page();
vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1));
vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1));
/* passthrough lapic to L2 */
disable_intercept_for_x2apic_msrs();
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
/* Set guest activity state to wait-for-SIPI state */
vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI);
vmx_set_test_stage(1);
/* AP enter guest */
enter_guest();
if (vmcs_read(EXI_REASON) == VMX_SIPI) {
report_pass("AP: Handle SIPI VMExit");
vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE);
vmx_set_test_stage(2);
} else {
report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON));
vmx_off();
return;
}
/* AP enter guest */
enter_guest();
report(vmcs_read(EXI_REASON) != VMX_SIPI,
"AP: should no SIPI VMExit since activity is not in WAIT_SIPI state");
/* notify BSP that AP is already exit from non-root mode */
vmx_set_test_stage(5);
/* Leave VMX operation */
vmx_off();
}
static void vmx_sipi_signal_test(void)
{
if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) {
report_skip("%s : \"ACTIVITY_WAIT_SIPI state\" not supported", __func__);
return;
}
if (cpu_count() < 2) {
report_skip("%s : CPU count < 2", __func__);
return;
}
u64 cpu_ctrl_0 = CPU_SECONDARY;
u64 cpu_ctrl_1 = 0;
/* passthrough lapic to L2 */
disable_intercept_for_x2apic_msrs();
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT);
vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0);
vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1);
test_set_guest(vmx_sipi_test_guest);
/* update CR3 on AP */
on_cpu(1, update_cr3, (void *)read_cr3());
/* start AP */
on_cpu_async(1, sipi_test_ap_thread, NULL);
vmx_set_test_stage(0);
/* BSP enter guest */
enter_guest();
}
enum vmcs_access {
ACCESS_VMREAD,
ACCESS_VMWRITE,
ACCESS_NONE,
};
struct vmcs_shadow_test_common {
enum vmcs_access op;
enum Reason reason;
u64 field;
u64 value;
u64 flags;
u64 time;
} l1_l2_common;
static inline u64 vmread_flags(u64 field, u64 *val)
{
u64 flags;
asm volatile ("vmread %2, %1; pushf; pop %0"
: "=r" (flags), "=rm" (*val) : "r" (field) : "cc");
return flags & X86_EFLAGS_ALU;
}
static inline u64 vmwrite_flags(u64 field, u64 val)
{
u64 flags;
asm volatile ("vmwrite %1, %2; pushf; pop %0"
: "=r"(flags) : "rm" (val), "r" (field) : "cc");
return flags & X86_EFLAGS_ALU;
}
static void vmx_vmcs_shadow_test_guest(void)
{
struct vmcs_shadow_test_common *c = &l1_l2_common;
u64 start;
while (c->op != ACCESS_NONE) {
start = rdtsc();
switch (c->op) {
default:
c->flags = -1ull;
break;
case ACCESS_VMREAD:
c->flags = vmread_flags(c->field, &c->value);
break;
case ACCESS_VMWRITE:
c->flags = vmwrite_flags(c->field, 0);
break;
}
c->time = rdtsc() - start;
vmcall();
}
}
static u64 vmread_from_shadow(u64 field)
{
struct vmcs *primary;
struct vmcs *shadow;
u64 value;
TEST_ASSERT(!vmcs_save(&primary));
shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
TEST_ASSERT(!make_vmcs_current(shadow));
value = vmcs_read(field);
TEST_ASSERT(!make_vmcs_current(primary));
return value;
}
static u64 vmwrite_to_shadow(u64 field, u64 value)
{
struct vmcs *primary;
struct vmcs *shadow;
TEST_ASSERT(!vmcs_save(&primary));
shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
TEST_ASSERT(!make_vmcs_current(shadow));
vmcs_write(field, value);
value = vmcs_read(field);
TEST_ASSERT(!make_vmcs_current(primary));
return value;
}
static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access)
{
struct vmcs_shadow_test_common *c = &l1_l2_common;
c->op = access;
vmcs_write(VMX_INST_ERROR, 0);
enter_guest();
c->reason = vmcs_read(EXI_REASON) & 0xffff;
if (c->reason != VMX_VMCALL) {
skip_exit_insn();
enter_guest();
}
skip_exit_vmcall();
}
static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field)
{
struct vmcs_shadow_test_common *c = &l1_l2_common;
struct vmcs *shadow;
u64 value;
uintptr_t flags[2];
bool good_shadow;
u32 vmx_inst_error;
report_prefix_pushf("field %lx", field);
c->field = field;
shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR);
if (shadow != (struct vmcs *)-1ull) {
flags[ACCESS_VMREAD] = vmread_flags(field, &value);
flags[ACCESS_VMWRITE] = vmwrite_flags(field, value);
good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE];
} else {
/*
* When VMCS link pointer is -1ull, VMWRITE/VMREAD on
* shadowed-fields should fail with setting RFLAGS.CF.
*/
flags[ACCESS_VMREAD] = X86_EFLAGS_CF;
flags[ACCESS_VMWRITE] = X86_EFLAGS_CF;
good_shadow = false;
}
/* Intercept both VMREAD and VMWRITE. */
report_prefix_push("no VMREAD/VMWRITE permission");
/* VMWRITE/VMREAD done on reserved-bit should always intercept */
if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) {
set_bit(field, bitmap[ACCESS_VMREAD]);
set_bit(field, bitmap[ACCESS_VMWRITE]);
}
vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
report_prefix_pop();
if (field >> VMCS_FIELD_RESERVED_SHIFT)
goto out;
/* Permit shadowed VMREAD. */
report_prefix_push("VMREAD permission only");
clear_bit(field, bitmap[ACCESS_VMREAD]);
set_bit(field, bitmap[ACCESS_VMWRITE]);
if (good_shadow)
value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE");
vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
vmx_inst_error = vmcs_read(VMX_INST_ERROR);
report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
c->time);
report(c->flags == flags[ACCESS_VMREAD],
"ALU flags after VMREAD (%lx) are as expected (%lx)",
c->flags, flags[ACCESS_VMREAD]);
if (good_shadow)
report(c->value == value,
"value read from shadow (%lx) is as expected (%lx)",
c->value, value);
else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
"VMX_INST_ERROR (%d) is as expected (%d)",
vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
report_prefix_pop();
/* Permit shadowed VMWRITE. */
report_prefix_push("VMWRITE permission only");
set_bit(field, bitmap[ACCESS_VMREAD]);
clear_bit(field, bitmap[ACCESS_VMWRITE]);
if (good_shadow)
vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
vmx_inst_error = vmcs_read(VMX_INST_ERROR);
report(c->reason == VMX_VMCALL,
"shadowed for VMWRITE (in %ld cycles)",
c->time);
report(c->flags == flags[ACCESS_VMREAD],
"ALU flags after VMWRITE (%lx) are as expected (%lx)",
c->flags, flags[ACCESS_VMREAD]);
if (good_shadow) {
value = vmread_from_shadow(field);
report(value == 0,
"shadow VMCS value (%lx) is as expected (%lx)", value,
0ul);
} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
"VMX_INST_ERROR (%d) is as expected (%d)",
vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
}
vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
report(c->reason == VMX_VMREAD, "not shadowed for VMREAD");
report_prefix_pop();
/* Permit shadowed VMREAD and VMWRITE. */
report_prefix_push("VMREAD and VMWRITE permission");
clear_bit(field, bitmap[ACCESS_VMREAD]);
clear_bit(field, bitmap[ACCESS_VMWRITE]);
if (good_shadow)
vmwrite_to_shadow(field, MAGIC_VAL_1 + field);
vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE);
vmx_inst_error = vmcs_read(VMX_INST_ERROR);
report(c->reason == VMX_VMCALL,
"shadowed for VMWRITE (in %ld cycles)",
c->time);
report(c->flags == flags[ACCESS_VMREAD],
"ALU flags after VMWRITE (%lx) are as expected (%lx)",
c->flags, flags[ACCESS_VMREAD]);
if (good_shadow) {
value = vmread_from_shadow(field);
report(value == 0,
"shadow VMCS value (%lx) is as expected (%lx)", value,
0ul);
} else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) {
report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
"VMX_INST_ERROR (%d) is as expected (%d)",
vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
}
vmcs_shadow_test_access(bitmap, ACCESS_VMREAD);
vmx_inst_error = vmcs_read(VMX_INST_ERROR);
report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)",
c->time);
report(c->flags == flags[ACCESS_VMREAD],
"ALU flags after VMREAD (%lx) are as expected (%lx)",
c->flags, flags[ACCESS_VMREAD]);
if (good_shadow)
report(c->value == 0,
"value read from shadow (%lx) is as expected (%lx)",
c->value, 0ul);
else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD])
report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT,
"VMX_INST_ERROR (%d) is as expected (%d)",
vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
report_prefix_pop();
out:
report_prefix_pop();
}
static void vmx_vmcs_shadow_test_body(u8 *bitmap[2])
{
unsigned base;
unsigned index;
unsigned bit;
unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM);
/* Run test on all possible valid VMCS fields */
for (base = 0;
base < (1 << VMCS_FIELD_RESERVED_SHIFT);
base += (1 << VMCS_FIELD_TYPE_SHIFT))
for (index = 0; index <= highest_index; index++)
vmcs_shadow_test_field(bitmap, base + index);
/*
* Run tests on some invalid VMCS fields
* (Have reserved bit set).
*/
for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++)
vmcs_shadow_test_field(bitmap, (1ull << bit));
}
static void vmx_vmcs_shadow_test(void)
{
u8 *bitmap[2];
struct vmcs *shadow;
if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) {
report_skip("%s : \"Activate secondary controls\" not supported", __func__);
return;
}
if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) {
report_skip("%s : \"VMCS shadowing\" not supported", __func__);
return;
}
if (!(rdmsr(MSR_IA32_VMX_MISC) &
MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) {
report_skip("%s : VMWRITE can't modify VM-exit information fields.", __func__);
return;
}
test_set_guest(vmx_vmcs_shadow_test_guest);
bitmap[ACCESS_VMREAD] = alloc_page();
bitmap[ACCESS_VMWRITE] = alloc_page();
vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD]));
vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE]));
shadow = alloc_page();
shadow->hdr.revision_id = basic.revision;
shadow->hdr.shadow_vmcs = 1;
TEST_ASSERT(!vmcs_clear(shadow));
vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC);
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS);
vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow));
report_prefix_push("valid link pointer");
vmx_vmcs_shadow_test_body(bitmap);
report_prefix_pop();
vmcs_write(VMCS_LINK_PTR, -1ull);
report_prefix_push("invalid link pointer");
vmx_vmcs_shadow_test_body(bitmap);
report_prefix_pop();
l1_l2_common.op = ACCESS_NONE;
enter_guest();
}
/*
* This test monitors the difference between a guest RDTSC instruction
* and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12
* VM-exit MSR-store list when taking a VM-exit on the instruction
* following RDTSC.
*/
#define RDTSC_DIFF_ITERS 100000
#define RDTSC_DIFF_FAILS 100
#define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750
/*
* Set 'use TSC offsetting' and set the guest offset to the
* inverse of the host's current TSC value, so that the guest starts running
* with an effective TSC value of 0.
*/
static void reset_guest_tsc_to_zero(void)
{
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET);
vmcs_write(TSC_OFFSET, -rdtsc());
}
static void rdtsc_vmexit_diff_test_guest(void)
{
int i;
for (i = 0; i < RDTSC_DIFF_ITERS; i++)
/* Ensure rdtsc is the last instruction before the vmcall. */
asm volatile("rdtsc; vmcall" : : : "eax", "edx");
}
/*
* This function only considers the "use TSC offsetting" VM-execution
* control. It does not handle "use TSC scaling" (because the latter
* isn't available to the host today.)
*/
static unsigned long long host_time_to_guest_time(unsigned long long t)
{
TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) ||
!(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING));
if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET)
t += vmcs_read(TSC_OFFSET);
return t;
}
static unsigned long long rdtsc_vmexit_diff_test_iteration(void)
{
unsigned long long guest_tsc, host_to_guest_tsc;
enter_guest();
skip_exit_vmcall();
guest_tsc = (u32) regs.rax + (regs.rdx << 32);
host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value);
return host_to_guest_tsc - guest_tsc;
}
static void rdtsc_vmexit_diff_test(void)
{
unsigned long long delta;
int fail = 0;
int i;
if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET))
test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n");
test_set_guest(rdtsc_vmexit_diff_test_guest);
reset_guest_tsc_to_zero();
/*
* Set up the VMCS12 VM-exit MSR-store list to store just one
* MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is
* in the host time domain (i.e., it is not adjusted according
* to the TSC multiplier and TSC offset fields in the VMCS12,
* as a guest RDTSC would be.)
*/
exit_msr_store = alloc_page();
exit_msr_store[0].index = MSR_IA32_TSC;
vmcs_write(EXI_MSR_ST_CNT, 1);
vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store));
for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) {
delta = rdtsc_vmexit_diff_test_iteration();
if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD)
fail++;
}
enter_guest();
report(fail < RDTSC_DIFF_FAILS,
"RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu",
fail, i, delta);
}
static int invalid_msr_init(struct vmcs *vmcs)
{
if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) {
printf("\tPreemption timer is not supported\n");
return VMX_TEST_EXIT;
}
vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT);
preempt_val = 10000000;
vmcs_write(PREEMPT_TIMER_VALUE, preempt_val);
preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F;
if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT))
printf("\tSave preemption value is not supported\n");
vmcs_write(ENT_MSR_LD_CNT, 1);
vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000);
return VMX_TEST_START;
}
static void invalid_msr_main(void)
{
report_fail("Invalid MSR load");
}
static int invalid_msr_exit_handler(union exit_reason exit_reason)
{
report_fail("Invalid MSR load");
print_vmexit_info(exit_reason);
return VMX_TEST_EXIT;
}
static int invalid_msr_entry_failure(struct vmentry_result *result)
{
report(result->exit_reason.failed_vmentry &&
result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load");
return VMX_TEST_VMEXIT;
}
/*
* The max number of MSRs in an atomic switch MSR list is:
* (111B + 1) * 512 = 4096
*
* Each list entry consumes:
* 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes
*
* Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some.
*/
static const u32 msr_list_page_order = 5;
static void atomic_switch_msr_limit_test_guest(void)
{
vmcall();
}
static void populate_msr_list(struct vmx_msr_entry *msr_list,
size_t byte_capacity, int count)
{
int i;
for (i = 0; i < count; i++) {
msr_list[i].index = MSR_IA32_TSC;
msr_list[i].reserved = 0;
msr_list[i].value = 0x1234567890abcdef;
}
memset(msr_list + count, 0xff,
byte_capacity - count * sizeof(*msr_list));
}
static int max_msr_list_size(void)
{
u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC);
u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1;
return factor * 512;
}
static void atomic_switch_msrs_test(int count)
{
struct vmx_msr_entry *vm_enter_load;
struct vmx_msr_entry *vm_exit_load;
struct vmx_msr_entry *vm_exit_store;
int max_allowed = max_msr_list_size();
int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT);
/* Exceeding the max MSR list size at exit triggers KVM to abort. */
int exit_count = count > max_allowed ? max_allowed : count;
int cleanup_count = count > max_allowed ? 2 : 1;
int i;
/*
* Check for the IA32_TSC MSR,
* available with the "TSC flag" and used to populate the MSR lists.
*/
if (!(cpuid(1).d & (1 << 4))) {
report_skip("%s : \"Time Stamp Counter\" not supported", __func__);
return;
}
/* Set L2 guest. */
test_set_guest(atomic_switch_msr_limit_test_guest);
/* Setup atomic MSR switch lists. */
vm_enter_load = alloc_pages(msr_list_page_order);
vm_exit_load = alloc_pages(msr_list_page_order);
vm_exit_store = alloc_pages(msr_list_page_order);
vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load);
vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load);
vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store);
/*
* VM-Enter should succeed up to the max number of MSRs per list, and
* should not consume junk beyond the last entry.
*/
populate_msr_list(vm_enter_load, byte_capacity, count);
populate_msr_list(vm_exit_load, byte_capacity, exit_count);
populate_msr_list(vm_exit_store, byte_capacity, exit_count);
vmcs_write(ENT_MSR_LD_CNT, count);
vmcs_write(EXI_MSR_LD_CNT, exit_count);
vmcs_write(EXI_MSR_ST_CNT, exit_count);
if (count <= max_allowed) {
enter_guest();
assert_exit_reason(VMX_VMCALL);
skip_exit_vmcall();
} else {
u32 exit_qual;
test_guest_state("Invalid MSR Load Count", true, count,
"ENT_MSR_LD_CNT");
exit_qual = vmcs_read(EXI_QUALIFICATION);
report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.",
exit_qual, max_allowed + 1);
}
/* Cleanup. */
vmcs_write(ENT_MSR_LD_CNT, 0);
vmcs_write(EXI_MSR_LD_CNT, 0);
vmcs_write(EXI_MSR_ST_CNT, 0);
for (i = 0; i < cleanup_count; i++) {
enter_guest();
skip_exit_vmcall();
}
free_pages_by_order(vm_enter_load, msr_list_page_order);
free_pages_by_order(vm_exit_load, msr_list_page_order);
free_pages_by_order(vm_exit_store, msr_list_page_order);
}
static void atomic_switch_max_msrs_test(void)
{
atomic_switch_msrs_test(max_msr_list_size());
}
static void atomic_switch_overflow_msrs_test(void)
{
if (test_device_enabled())
atomic_switch_msrs_test(max_msr_list_size() + 1);
else
test_skip("Test is only supported on KVM");
}
static void vmx_pf_exception_test_guest(void)
{
ac_test_run(PT_LEVEL_PML4, false);
}
static void vmx_pf_exception_forced_emulation_test_guest(void)
{
ac_test_run(PT_LEVEL_PML4, true);
}
typedef void (*invalidate_tlb_t)(void *data);
typedef void (*pf_exception_test_guest_t)(void);
static void __vmx_pf_exception_test(invalidate_tlb_t inv_fn, void *data,
pf_exception_test_guest_t guest_fn)
{
u64 efer;
struct cpuid cpuid;
test_set_guest(guest_fn);
/* Intercept INVLPG when to perform TLB invalidation from L1 (this). */
if (inv_fn)
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INVLPG);
else
vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INVLPG);
enter_guest();
while (vmcs_read(EXI_REASON) != VMX_VMCALL) {
switch (vmcs_read(EXI_REASON)) {
case VMX_RDMSR:
assert(regs.rcx == MSR_EFER);
efer = vmcs_read(GUEST_EFER);
regs.rdx = efer >> 32;
regs.rax = efer & 0xffffffff;
break;
case VMX_WRMSR:
assert(regs.rcx == MSR_EFER);
efer = regs.rdx << 32 | (regs.rax & 0xffffffff);
vmcs_write(GUEST_EFER, efer);
break;
case VMX_CPUID:
cpuid = (struct cpuid) {0, 0, 0, 0};
cpuid = raw_cpuid(regs.rax, regs.rcx);
regs.rax = cpuid.a;
regs.rbx = cpuid.b;
regs.rcx = cpuid.c;
regs.rdx = cpuid.d;
break;
case VMX_INVLPG:
inv_fn(data);
break;
default:
assert_msg(false,
"Unexpected exit to L1, exit_reason: %s (0x%lx)",
exit_reason_description(vmcs_read(EXI_REASON)),
vmcs_read(EXI_REASON));
}
skip_exit_insn();
enter_guest();
}
assert_exit_reason(VMX_VMCALL);
}
static void vmx_pf_exception_test(void)
{
__vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_test_guest);
}
static void vmx_pf_exception_forced_emulation_test(void)
{
__vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_forced_emulation_test_guest);
}
static void invalidate_tlb_no_vpid(void *data)
{
/* If VPID is disabled, the TLB is flushed on VM-Enter and VM-Exit. */
}
static void vmx_pf_no_vpid_test(void)
{
if (is_vpid_supported())
vmcs_clear_bits(CPU_EXEC_CTRL1, CPU_VPID);
__vmx_pf_exception_test(invalidate_tlb_no_vpid, NULL,
vmx_pf_exception_test_guest);
}
static void invalidate_tlb_invvpid_addr(void *data)
{
invvpid(INVVPID_ALL, *(u16 *)data, vmcs_read(EXI_QUALIFICATION));
}
static void invalidate_tlb_new_vpid(void *data)
{
u16 *vpid = data;
/*
* Bump VPID to effectively flush L2's TLB from L0's perspective.
* Invalidate all VPIDs when the VPID wraps to zero as hardware/KVM is
* architecturally allowed to keep TLB entries indefinitely.
*/
++(*vpid);
if (*vpid == 0) {
++(*vpid);
invvpid(INVVPID_ALL, 0, 0);
}
vmcs_write(VPID, *vpid);
}
static void __vmx_pf_vpid_test(invalidate_tlb_t inv_fn, u16 vpid)
{
if (!is_vpid_supported())
test_skip("VPID unsupported");
if (!is_invvpid_supported())
test_skip("INVVPID unsupported");
vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY);
vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VPID);
vmcs_write(VPID, vpid);
__vmx_pf_exception_test(inv_fn, &vpid, vmx_pf_exception_test_guest);
}
static void vmx_pf_invvpid_test(void)
{
if (!is_invvpid_type_supported(INVVPID_ADDR))
test_skip("INVVPID ADDR unsupported");
__vmx_pf_vpid_test(invalidate_tlb_invvpid_addr, 0xaaaa);
}
static void vmx_pf_vpid_test(void)
{
/* Need INVVPID(ALL) to flush VPIDs upon wrap/reuse. */
if (!is_invvpid_type_supported(INVVPID_ALL))
test_skip("INVVPID ALL unsupported");
__vmx_pf_vpid_test(invalidate_tlb_new_vpid, 1);
}
static void vmx_l2_ac_test(void)
{
bool hit_ac = false;
write_cr0(read_cr0() | X86_CR0_AM);
write_rflags(read_rflags() | X86_EFLAGS_AC);
run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac);
report(hit_ac, "Usermode #AC handled in L2");
vmcall();
}
struct vmx_exception_test {
u8 vector;
void (*guest_code)(void);
};
struct vmx_exception_test vmx_exception_tests[] = {
{ GP_VECTOR, generate_non_canonical_gp },
{ UD_VECTOR, generate_ud },
{ DE_VECTOR, generate_de },
{ DB_VECTOR, generate_single_step_db },
{ BP_VECTOR, generate_bp },
{ AC_VECTOR, vmx_l2_ac_test },
{ OF_VECTOR, generate_of },
{ NM_VECTOR, generate_cr0_ts_nm },
{ NM_VECTOR, generate_cr0_em_nm },
};
static u8 vmx_exception_test_vector;
static void vmx_exception_handler(struct ex_regs *regs)
{
report(regs->vector == vmx_exception_test_vector,
"Handling %s in L2's exception handler",
exception_mnemonic(vmx_exception_test_vector));
vmcall();
}
static void handle_exception_in_l2(u8 vector)
{
handler old_handler = handle_exception(vector, vmx_exception_handler);
vmx_exception_test_vector = vector;
enter_guest();
report(vmcs_read(EXI_REASON) == VMX_VMCALL,
"%s handled by L2", exception_mnemonic(vector));
handle_exception(vector, old_handler);
}
static void handle_exception_in_l1(u32 vector)
{
u32 old_eb = vmcs_read(EXC_BITMAP);
u32 intr_type;
u32 intr_info;
vmcs_write(EXC_BITMAP, old_eb | (1u << vector));
enter_guest();
if (vector == BP_VECTOR || vector == OF_VECTOR)
intr_type = VMX_INTR_TYPE_SOFT_EXCEPTION;
else
intr_type = VMX_INTR_TYPE_HARD_EXCEPTION;
intr_info = vmcs_read(EXI_INTR_INFO);
report((vmcs_read(EXI_REASON) == VMX_EXC_NMI) &&
(intr_info & INTR_INFO_VALID_MASK) &&
(intr_info & INTR_INFO_VECTOR_MASK) == vector &&
((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == intr_type,
"%s correctly routed to L1", exception_mnemonic(vector));
vmcs_write(EXC_BITMAP, old_eb);
}
static void vmx_exception_test(void)
{
struct vmx_exception_test *t;
int i;
for (i = 0; i < ARRAY_SIZE(vmx_exception_tests); i++) {
t = &vmx_exception_tests[i];
/*
* Override the guest code before each run even though it's the
* same code, the VMCS guest state needs to be reinitialized.
*/
test_override_guest(t->guest_code);
handle_exception_in_l2(t->vector);
test_override_guest(t->guest_code);
handle_exception_in_l1(t->vector);
}
test_set_guest_finished();
}
#define TEST(name) { #name, .v2 = name }
/* name/init/guest_main/exit_handler/syscall_handler/guest_regs */
struct vmx_test vmx_tests[] = {
{ "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} },
{ "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} },
{ "preemption timer", preemption_timer_init, preemption_timer_main,
preemption_timer_exit_handler, NULL, {0} },
{ "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main,
test_ctrl_pat_exit_handler, NULL, {0} },
{ "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main,
test_ctrl_efer_exit_handler, NULL, {0} },
{ "CR shadowing", NULL, cr_shadowing_main,
cr_shadowing_exit_handler, NULL, {0} },
{ "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler,
NULL, {0} },
{ "instruction intercept", insn_intercept_init, insn_intercept_main,
insn_intercept_exit_handler, NULL, {0} },
{ "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} },
{ "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} },
{ "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} },
{ "interrupt", interrupt_init, interrupt_main,
interrupt_exit_handler, NULL, {0} },
{ "nmi_hlt", nmi_hlt_init, nmi_hlt_main,
nmi_hlt_exit_handler, NULL, {0} },
{ "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler,
NULL, {0} },
{ "MSR switch", msr_switch_init, msr_switch_main,
msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure },
{ "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} },
{ "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main,
disable_rdtscp_exit_handler, NULL, {0} },
{ "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main,
exit_monitor_from_l2_handler, NULL, {0} },
{ "invalid_msr", invalid_msr_init, invalid_msr_main,
invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure},
/* Basic V2 tests. */
TEST(v2_null_test),
TEST(v2_multiple_entries_test),
TEST(fixture_test_case1),
TEST(fixture_test_case2),
/* Opcode tests. */
TEST(invvpid_test),
/* VM-entry tests */
TEST(vmx_controls_test),
TEST(vmx_host_state_area_test),
TEST(vmx_guest_state_area_test),
TEST(vmentry_movss_shadow_test),
TEST(vmentry_unrestricted_guest_test),
/* APICv tests */
TEST(vmx_eoi_bitmap_ioapic_scan_test),
TEST(vmx_hlt_with_rvi_test),
TEST(apic_reg_virt_test),
TEST(virt_x2apic_mode_test),
/* APIC pass-through tests */
TEST(vmx_apic_passthrough_test),
TEST(vmx_apic_passthrough_thread_test),
TEST(vmx_apic_passthrough_tpr_threshold_test),
TEST(vmx_init_signal_test),
TEST(vmx_sipi_signal_test),
/* VMCS Shadowing tests */
TEST(vmx_vmcs_shadow_test),
/* Regression tests */
TEST(vmx_ldtr_test),
TEST(vmx_cr_load_test),
TEST(vmx_cr4_osxsave_test),
TEST(vmx_no_nm_test),
TEST(vmx_db_test),
TEST(vmx_nmi_window_test),
TEST(vmx_intr_window_test),
TEST(vmx_pending_event_test),
TEST(vmx_pending_event_hlt_test),
TEST(vmx_store_tsc_test),
TEST(vmx_preemption_timer_zero_test),
TEST(vmx_preemption_timer_tf_test),
TEST(vmx_preemption_timer_expiry_test),
/* EPT access tests. */
TEST(ept_access_test_not_present),
TEST(ept_access_test_read_only),
TEST(ept_access_test_write_only),
TEST(ept_access_test_read_write),
TEST(ept_access_test_execute_only),
TEST(ept_access_test_read_execute),
TEST(ept_access_test_write_execute),
TEST(ept_access_test_read_write_execute),
TEST(ept_access_test_reserved_bits),
TEST(ept_access_test_ignored_bits),
TEST(ept_access_test_paddr_not_present_ad_disabled),
TEST(ept_access_test_paddr_not_present_ad_enabled),
TEST(ept_access_test_paddr_read_only_ad_disabled),
TEST(ept_access_test_paddr_read_only_ad_enabled),
TEST(ept_access_test_paddr_read_write),
TEST(ept_access_test_paddr_read_write_execute),
TEST(ept_access_test_paddr_read_execute_ad_disabled),
TEST(ept_access_test_paddr_read_execute_ad_enabled),
TEST(ept_access_test_paddr_not_present_page_fault),
TEST(ept_access_test_force_2m_page),
/* Atomic MSR switch tests. */
TEST(atomic_switch_max_msrs_test),
TEST(atomic_switch_overflow_msrs_test),
TEST(rdtsc_vmexit_diff_test),
TEST(vmx_mtf_test),
TEST(vmx_mtf_pdpte_test),
TEST(vmx_pf_exception_test),
TEST(vmx_pf_exception_forced_emulation_test),
TEST(vmx_pf_no_vpid_test),
TEST(vmx_pf_invvpid_test),
TEST(vmx_pf_vpid_test),
TEST(vmx_exception_test),
{ NULL, NULL, NULL, NULL, NULL, {0} },
};