| /* |
| * All test cases of nested virtualization should be in this file |
| * |
| * Author : Arthur Chunqi Li <yzt356@gmail.com> |
| */ |
| |
| #include <asm/debugreg.h> |
| |
| #include "vmx.h" |
| #include "msr.h" |
| #include "processor.h" |
| #include "pmu.h" |
| #include "vm.h" |
| #include "pci.h" |
| #include "fwcfg.h" |
| #include "isr.h" |
| #include "desc.h" |
| #include "apic.h" |
| #include "vmalloc.h" |
| #include "alloc_page.h" |
| #include "smp.h" |
| #include "delay.h" |
| #include "access.h" |
| #include "x86/usermode.h" |
| |
| /* |
| * vmcs.GUEST_PENDING_DEBUG has the same format as DR6, although some bits that |
| * are legal in DR6 are reserved in vmcs.GUEST_PENDING_DEBUG. And if any data |
| * or I/O breakpoint matches *and* was enabled, bit 12 is also set. |
| */ |
| #define PENDING_DBG_TRAP BIT(12) |
| |
| #define VPID_CAP_INVVPID_TYPES_SHIFT 40 |
| |
| u64 ia32_pat; |
| u64 ia32_efer; |
| void *io_bitmap_a, *io_bitmap_b; |
| u16 ioport; |
| |
| unsigned long *pml4; |
| u64 eptp; |
| void *data_page1, *data_page2; |
| |
| phys_addr_t pci_physaddr; |
| |
| void *pml_log; |
| #define PML_INDEX 512 |
| |
| static inline unsigned ffs(unsigned x) |
| { |
| int pos = -1; |
| |
| __asm__ __volatile__("bsf %1, %%eax; cmovnz %%eax, %0" |
| : "+r"(pos) : "rm"(x) : "eax"); |
| return pos + 1; |
| } |
| |
| static inline void vmcall(void) |
| { |
| asm volatile("vmcall"); |
| } |
| |
| static void basic_guest_main(void) |
| { |
| report_pass("Basic VMX test"); |
| } |
| |
| static int basic_exit_handler(union exit_reason exit_reason) |
| { |
| report_fail("Basic VMX test"); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_EXIT; |
| } |
| |
| static void vmenter_main(void) |
| { |
| u64 rax; |
| u64 rsp, resume_rsp; |
| |
| report_pass("test vmlaunch"); |
| |
| asm volatile( |
| "mov %%rsp, %0\n\t" |
| "mov %3, %%rax\n\t" |
| "vmcall\n\t" |
| "mov %%rax, %1\n\t" |
| "mov %%rsp, %2\n\t" |
| : "=r"(rsp), "=r"(rax), "=r"(resume_rsp) |
| : "g"(0xABCD)); |
| report((rax == 0xFFFF) && (rsp == resume_rsp), "test vmresume"); |
| } |
| |
| static int vmenter_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| if (regs.rax != 0xABCD) { |
| report_fail("test vmresume"); |
| return VMX_TEST_VMEXIT; |
| } |
| regs.rax = 0xFFFF; |
| vmcs_write(GUEST_RIP, guest_rip + 3); |
| return VMX_TEST_RESUME; |
| default: |
| report_fail("test vmresume"); |
| print_vmexit_info(exit_reason); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| u32 preempt_scale; |
| volatile unsigned long long tsc_val; |
| volatile u32 preempt_val; |
| u64 saved_rip; |
| |
| static int preemption_timer_init(struct vmcs *vmcs) |
| { |
| if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { |
| printf("\tPreemption timer is not supported\n"); |
| return VMX_TEST_EXIT; |
| } |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); |
| preempt_val = 10000000; |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; |
| |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) |
| printf("\tSave preemption value is not supported\n"); |
| |
| return VMX_TEST_START; |
| } |
| |
| static void preemption_timer_main(void) |
| { |
| tsc_val = rdtsc(); |
| if (ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) { |
| vmx_set_test_stage(0); |
| vmcall(); |
| if (vmx_get_test_stage() == 1) |
| vmcall(); |
| } |
| vmx_set_test_stage(1); |
| while (vmx_get_test_stage() == 1) { |
| if (((rdtsc() - tsc_val) >> preempt_scale) |
| > 10 * preempt_val) { |
| vmx_set_test_stage(2); |
| vmcall(); |
| } |
| } |
| tsc_val = rdtsc(); |
| asm volatile ("hlt"); |
| vmcall(); |
| vmx_set_test_stage(5); |
| vmcall(); |
| } |
| |
| static int preemption_timer_exit_handler(union exit_reason exit_reason) |
| { |
| bool guest_halted; |
| u64 guest_rip; |
| u32 insn_len; |
| u32 ctrl_exit; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| switch (exit_reason.basic) { |
| case VMX_PREEMPT: |
| switch (vmx_get_test_stage()) { |
| case 1: |
| case 2: |
| report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val, |
| "busy-wait for preemption timer"); |
| vmx_set_test_stage(3); |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| return VMX_TEST_RESUME; |
| case 3: |
| guest_halted = |
| (vmcs_read(GUEST_ACTV_STATE) == ACTV_HLT); |
| report(((rdtsc() - tsc_val) >> preempt_scale) >= preempt_val |
| && guest_halted, |
| "preemption timer during hlt"); |
| vmx_set_test_stage(4); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); |
| vmcs_write(EXI_CONTROLS, |
| vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_PREEMPT); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| return VMX_TEST_RESUME; |
| case 4: |
| report(saved_rip == guest_rip, |
| "preemption timer with 0 value"); |
| break; |
| default: |
| report_fail("Invalid stage."); |
| print_vmexit_info(exit_reason); |
| break; |
| } |
| break; |
| case VMX_VMCALL: |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report(vmcs_read(PREEMPT_TIMER_VALUE) == preempt_val, |
| "Keep preemption value"); |
| vmx_set_test_stage(1); |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| ctrl_exit = (vmcs_read(EXI_CONTROLS) | |
| EXI_SAVE_PREEMPT) & ctrl_exit_rev.clr; |
| vmcs_write(EXI_CONTROLS, ctrl_exit); |
| return VMX_TEST_RESUME; |
| case 1: |
| report(vmcs_read(PREEMPT_TIMER_VALUE) < preempt_val, |
| "Save preemption value"); |
| return VMX_TEST_RESUME; |
| case 2: |
| report_fail("busy-wait for preemption timer"); |
| vmx_set_test_stage(3); |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| return VMX_TEST_RESUME; |
| case 3: |
| report_fail("preemption timer during hlt"); |
| vmx_set_test_stage(4); |
| /* fall through */ |
| case 4: |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); |
| vmcs_write(PREEMPT_TIMER_VALUE, 0); |
| saved_rip = guest_rip + insn_len; |
| return VMX_TEST_RESUME; |
| case 5: |
| report_fail("preemption timer with 0 value (vmcall stage 5)"); |
| break; |
| default: |
| // Should not reach here |
| report_fail("unexpected stage, %d", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| break; |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_PREEMPT); |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static void msr_bmp_init(void) |
| { |
| void *msr_bitmap; |
| u32 ctrl_cpu0; |
| |
| msr_bitmap = alloc_page(); |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 |= CPU_MSR_BITMAP; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| vmcs_write(MSR_BITMAP, (u64)msr_bitmap); |
| } |
| |
| static void *get_msr_bitmap(void) |
| { |
| void *msr_bitmap; |
| |
| if (vmcs_read(CPU_EXEC_CTRL0) & CPU_MSR_BITMAP) { |
| msr_bitmap = (void *)vmcs_read(MSR_BITMAP); |
| } else { |
| msr_bitmap = alloc_page(); |
| memset(msr_bitmap, 0xff, PAGE_SIZE); |
| vmcs_write(MSR_BITMAP, (u64)msr_bitmap); |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_MSR_BITMAP); |
| } |
| |
| return msr_bitmap; |
| } |
| |
| static void disable_intercept_for_x2apic_msrs(void) |
| { |
| unsigned long *msr_bitmap = (unsigned long *)get_msr_bitmap(); |
| u32 msr; |
| |
| for (msr = APIC_BASE_MSR; |
| msr < (APIC_BASE_MSR+0xff); |
| msr += BITS_PER_LONG) { |
| unsigned int word = msr / BITS_PER_LONG; |
| |
| msr_bitmap[word] = 0; |
| msr_bitmap[word + (0x800 / sizeof(long))] = 0; |
| } |
| } |
| |
| static int test_ctrl_pat_init(struct vmcs *vmcs) |
| { |
| u64 ctrl_ent; |
| u64 ctrl_exi; |
| |
| msr_bmp_init(); |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT) && |
| !(ctrl_exit_rev.clr & EXI_LOAD_PAT) && |
| !(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { |
| printf("\tSave/load PAT is not supported\n"); |
| return 1; |
| } |
| |
| ctrl_ent = vmcs_read(ENT_CONTROLS); |
| ctrl_exi = vmcs_read(EXI_CONTROLS); |
| ctrl_ent |= ctrl_enter_rev.clr & ENT_LOAD_PAT; |
| ctrl_exi |= ctrl_exit_rev.clr & (EXI_SAVE_PAT | EXI_LOAD_PAT); |
| vmcs_write(ENT_CONTROLS, ctrl_ent); |
| vmcs_write(EXI_CONTROLS, ctrl_exi); |
| ia32_pat = rdmsr(MSR_IA32_CR_PAT); |
| vmcs_write(GUEST_PAT, 0x0); |
| vmcs_write(HOST_PAT, ia32_pat); |
| return VMX_TEST_START; |
| } |
| |
| static void test_ctrl_pat_main(void) |
| { |
| u64 guest_ia32_pat; |
| |
| guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) |
| printf("\tENT_LOAD_PAT is not supported.\n"); |
| else { |
| if (guest_ia32_pat != 0) { |
| report_fail("Entry load PAT"); |
| return; |
| } |
| } |
| wrmsr(MSR_IA32_CR_PAT, 0x6); |
| vmcall(); |
| guest_ia32_pat = rdmsr(MSR_IA32_CR_PAT); |
| if (ctrl_enter_rev.clr & ENT_LOAD_PAT) |
| report(guest_ia32_pat == ia32_pat, "Entry load PAT"); |
| } |
| |
| static int test_ctrl_pat_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip; |
| u64 guest_pat; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| guest_pat = vmcs_read(GUEST_PAT); |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PAT)) { |
| printf("\tEXI_SAVE_PAT is not supported\n"); |
| vmcs_write(GUEST_PAT, 0x6); |
| } else { |
| report(guest_pat == 0x6, "Exit save PAT"); |
| } |
| if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) |
| printf("\tEXI_LOAD_PAT is not supported\n"); |
| else |
| report(rdmsr(MSR_IA32_CR_PAT) == ia32_pat, |
| "Exit load PAT"); |
| vmcs_write(GUEST_PAT, ia32_pat); |
| vmcs_write(GUEST_RIP, guest_rip + 3); |
| return VMX_TEST_RESUME; |
| default: |
| printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); |
| break; |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int test_ctrl_efer_init(struct vmcs *vmcs) |
| { |
| u64 ctrl_ent; |
| u64 ctrl_exi; |
| |
| msr_bmp_init(); |
| ctrl_ent = vmcs_read(ENT_CONTROLS) | ENT_LOAD_EFER; |
| ctrl_exi = vmcs_read(EXI_CONTROLS) | EXI_SAVE_EFER | EXI_LOAD_EFER; |
| vmcs_write(ENT_CONTROLS, ctrl_ent & ctrl_enter_rev.clr); |
| vmcs_write(EXI_CONTROLS, ctrl_exi & ctrl_exit_rev.clr); |
| ia32_efer = rdmsr(MSR_EFER); |
| vmcs_write(GUEST_EFER, ia32_efer ^ EFER_NX); |
| vmcs_write(HOST_EFER, ia32_efer ^ EFER_NX); |
| return VMX_TEST_START; |
| } |
| |
| static void test_ctrl_efer_main(void) |
| { |
| u64 guest_ia32_efer; |
| |
| guest_ia32_efer = rdmsr(MSR_EFER); |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) |
| printf("\tENT_LOAD_EFER is not supported.\n"); |
| else { |
| if (guest_ia32_efer != (ia32_efer ^ EFER_NX)) { |
| report_fail("Entry load EFER"); |
| return; |
| } |
| } |
| wrmsr(MSR_EFER, ia32_efer); |
| vmcall(); |
| guest_ia32_efer = rdmsr(MSR_EFER); |
| if (ctrl_enter_rev.clr & ENT_LOAD_EFER) |
| report(guest_ia32_efer == ia32_efer, "Entry load EFER"); |
| } |
| |
| static int test_ctrl_efer_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip; |
| u64 guest_efer; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| guest_efer = vmcs_read(GUEST_EFER); |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_EFER)) { |
| printf("\tEXI_SAVE_EFER is not supported\n"); |
| vmcs_write(GUEST_EFER, ia32_efer); |
| } else { |
| report(guest_efer == ia32_efer, "Exit save EFER"); |
| } |
| if (!(ctrl_exit_rev.clr & EXI_LOAD_EFER)) { |
| printf("\tEXI_LOAD_EFER is not supported\n"); |
| wrmsr(MSR_EFER, ia32_efer ^ EFER_NX); |
| } else { |
| report(rdmsr(MSR_EFER) == (ia32_efer ^ EFER_NX), |
| "Exit load EFER"); |
| } |
| vmcs_write(GUEST_PAT, ia32_efer); |
| vmcs_write(GUEST_RIP, guest_rip + 3); |
| return VMX_TEST_RESUME; |
| default: |
| printf("ERROR : Unknown exit reason, 0x%x.\n", exit_reason.full); |
| break; |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| u32 guest_cr0, guest_cr4; |
| |
| static void cr_shadowing_main(void) |
| { |
| u32 cr0, cr4, tmp; |
| |
| // Test read through |
| vmx_set_test_stage(0); |
| guest_cr0 = read_cr0(); |
| if (vmx_get_test_stage() == 1) |
| report_fail("Read through CR0"); |
| else |
| vmcall(); |
| vmx_set_test_stage(1); |
| guest_cr4 = read_cr4(); |
| if (vmx_get_test_stage() == 2) |
| report_fail("Read through CR4"); |
| else |
| vmcall(); |
| // Test write through |
| guest_cr0 = guest_cr0 ^ (X86_CR0_TS | X86_CR0_MP); |
| guest_cr4 = guest_cr4 ^ (X86_CR4_TSD | X86_CR4_DE); |
| vmx_set_test_stage(2); |
| write_cr0(guest_cr0); |
| if (vmx_get_test_stage() == 3) |
| report_fail("Write through CR0"); |
| else |
| vmcall(); |
| vmx_set_test_stage(3); |
| write_cr4(guest_cr4); |
| if (vmx_get_test_stage() == 4) |
| report_fail("Write through CR4"); |
| else |
| vmcall(); |
| // Test read shadow |
| vmx_set_test_stage(4); |
| vmcall(); |
| cr0 = read_cr0(); |
| if (vmx_get_test_stage() != 5) |
| report(cr0 == guest_cr0, "Read shadowing CR0"); |
| vmx_set_test_stage(5); |
| cr4 = read_cr4(); |
| if (vmx_get_test_stage() != 6) |
| report(cr4 == guest_cr4, "Read shadowing CR4"); |
| // Test write shadow (same value with shadow) |
| vmx_set_test_stage(6); |
| write_cr0(guest_cr0); |
| if (vmx_get_test_stage() == 7) |
| report_fail("Write shadowing CR0 (same value with shadow)"); |
| else |
| vmcall(); |
| vmx_set_test_stage(7); |
| write_cr4(guest_cr4); |
| if (vmx_get_test_stage() == 8) |
| report_fail("Write shadowing CR4 (same value with shadow)"); |
| else |
| vmcall(); |
| // Test write shadow (different value) |
| vmx_set_test_stage(8); |
| tmp = guest_cr0 ^ X86_CR0_TS; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr0\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report(vmx_get_test_stage() == 9, |
| "Write shadowing different X86_CR0_TS"); |
| vmx_set_test_stage(9); |
| tmp = guest_cr0 ^ X86_CR0_MP; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr0\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report(vmx_get_test_stage() == 10, |
| "Write shadowing different X86_CR0_MP"); |
| vmx_set_test_stage(10); |
| tmp = guest_cr4 ^ X86_CR4_TSD; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr4\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report(vmx_get_test_stage() == 11, |
| "Write shadowing different X86_CR4_TSD"); |
| vmx_set_test_stage(11); |
| tmp = guest_cr4 ^ X86_CR4_DE; |
| asm volatile("mov %0, %%rsi\n\t" |
| "mov %%rsi, %%cr4\n\t" |
| ::"m"(tmp) |
| :"rsi", "memory", "cc"); |
| report(vmx_get_test_stage() == 12, |
| "Write shadowing different X86_CR4_DE"); |
| } |
| |
| static int cr_shadowing_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip; |
| u32 insn_len; |
| u32 exit_qual; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report(guest_cr0 == vmcs_read(GUEST_CR0), |
| "Read through CR0"); |
| break; |
| case 1: |
| report(guest_cr4 == vmcs_read(GUEST_CR4), |
| "Read through CR4"); |
| break; |
| case 2: |
| report(guest_cr0 == vmcs_read(GUEST_CR0), |
| "Write through CR0"); |
| break; |
| case 3: |
| report(guest_cr4 == vmcs_read(GUEST_CR4), |
| "Write through CR4"); |
| break; |
| case 4: |
| guest_cr0 = vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP); |
| guest_cr4 = vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE); |
| vmcs_write(CR0_MASK, X86_CR0_TS | X86_CR0_MP); |
| vmcs_write(CR0_READ_SHADOW, guest_cr0 & (X86_CR0_TS | X86_CR0_MP)); |
| vmcs_write(CR4_MASK, X86_CR4_TSD | X86_CR4_DE); |
| vmcs_write(CR4_READ_SHADOW, guest_cr4 & (X86_CR4_TSD | X86_CR4_DE)); |
| break; |
| case 6: |
| report(guest_cr0 == (vmcs_read(GUEST_CR0) ^ (X86_CR0_TS | X86_CR0_MP)), |
| "Write shadowing CR0 (same value)"); |
| break; |
| case 7: |
| report(guest_cr4 == (vmcs_read(GUEST_CR4) ^ (X86_CR4_TSD | X86_CR4_DE)), |
| "Write shadowing CR4 (same value)"); |
| break; |
| default: |
| // Should not reach here |
| report_fail("unexpected stage, %d", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_CR: |
| switch (vmx_get_test_stage()) { |
| case 4: |
| report_fail("Read shadowing CR0"); |
| vmx_inc_test_stage(); |
| break; |
| case 5: |
| report_fail("Read shadowing CR4"); |
| vmx_inc_test_stage(); |
| break; |
| case 6: |
| report_fail("Write shadowing CR0 (same value)"); |
| vmx_inc_test_stage(); |
| break; |
| case 7: |
| report_fail("Write shadowing CR4 (same value)"); |
| vmx_inc_test_stage(); |
| break; |
| case 8: |
| case 9: |
| // 0x600 encodes "mov %esi, %cr0" |
| if (exit_qual == 0x600) |
| vmx_inc_test_stage(); |
| break; |
| case 10: |
| case 11: |
| // 0x604 encodes "mov %esi, %cr4" |
| if (exit_qual == 0x604) |
| vmx_inc_test_stage(); |
| break; |
| default: |
| // Should not reach here |
| report_fail("unexpected stage, %d", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int iobmp_init(struct vmcs *vmcs) |
| { |
| u32 ctrl_cpu0; |
| |
| io_bitmap_a = alloc_page(); |
| io_bitmap_b = alloc_page(); |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 |= CPU_IO_BITMAP; |
| ctrl_cpu0 &= (~CPU_IO); |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| vmcs_write(IO_BITMAP_A, (u64)io_bitmap_a); |
| vmcs_write(IO_BITMAP_B, (u64)io_bitmap_b); |
| return VMX_TEST_START; |
| } |
| |
| static void iobmp_main(void) |
| { |
| // stage 0, test IO pass |
| vmx_set_test_stage(0); |
| inb(0x5000); |
| outb(0x0, 0x5000); |
| report(vmx_get_test_stage() == 0, "I/O bitmap - I/O pass"); |
| // test IO width, in/out |
| ((u8 *)io_bitmap_a)[0] = 0xFF; |
| vmx_set_test_stage(2); |
| inb(0x0); |
| report(vmx_get_test_stage() == 3, "I/O bitmap - trap in"); |
| vmx_set_test_stage(3); |
| outw(0x0, 0x0); |
| report(vmx_get_test_stage() == 4, "I/O bitmap - trap out"); |
| vmx_set_test_stage(4); |
| inl(0x0); |
| report(vmx_get_test_stage() == 5, "I/O bitmap - I/O width, long"); |
| // test low/high IO port |
| vmx_set_test_stage(5); |
| ((u8 *)io_bitmap_a)[0x5000 / 8] = (1 << (0x5000 % 8)); |
| inb(0x5000); |
| report(vmx_get_test_stage() == 6, "I/O bitmap - I/O port, low part"); |
| vmx_set_test_stage(6); |
| ((u8 *)io_bitmap_b)[0x1000 / 8] = (1 << (0x1000 % 8)); |
| inb(0x9000); |
| report(vmx_get_test_stage() == 7, "I/O bitmap - I/O port, high part"); |
| // test partial pass |
| vmx_set_test_stage(7); |
| inl(0x4FFF); |
| report(vmx_get_test_stage() == 8, "I/O bitmap - partial pass"); |
| // test overrun |
| vmx_set_test_stage(8); |
| memset(io_bitmap_a, 0x0, PAGE_SIZE); |
| memset(io_bitmap_b, 0x0, PAGE_SIZE); |
| inl(0xFFFF); |
| report(vmx_get_test_stage() == 9, "I/O bitmap - overrun"); |
| vmx_set_test_stage(9); |
| vmcall(); |
| outb(0x0, 0x0); |
| report(vmx_get_test_stage() == 9, |
| "I/O bitmap - ignore unconditional exiting"); |
| vmx_set_test_stage(10); |
| vmcall(); |
| outb(0x0, 0x0); |
| report(vmx_get_test_stage() == 11, |
| "I/O bitmap - unconditional exiting"); |
| } |
| |
| static int iobmp_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip; |
| ulong exit_qual; |
| u32 insn_len, ctrl_cpu0; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| switch (exit_reason.basic) { |
| case VMX_IO: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| case 1: |
| vmx_inc_test_stage(); |
| break; |
| case 2: |
| report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_BYTE, |
| "I/O bitmap - I/O width, byte"); |
| report(exit_qual & VMX_IO_IN, |
| "I/O bitmap - I/O direction, in"); |
| vmx_inc_test_stage(); |
| break; |
| case 3: |
| report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_WORD, |
| "I/O bitmap - I/O width, word"); |
| report(!(exit_qual & VMX_IO_IN), |
| "I/O bitmap - I/O direction, out"); |
| vmx_inc_test_stage(); |
| break; |
| case 4: |
| report((exit_qual & VMX_IO_SIZE_MASK) == _VMX_IO_LONG, |
| "I/O bitmap - I/O width, long"); |
| vmx_inc_test_stage(); |
| break; |
| case 5: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x5000) |
| vmx_inc_test_stage(); |
| break; |
| case 6: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x9000) |
| vmx_inc_test_stage(); |
| break; |
| case 7: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0x4FFF) |
| vmx_inc_test_stage(); |
| break; |
| case 8: |
| if (((exit_qual & VMX_IO_PORT_MASK) >> VMX_IO_PORT_SHIFT) == 0xFFFF) |
| vmx_inc_test_stage(); |
| break; |
| case 9: |
| case 10: |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0 & ~CPU_IO); |
| vmx_inc_test_stage(); |
| break; |
| default: |
| // Should not reach here |
| report_fail("unexpected stage, %d", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 9: |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 |= CPU_IO | CPU_IO_BITMAP; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| break; |
| case 10: |
| ctrl_cpu0 = vmcs_read(CPU_EXEC_CTRL0); |
| ctrl_cpu0 = (ctrl_cpu0 & ~CPU_IO_BITMAP) | CPU_IO; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu0); |
| break; |
| default: |
| // Should not reach here |
| report_fail("unexpected stage, %d", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| printf("guest_rip = %#lx\n", guest_rip); |
| printf("\tERROR : Unknown exit reason, 0x%x\n", exit_reason.full); |
| break; |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| #define INSN_CPU0 0 |
| #define INSN_CPU1 1 |
| #define INSN_ALWAYS_TRAP 2 |
| |
| #define FIELD_EXIT_QUAL (1 << 0) |
| #define FIELD_INSN_INFO (1 << 1) |
| |
| asm( |
| "insn_hlt: hlt;ret\n\t" |
| "insn_invlpg: invlpg 0x12345678;ret\n\t" |
| "insn_mwait: xor %eax, %eax; xor %ecx, %ecx; mwait;ret\n\t" |
| "insn_rdpmc: xor %ecx, %ecx; rdpmc;ret\n\t" |
| "insn_rdtsc: rdtsc;ret\n\t" |
| "insn_cr3_load: mov cr3,%rax; mov %rax,%cr3;ret\n\t" |
| "insn_cr3_store: mov %cr3,%rax;ret\n\t" |
| "insn_cr8_load: xor %eax, %eax; mov %rax,%cr8;ret\n\t" |
| "insn_cr8_store: mov %cr8,%rax;ret\n\t" |
| "insn_monitor: xor %eax, %eax; xor %ecx, %ecx; xor %edx, %edx; monitor;ret\n\t" |
| "insn_pause: pause;ret\n\t" |
| "insn_wbinvd: wbinvd;ret\n\t" |
| "insn_cpuid: mov $10, %eax; cpuid;ret\n\t" |
| "insn_invd: invd;ret\n\t" |
| "insn_sgdt: sgdt gdt_descr;ret\n\t" |
| "insn_lgdt: lgdt gdt_descr;ret\n\t" |
| "insn_sidt: sidt idt_descr;ret\n\t" |
| "insn_lidt: lidt idt_descr;ret\n\t" |
| "insn_sldt: sldt %ax;ret\n\t" |
| "insn_lldt: xor %eax, %eax; lldt %ax;ret\n\t" |
| "insn_str: str %ax;ret\n\t" |
| "insn_rdrand: rdrand %rax;ret\n\t" |
| "insn_rdseed: rdseed %rax;ret\n\t" |
| ); |
| extern void insn_hlt(void); |
| extern void insn_invlpg(void); |
| extern void insn_mwait(void); |
| extern void insn_rdpmc(void); |
| extern void insn_rdtsc(void); |
| extern void insn_cr3_load(void); |
| extern void insn_cr3_store(void); |
| extern void insn_cr8_load(void); |
| extern void insn_cr8_store(void); |
| extern void insn_monitor(void); |
| extern void insn_pause(void); |
| extern void insn_wbinvd(void); |
| extern void insn_sgdt(void); |
| extern void insn_lgdt(void); |
| extern void insn_sidt(void); |
| extern void insn_lidt(void); |
| extern void insn_sldt(void); |
| extern void insn_lldt(void); |
| extern void insn_str(void); |
| extern void insn_cpuid(void); |
| extern void insn_invd(void); |
| extern void insn_rdrand(void); |
| extern void insn_rdseed(void); |
| |
| u32 cur_insn; |
| u64 cr3; |
| |
| typedef bool (*supported_fn)(void); |
| |
| static bool this_cpu_has_mwait(void) |
| { |
| return this_cpu_has(X86_FEATURE_MWAIT); |
| } |
| |
| struct insn_table { |
| const char *name; |
| u32 flag; |
| void (*insn_func)(void); |
| u32 type; |
| u32 reason; |
| ulong exit_qual; |
| u32 insn_info; |
| // Use FIELD_EXIT_QUAL and FIELD_INSN_INFO to define |
| // which field need to be tested, reason is always tested |
| u32 test_field; |
| const supported_fn supported_fn; |
| u8 disabled; |
| }; |
| |
| /* |
| * Add more test cases of instruction intercept here. Elements in this |
| * table is: |
| * name/control flag/insn function/type/exit reason/exit qulification/ |
| * instruction info/field to test |
| * The last field defines which fields (exit_qual and insn_info) need to be |
| * tested in exit handler. If set to 0, only "reason" is checked. |
| */ |
| static struct insn_table insn_table[] = { |
| // Flags for Primary Processor-Based VM-Execution Controls |
| {"HLT", CPU_HLT, insn_hlt, INSN_CPU0, 12, 0, 0, 0}, |
| {"INVLPG", CPU_INVLPG, insn_invlpg, INSN_CPU0, 14, |
| 0x12345678, 0, FIELD_EXIT_QUAL}, |
| {"MWAIT", CPU_MWAIT, insn_mwait, INSN_CPU0, 36, 0, 0, 0, this_cpu_has_mwait}, |
| {"RDPMC", CPU_RDPMC, insn_rdpmc, INSN_CPU0, 15, 0, 0, 0, this_cpu_has_pmu}, |
| {"RDTSC", CPU_RDTSC, insn_rdtsc, INSN_CPU0, 16, 0, 0, 0}, |
| {"CR3 load", CPU_CR3_LOAD, insn_cr3_load, INSN_CPU0, 28, 0x3, 0, |
| FIELD_EXIT_QUAL}, |
| {"CR3 store", CPU_CR3_STORE, insn_cr3_store, INSN_CPU0, 28, 0x13, 0, |
| FIELD_EXIT_QUAL}, |
| {"CR8 load", CPU_CR8_LOAD, insn_cr8_load, INSN_CPU0, 28, 0x8, 0, |
| FIELD_EXIT_QUAL}, |
| {"CR8 store", CPU_CR8_STORE, insn_cr8_store, INSN_CPU0, 28, 0x18, 0, |
| FIELD_EXIT_QUAL}, |
| {"MONITOR", CPU_MONITOR, insn_monitor, INSN_CPU0, 39, 0, 0, 0, this_cpu_has_mwait}, |
| {"PAUSE", CPU_PAUSE, insn_pause, INSN_CPU0, 40, 0, 0, 0}, |
| // Flags for Secondary Processor-Based VM-Execution Controls |
| {"WBINVD", CPU_WBINVD, insn_wbinvd, INSN_CPU1, 54, 0, 0, 0}, |
| {"DESC_TABLE (SGDT)", CPU_DESC_TABLE, insn_sgdt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (LGDT)", CPU_DESC_TABLE, insn_lgdt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (SIDT)", CPU_DESC_TABLE, insn_sidt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (LIDT)", CPU_DESC_TABLE, insn_lidt, INSN_CPU1, 46, 0, 0, 0}, |
| {"DESC_TABLE (SLDT)", CPU_DESC_TABLE, insn_sldt, INSN_CPU1, 47, 0, 0, 0}, |
| {"DESC_TABLE (LLDT)", CPU_DESC_TABLE, insn_lldt, INSN_CPU1, 47, 0, 0, 0}, |
| {"DESC_TABLE (STR)", CPU_DESC_TABLE, insn_str, INSN_CPU1, 47, 0, 0, 0}, |
| /* LTR causes a #GP if done with a busy selector, so it is not tested. */ |
| {"RDRAND", CPU_RDRAND, insn_rdrand, INSN_CPU1, VMX_RDRAND, 0, 0, 0}, |
| {"RDSEED", CPU_RDSEED, insn_rdseed, INSN_CPU1, VMX_RDSEED, 0, 0, 0}, |
| // Instructions always trap |
| {"CPUID", 0, insn_cpuid, INSN_ALWAYS_TRAP, 10, 0, 0, 0}, |
| {"INVD", 0, insn_invd, INSN_ALWAYS_TRAP, 13, 0, 0, 0}, |
| // Instructions never trap |
| {NULL}, |
| }; |
| |
| static int insn_intercept_init(struct vmcs *vmcs) |
| { |
| u32 ctrl_cpu, cur_insn; |
| |
| ctrl_cpu = ctrl_cpu_rev[0].set | CPU_SECONDARY; |
| ctrl_cpu &= ctrl_cpu_rev[0].clr; |
| vmcs_write(CPU_EXEC_CTRL0, ctrl_cpu); |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu_rev[1].set); |
| cr3 = read_cr3(); |
| |
| for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { |
| if (insn_table[cur_insn].supported_fn == NULL) |
| continue; |
| insn_table[cur_insn].disabled = !insn_table[cur_insn].supported_fn(); |
| } |
| return VMX_TEST_START; |
| } |
| |
| static void insn_intercept_main(void) |
| { |
| for (cur_insn = 0; insn_table[cur_insn].name != NULL; cur_insn++) { |
| vmx_set_test_stage(cur_insn * 2); |
| if ((insn_table[cur_insn].type == INSN_CPU0 && |
| !(ctrl_cpu_rev[0].clr & insn_table[cur_insn].flag)) || |
| (insn_table[cur_insn].type == INSN_CPU1 && |
| !(ctrl_cpu_rev[1].clr & insn_table[cur_insn].flag))) { |
| printf("\tCPU_CTRL%d.CPU_%s is not supported.\n", |
| insn_table[cur_insn].type - INSN_CPU0, |
| insn_table[cur_insn].name); |
| continue; |
| } |
| |
| if (insn_table[cur_insn].disabled) { |
| printf("\tFeature required for %s is not supported.\n", |
| insn_table[cur_insn].name); |
| continue; |
| } |
| |
| if ((insn_table[cur_insn].type == INSN_CPU0 && |
| !(ctrl_cpu_rev[0].set & insn_table[cur_insn].flag)) || |
| (insn_table[cur_insn].type == INSN_CPU1 && |
| !(ctrl_cpu_rev[1].set & insn_table[cur_insn].flag))) { |
| /* skip hlt, it stalls the guest and is tested below */ |
| if (insn_table[cur_insn].insn_func != insn_hlt) |
| insn_table[cur_insn].insn_func(); |
| report(vmx_get_test_stage() == cur_insn * 2, |
| "execute %s", |
| insn_table[cur_insn].name); |
| } else if (insn_table[cur_insn].type != INSN_ALWAYS_TRAP) |
| printf("\tCPU_CTRL%d.CPU_%s always traps.\n", |
| insn_table[cur_insn].type - INSN_CPU0, |
| insn_table[cur_insn].name); |
| |
| vmcall(); |
| |
| insn_table[cur_insn].insn_func(); |
| report(vmx_get_test_stage() == cur_insn * 2 + 1, |
| "intercept %s", |
| insn_table[cur_insn].name); |
| |
| vmx_set_test_stage(cur_insn * 2 + 1); |
| vmcall(); |
| } |
| } |
| |
| static int insn_intercept_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip; |
| ulong exit_qual; |
| u32 insn_len; |
| u32 insn_info; |
| bool pass; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| insn_info = vmcs_read(EXI_INST_INFO); |
| |
| if (exit_reason.basic == VMX_VMCALL) { |
| u32 val = 0; |
| |
| if (insn_table[cur_insn].type == INSN_CPU0) |
| val = vmcs_read(CPU_EXEC_CTRL0); |
| else if (insn_table[cur_insn].type == INSN_CPU1) |
| val = vmcs_read(CPU_EXEC_CTRL1); |
| |
| if (vmx_get_test_stage() & 1) |
| val &= ~insn_table[cur_insn].flag; |
| else |
| val |= insn_table[cur_insn].flag; |
| |
| if (insn_table[cur_insn].type == INSN_CPU0) |
| vmcs_write(CPU_EXEC_CTRL0, val | ctrl_cpu_rev[0].set); |
| else if (insn_table[cur_insn].type == INSN_CPU1) |
| vmcs_write(CPU_EXEC_CTRL1, val | ctrl_cpu_rev[1].set); |
| } else { |
| pass = (cur_insn * 2 == vmx_get_test_stage()) && |
| insn_table[cur_insn].reason == exit_reason.full; |
| if (insn_table[cur_insn].test_field & FIELD_EXIT_QUAL && |
| insn_table[cur_insn].exit_qual != exit_qual) |
| pass = false; |
| if (insn_table[cur_insn].test_field & FIELD_INSN_INFO && |
| insn_table[cur_insn].insn_info != insn_info) |
| pass = false; |
| if (pass) |
| vmx_inc_test_stage(); |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| } |
| |
| /** |
| * __setup_ept - Setup the VMCS fields to enable Extended Page Tables (EPT) |
| * @hpa: Host physical address of the top-level, a.k.a. root, EPT table |
| * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries |
| * |
| * Returns 0 on success, 1 on failure. |
| * |
| * Note that @hpa doesn't need to point at actual memory if VM-Launch is |
| * expected to fail, e.g. setup_dummy_ept() arbitrarily passes '0' to satisfy |
| * the various EPTP consistency checks, but doesn't ensure backing for HPA '0'. |
| */ |
| static int __setup_ept(u64 hpa, bool enable_ad) |
| { |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_EPT)) { |
| printf("\tEPT is not supported\n"); |
| return 1; |
| } |
| if (!is_ept_memtype_supported(EPT_MEM_TYPE_WB)) { |
| printf("\tWB memtype for EPT walks not supported\n"); |
| return 1; |
| } |
| |
| if (!is_4_level_ept_supported()) { |
| /* Support for 4-level EPT is mandatory. */ |
| report(false, "4-level EPT support check"); |
| printf("\tPWL4 is not supported\n"); |
| return 1; |
| } |
| |
| eptp = EPT_MEM_TYPE_WB; |
| eptp |= (3 << EPTP_PG_WALK_LEN_SHIFT); |
| eptp |= hpa; |
| if (enable_ad) |
| eptp |= EPTP_AD_FLAG; |
| |
| vmcs_write(EPTP, eptp); |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0)| CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1)| CPU_EPT); |
| |
| return 0; |
| } |
| |
| /** |
| * setup_ept - Enable Extended Page Tables (EPT) and setup an identity map |
| * @enable_ad: Whether or not to enable Access/Dirty bits for EPT entries |
| * |
| * Returns 0 on success, 1 on failure. |
| * |
| * This is the "real" function for setting up EPT tables, i.e. use this for |
| * tests that need to run code in the guest with EPT enabled. |
| */ |
| static int setup_ept(bool enable_ad) |
| { |
| unsigned long end_of_memory; |
| |
| pml4 = alloc_page(); |
| |
| if (__setup_ept(virt_to_phys(pml4), enable_ad)) |
| return 1; |
| |
| end_of_memory = fwcfg_get_u64(FW_CFG_RAM_SIZE); |
| if (end_of_memory < (1ul << 32)) |
| end_of_memory = (1ul << 32); |
| /* Cannot use large EPT pages if we need to track EPT |
| * accessed/dirty bits at 4K granularity. |
| */ |
| setup_ept_range(pml4, 0, end_of_memory, 0, |
| !enable_ad && ept_2m_supported(), |
| EPT_WA | EPT_RA | EPT_EA); |
| return 0; |
| } |
| |
| /** |
| * setup_dummy_ept - Enable Extended Page Tables (EPT) with a dummy root HPA |
| * |
| * Setup EPT using a semi-arbitrary dummy root HPA. This function is intended |
| * for use by tests that need EPT enabled to verify dependent VMCS controls |
| * but never expect to fully enter the guest, i.e. don't need setup the actual |
| * EPT tables. |
| */ |
| static void setup_dummy_ept(void) |
| { |
| if (__setup_ept(0, false)) |
| report_abort("EPT setup unexpectedly failed"); |
| } |
| |
| static int enable_unrestricted_guest(bool need_valid_ept) |
| { |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_URG) || |
| !(ctrl_cpu_rev[1].clr & CPU_EPT)) |
| return 1; |
| |
| if (need_valid_ept) |
| setup_ept(false); |
| else |
| setup_dummy_ept(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); |
| |
| return 0; |
| } |
| |
| static void ept_enable_ad_bits(void) |
| { |
| eptp |= EPTP_AD_FLAG; |
| vmcs_write(EPTP, eptp); |
| } |
| |
| static void ept_disable_ad_bits(void) |
| { |
| eptp &= ~EPTP_AD_FLAG; |
| vmcs_write(EPTP, eptp); |
| } |
| |
| static int ept_ad_enabled(void) |
| { |
| return eptp & EPTP_AD_FLAG; |
| } |
| |
| static void ept_enable_ad_bits_or_skip_test(void) |
| { |
| if (!ept_ad_bits_supported()) |
| test_skip("EPT AD bits not supported."); |
| ept_enable_ad_bits(); |
| } |
| |
| static int apic_version; |
| |
| static int ept_init_common(bool have_ad) |
| { |
| int ret; |
| struct pci_dev pcidev; |
| |
| /* INVEPT is required by the EPT violation handler. */ |
| if (!is_invept_type_supported(INVEPT_SINGLE)) |
| return VMX_TEST_EXIT; |
| |
| if (setup_ept(have_ad)) |
| return VMX_TEST_EXIT; |
| |
| data_page1 = alloc_page(); |
| data_page2 = alloc_page(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| *((u32 *)data_page2) = MAGIC_VAL_2; |
| install_ept(pml4, (unsigned long)data_page1, (unsigned long)data_page2, |
| EPT_RA | EPT_WA | EPT_EA); |
| |
| apic_version = apic_read(APIC_LVR); |
| |
| ret = pci_find_dev(PCI_VENDOR_ID_REDHAT, PCI_DEVICE_ID_REDHAT_TEST); |
| if (ret != PCIDEVADDR_INVALID) { |
| pci_dev_init(&pcidev, ret); |
| pci_physaddr = pcidev.resource[PCI_TESTDEV_BAR_MEM]; |
| } |
| |
| return VMX_TEST_START; |
| } |
| |
| static int ept_init(struct vmcs *vmcs) |
| { |
| return ept_init_common(false); |
| } |
| |
| static void ept_common(void) |
| { |
| vmx_set_test_stage(0); |
| if (*((u32 *)data_page2) != MAGIC_VAL_1 || |
| *((u32 *)data_page1) != MAGIC_VAL_1) |
| report_fail("EPT basic framework - read"); |
| else { |
| *((u32 *)data_page2) = MAGIC_VAL_3; |
| vmcall(); |
| if (vmx_get_test_stage() == 1) { |
| if (*((u32 *)data_page1) == MAGIC_VAL_3 && |
| *((u32 *)data_page2) == MAGIC_VAL_2) |
| report_pass("EPT basic framework"); |
| else |
| report_pass("EPT basic framework - remap"); |
| } |
| } |
| // Test EPT Misconfigurations |
| vmx_set_test_stage(1); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| if (vmx_get_test_stage() != 2) { |
| report_fail("EPT misconfigurations"); |
| goto t1; |
| } |
| vmx_set_test_stage(2); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| report(vmx_get_test_stage() == 3, "EPT misconfigurations"); |
| t1: |
| // Test EPT violation |
| vmx_set_test_stage(3); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_1; |
| report(vmx_get_test_stage() == 4, "EPT violation - page permission"); |
| // Violation caused by EPT paging structure |
| vmx_set_test_stage(4); |
| vmcall(); |
| *((u32 *)data_page1) = MAGIC_VAL_2; |
| report(vmx_get_test_stage() == 5, "EPT violation - paging structure"); |
| |
| // MMIO Read/Write |
| vmx_set_test_stage(5); |
| vmcall(); |
| |
| *(u32 volatile *)pci_physaddr; |
| report(vmx_get_test_stage() == 6, "MMIO EPT violation - read"); |
| |
| *(u32 volatile *)pci_physaddr = MAGIC_VAL_1; |
| report(vmx_get_test_stage() == 7, "MMIO EPT violation - write"); |
| } |
| |
| static void ept_main(void) |
| { |
| ept_common(); |
| |
| // Test EPT access to L1 MMIO |
| vmx_set_test_stage(7); |
| report(*((u32 *)0xfee00030UL) == apic_version, "EPT - MMIO access"); |
| |
| // Test invalid operand for INVEPT |
| vmcall(); |
| report(vmx_get_test_stage() == 8, "EPT - unsupported INVEPT"); |
| } |
| |
| static bool invept_test(int type, u64 eptp) |
| { |
| bool ret, supported; |
| |
| supported = ept_vpid.val & (EPT_CAP_INVEPT_SINGLE >> INVEPT_SINGLE << type); |
| ret = __invept(type, eptp); |
| |
| if (ret == !supported) |
| return false; |
| |
| if (!supported) |
| printf("WARNING: unsupported invept passed!\n"); |
| else |
| printf("WARNING: invept failed!\n"); |
| |
| return true; |
| } |
| |
| static int pml_exit_handler(union exit_reason exit_reason) |
| { |
| u16 index, count; |
| u64 *pmlbuf = pml_log; |
| u64 guest_rip = vmcs_read(GUEST_RIP);; |
| u64 guest_cr3 = vmcs_read(GUEST_CR3); |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| index = vmcs_read(GUEST_PML_INDEX); |
| for (count = index + 1; count < PML_INDEX; count++) { |
| if (pmlbuf[count] == (u64)data_page2) { |
| vmx_inc_test_stage(); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); |
| break; |
| } |
| } |
| break; |
| case 1: |
| index = vmcs_read(GUEST_PML_INDEX); |
| /* Keep clearing the dirty bit till a overflow */ |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); |
| break; |
| default: |
| report_fail("unexpected stage, %d.", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_PML_FULL: |
| vmx_inc_test_stage(); |
| vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); |
| return VMX_TEST_RESUME; |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int ept_exit_handler_common(union exit_reason exit_reason, bool have_ad) |
| { |
| u64 guest_rip; |
| u64 guest_cr3; |
| u32 insn_len; |
| u32 exit_qual; |
| static unsigned long data_page1_pte, data_page1_pte_pte, memaddr_pte, |
| guest_pte_addr; |
| |
| guest_rip = vmcs_read(GUEST_RIP); |
| guest_cr3 = vmcs_read(GUEST_CR3); |
| insn_len = vmcs_read(EXI_INST_LEN); |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| pteval_t *ptep; |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| check_ept_ad(pml4, guest_cr3, |
| (unsigned long)data_page1, |
| have_ad ? EPT_ACCESS_FLAG : 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| check_ept_ad(pml4, guest_cr3, |
| (unsigned long)data_page2, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page2); |
| if (have_ad) |
| invept(INVEPT_SINGLE, eptp); |
| if (*((u32 *)data_page1) == MAGIC_VAL_3 && |
| *((u32 *)data_page2) == MAGIC_VAL_2) { |
| vmx_inc_test_stage(); |
| install_ept(pml4, (unsigned long)data_page2, |
| (unsigned long)data_page2, |
| EPT_RA | EPT_WA | EPT_EA); |
| } else |
| report_fail("EPT basic framework - write"); |
| break; |
| case 1: |
| install_ept(pml4, (unsigned long)data_page1, |
| (unsigned long)data_page1, EPT_WA); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 2: |
| install_ept(pml4, (unsigned long)data_page1, |
| (unsigned long)data_page1, |
| EPT_RA | EPT_WA | EPT_EA | |
| (2 << EPT_MEM_TYPE_SHIFT)); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 3: |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| TEST_ASSERT(get_ept_pte(pml4, (unsigned long)data_page1, |
| 1, &data_page1_pte)); |
| set_ept_pte(pml4, (unsigned long)data_page1, |
| 1, data_page1_pte & ~EPT_PRESENT); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 4: |
| ptep = get_pte_level((pgd_t *)guest_cr3, data_page1, /*level=*/2); |
| guest_pte_addr = virt_to_phys(ptep) & PAGE_MASK; |
| |
| TEST_ASSERT(get_ept_pte(pml4, guest_pte_addr, 2, &data_page1_pte_pte)); |
| set_ept_pte(pml4, guest_pte_addr, 2, |
| data_page1_pte_pte & ~EPT_PRESENT); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 5: |
| install_ept(pml4, (unsigned long)pci_physaddr, |
| (unsigned long)pci_physaddr, 0); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 7: |
| if (!invept_test(0, eptp)) |
| vmx_inc_test_stage(); |
| break; |
| // Should not reach here |
| default: |
| report_fail("ERROR - unexpected stage, %d.", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_EPT_MISCONFIG: |
| switch (vmx_get_test_stage()) { |
| case 1: |
| case 2: |
| vmx_inc_test_stage(); |
| install_ept(pml4, (unsigned long)data_page1, |
| (unsigned long)data_page1, |
| EPT_RA | EPT_WA | EPT_EA); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| // Should not reach here |
| default: |
| report_fail("ERROR - unexpected stage, %d.", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| return VMX_TEST_RESUME; |
| case VMX_EPT_VIOLATION: |
| /* |
| * Exit-qualifications are masked not to account for advanced |
| * VM-exit information. Once KVM supports this feature, this |
| * masking should be removed. |
| */ |
| exit_qual &= ~EPT_VLT_GUEST_MASK; |
| |
| switch(vmx_get_test_stage()) { |
| case 3: |
| check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| if (exit_qual == (EPT_VLT_WR | EPT_VLT_LADDR_VLD | |
| EPT_VLT_PADDR)) |
| vmx_inc_test_stage(); |
| set_ept_pte(pml4, (unsigned long)data_page1, |
| 1, data_page1_pte | (EPT_PRESENT)); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 4: |
| check_ept_ad(pml4, guest_cr3, (unsigned long)data_page1, 0, |
| have_ad ? EPT_ACCESS_FLAG | EPT_DIRTY_FLAG : 0); |
| clear_ept_ad(pml4, guest_cr3, (unsigned long)data_page1); |
| if (exit_qual == (EPT_VLT_RD | |
| (have_ad ? EPT_VLT_WR : 0) | |
| EPT_VLT_LADDR_VLD)) |
| vmx_inc_test_stage(); |
| set_ept_pte(pml4, guest_pte_addr, 2, |
| data_page1_pte_pte | (EPT_PRESENT)); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 5: |
| if (exit_qual & EPT_VLT_RD) |
| vmx_inc_test_stage(); |
| TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, |
| 1, &memaddr_pte)); |
| set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| case 6: |
| if (exit_qual & EPT_VLT_WR) |
| vmx_inc_test_stage(); |
| TEST_ASSERT(get_ept_pte(pml4, (unsigned long)pci_physaddr, |
| 1, &memaddr_pte)); |
| set_ept_pte(pml4, memaddr_pte, 1, memaddr_pte | EPT_RA | EPT_WA); |
| invept(INVEPT_SINGLE, eptp); |
| break; |
| default: |
| // Should not reach here |
| report_fail("ERROR : unexpected stage, %d", |
| vmx_get_test_stage()); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| return VMX_TEST_RESUME; |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int ept_exit_handler(union exit_reason exit_reason) |
| { |
| return ept_exit_handler_common(exit_reason, false); |
| } |
| |
| static int eptad_init(struct vmcs *vmcs) |
| { |
| int r = ept_init_common(true); |
| |
| if (r == VMX_TEST_EXIT) |
| return r; |
| |
| if (!ept_ad_bits_supported()) { |
| printf("\tEPT A/D bits are not supported"); |
| return VMX_TEST_EXIT; |
| } |
| |
| return r; |
| } |
| |
| static int pml_init(struct vmcs *vmcs) |
| { |
| u32 ctrl_cpu; |
| int r = eptad_init(vmcs); |
| |
| if (r == VMX_TEST_EXIT) |
| return r; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(ctrl_cpu_rev[1].clr & CPU_PML)) { |
| printf("\tPML is not supported"); |
| return VMX_TEST_EXIT; |
| } |
| |
| pml_log = alloc_page(); |
| vmcs_write(PMLADDR, (u64)pml_log); |
| vmcs_write(GUEST_PML_INDEX, PML_INDEX - 1); |
| |
| ctrl_cpu = vmcs_read(CPU_EXEC_CTRL1) | CPU_PML; |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu); |
| |
| return VMX_TEST_START; |
| } |
| |
| static void pml_main(void) |
| { |
| int count = 0; |
| |
| vmx_set_test_stage(0); |
| *((u32 *)data_page2) = 0x1; |
| vmcall(); |
| report(vmx_get_test_stage() == 1, "PML - Dirty GPA Logging"); |
| |
| while (vmx_get_test_stage() == 1) { |
| vmcall(); |
| *((u32 *)data_page2) = 0x1; |
| if (count++ > PML_INDEX) |
| break; |
| } |
| report(vmx_get_test_stage() == 2, "PML Full Event"); |
| } |
| |
| static void eptad_main(void) |
| { |
| ept_common(); |
| } |
| |
| static int eptad_exit_handler(union exit_reason exit_reason) |
| { |
| return ept_exit_handler_common(exit_reason, true); |
| } |
| |
| #define TIMER_VECTOR 222 |
| |
| static volatile bool timer_fired; |
| |
| static void timer_isr(isr_regs_t *regs) |
| { |
| timer_fired = true; |
| apic_write(APIC_EOI, 0); |
| } |
| |
| static int interrupt_init(struct vmcs *vmcs) |
| { |
| msr_bmp_init(); |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| handle_irq(TIMER_VECTOR, timer_isr); |
| return VMX_TEST_START; |
| } |
| |
| static void interrupt_main(void) |
| { |
| long long start, loops; |
| |
| vmx_set_test_stage(0); |
| |
| apic_write(APIC_LVTT, TIMER_VECTOR); |
| sti(); |
| |
| apic_write(APIC_TMICT, 1); |
| for (loops = 0; loops < 10000000 && !timer_fired; loops++) |
| asm volatile ("nop"); |
| report(timer_fired, "direct interrupt while running guest"); |
| |
| apic_write(APIC_TMICT, 0); |
| cli(); |
| vmcall(); |
| timer_fired = false; |
| apic_write(APIC_TMICT, 1); |
| for (loops = 0; loops < 10000000 && !timer_fired; loops++) |
| asm volatile ("nop"); |
| report(timer_fired, "intercepted interrupt while running guest"); |
| |
| sti(); |
| apic_write(APIC_TMICT, 0); |
| cli(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| safe_halt(); |
| |
| report(rdtsc() - start > 1000000 && timer_fired, |
| "direct interrupt + hlt"); |
| |
| apic_write(APIC_TMICT, 0); |
| cli(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| safe_halt(); |
| |
| report(rdtsc() - start > 10000 && timer_fired, |
| "intercepted interrupt + hlt"); |
| |
| apic_write(APIC_TMICT, 0); |
| cli(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| sti_nop(); |
| vmcall(); |
| |
| report(rdtsc() - start > 10000 && timer_fired, |
| "direct interrupt + activity state hlt"); |
| |
| apic_write(APIC_TMICT, 0); |
| cli(); |
| vmcall(); |
| timer_fired = false; |
| start = rdtsc(); |
| apic_write(APIC_TMICT, 1000000); |
| |
| sti_nop(); |
| vmcall(); |
| |
| report(rdtsc() - start > 10000 && timer_fired, |
| "intercepted interrupt + activity state hlt"); |
| |
| apic_write(APIC_TMICT, 0); |
| cli(); |
| vmx_set_test_stage(7); |
| vmcall(); |
| timer_fired = false; |
| apic_write(APIC_TMICT, 1); |
| for (loops = 0; loops < 10000000 && !timer_fired; loops++) |
| asm volatile ("nop"); |
| report(timer_fired, |
| "running a guest with interrupt acknowledgement set"); |
| |
| apic_write(APIC_TMICT, 0); |
| sti(); |
| timer_fired = false; |
| vmcall(); |
| report(timer_fired, "Inject an event to a halted guest"); |
| } |
| |
| static int interrupt_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| case 2: |
| case 5: |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_EXTINT); |
| break; |
| case 7: |
| vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_INTA); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_EXTINT); |
| break; |
| case 1: |
| case 3: |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| break; |
| case 4: |
| case 6: |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| break; |
| |
| case 8: |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| vmcs_write(ENT_INTR_INFO, |
| TIMER_VECTOR | |
| (VMX_INTR_TYPE_EXT_INTR << INTR_INFO_INTR_TYPE_SHIFT) | |
| INTR_INFO_VALID_MASK); |
| break; |
| } |
| vmx_inc_test_stage(); |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| case VMX_EXTINT: |
| if (vmcs_read(EXI_CONTROLS) & EXI_INTA) { |
| int vector = vmcs_read(EXI_INTR_INFO) & 0xff; |
| handle_external_interrupt(vector); |
| } else { |
| sti_nop_cli(); |
| } |
| if (vmx_get_test_stage() >= 2) |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| return VMX_TEST_RESUME; |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| |
| return VMX_TEST_VMEXIT; |
| } |
| |
| |
| static volatile int nmi_fired; |
| |
| #define NMI_DELAY 100000000ULL |
| |
| static void nmi_isr(isr_regs_t *regs) |
| { |
| nmi_fired = true; |
| } |
| |
| static int nmi_hlt_init(struct vmcs *vmcs) |
| { |
| msr_bmp_init(); |
| handle_irq(NMI_VECTOR, nmi_isr); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) & ~PIN_NMI); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) & ~PIN_VIRT_NMI); |
| return VMX_TEST_START; |
| } |
| |
| static void nmi_message_thread(void *data) |
| { |
| while (vmx_get_test_stage() != 1) |
| pause(); |
| |
| delay(NMI_DELAY); |
| apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); |
| |
| while (vmx_get_test_stage() != 2) |
| pause(); |
| |
| delay(NMI_DELAY); |
| apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]); |
| } |
| |
| static void nmi_hlt_main(void) |
| { |
| long long start; |
| |
| if (cpu_count() < 2) { |
| report_skip("%s : CPU count < 2", __func__); |
| vmx_set_test_stage(-1); |
| return; |
| } |
| |
| vmx_set_test_stage(0); |
| on_cpu_async(1, nmi_message_thread, NULL); |
| start = rdtsc(); |
| vmx_set_test_stage(1); |
| asm volatile ("hlt"); |
| report((rdtsc() - start > NMI_DELAY) && nmi_fired, |
| "direct NMI + hlt"); |
| if (!nmi_fired) |
| vmx_set_test_stage(-1); |
| nmi_fired = false; |
| |
| vmcall(); |
| |
| start = rdtsc(); |
| vmx_set_test_stage(2); |
| asm volatile ("hlt"); |
| report((rdtsc() - start > NMI_DELAY) && !nmi_fired, |
| "intercepted NMI + hlt"); |
| if (nmi_fired) { |
| report(!nmi_fired, "intercepted NMI was dispatched"); |
| vmx_set_test_stage(-1); |
| return; |
| } |
| vmx_set_test_stage(3); |
| } |
| |
| static int nmi_hlt_exit_handler(union exit_reason exit_reason) |
| { |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| |
| switch (vmx_get_test_stage()) { |
| case 1: |
| if (exit_reason.basic != VMX_VMCALL) { |
| report_fail("VMEXIT not due to vmcall. Exit reason 0x%x", |
| exit_reason.full); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_NMI); |
| vmcs_write(PIN_CONTROLS, |
| vmcs_read(PIN_CONTROLS) | PIN_VIRT_NMI); |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| break; |
| |
| case 2: |
| if (exit_reason.basic != VMX_EXC_NMI) { |
| report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x", |
| exit_reason.full); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_VMEXIT; |
| } |
| report_pass("NMI intercept while running guest"); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| break; |
| |
| case 3: |
| break; |
| |
| default: |
| return VMX_TEST_VMEXIT; |
| } |
| |
| if (vmx_get_test_stage() == 3) |
| return VMX_TEST_VMEXIT; |
| |
| return VMX_TEST_RESUME; |
| } |
| |
| |
| static int dbgctls_init(struct vmcs *vmcs) |
| { |
| u64 dr7 = 0x402; |
| u64 zero = 0; |
| |
| msr_bmp_init(); |
| asm volatile( |
| "mov %0,%%dr0\n\t" |
| "mov %0,%%dr1\n\t" |
| "mov %0,%%dr2\n\t" |
| "mov %1,%%dr7\n\t" |
| : : "r" (zero), "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); |
| vmcs_write(GUEST_DR7, 0x404); |
| vmcs_write(GUEST_DEBUGCTL, 0x2); |
| |
| vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); |
| vmcs_write(EXI_CONTROLS, vmcs_read(EXI_CONTROLS) | EXI_SAVE_DBGCTLS); |
| |
| return VMX_TEST_START; |
| } |
| |
| static void dbgctls_main(void) |
| { |
| u64 dr7, debugctl; |
| |
| asm volatile("mov %%dr7,%0" : "=r" (dr7)); |
| debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); |
| /* Commented out: KVM does not support DEBUGCTL so far */ |
| (void)debugctl; |
| report(dr7 == 0x404, "Load debug controls" /* && debugctl == 0x2 */); |
| |
| dr7 = 0x408; |
| asm volatile("mov %0,%%dr7" : : "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); |
| |
| vmx_set_test_stage(0); |
| vmcall(); |
| report(vmx_get_test_stage() == 1, "Save debug controls"); |
| |
| if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS || |
| ctrl_exit_rev.set & EXI_SAVE_DBGCTLS) { |
| printf("\tDebug controls are always loaded/saved\n"); |
| return; |
| } |
| vmx_set_test_stage(2); |
| vmcall(); |
| |
| asm volatile("mov %%dr7,%0" : "=r" (dr7)); |
| debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); |
| /* Commented out: KVM does not support DEBUGCTL so far */ |
| (void)debugctl; |
| report(dr7 == 0x402, |
| "Guest=host debug controls" /* && debugctl == 0x1 */); |
| |
| dr7 = 0x408; |
| asm volatile("mov %0,%%dr7" : : "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x3); |
| |
| vmx_set_test_stage(3); |
| vmcall(); |
| report(vmx_get_test_stage() == 4, "Don't save debug controls"); |
| } |
| |
| static int dbgctls_exit_handler(union exit_reason exit_reason) |
| { |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u64 dr7, debugctl; |
| |
| asm volatile("mov %%dr7,%0" : "=r" (dr7)); |
| debugctl = rdmsr(MSR_IA32_DEBUGCTLMSR); |
| |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| if (dr7 == 0x400 && debugctl == 0 && |
| vmcs_read(GUEST_DR7) == 0x408 /* && |
| Commented out: KVM does not support DEBUGCTL so far |
| vmcs_read(GUEST_DEBUGCTL) == 0x3 */) |
| vmx_inc_test_stage(); |
| break; |
| case 2: |
| dr7 = 0x402; |
| asm volatile("mov %0,%%dr7" : : "r" (dr7)); |
| wrmsr(MSR_IA32_DEBUGCTLMSR, 0x1); |
| vmcs_write(GUEST_DR7, 0x404); |
| vmcs_write(GUEST_DEBUGCTL, 0x2); |
| |
| vmcs_write(ENT_CONTROLS, |
| vmcs_read(ENT_CONTROLS) & ~ENT_LOAD_DBGCTLS); |
| vmcs_write(EXI_CONTROLS, |
| vmcs_read(EXI_CONTROLS) & ~EXI_SAVE_DBGCTLS); |
| break; |
| case 3: |
| if (dr7 == 0x400 && debugctl == 0 && |
| vmcs_read(GUEST_DR7) == 0x404 /* && |
| Commented out: KVM does not support DEBUGCTL so far |
| vmcs_read(GUEST_DEBUGCTL) == 0x2 */) |
| vmx_inc_test_stage(); |
| break; |
| } |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| return VMX_TEST_RESUME; |
| default: |
| report_fail("Unknown exit reason, %d", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| struct vmx_msr_entry { |
| u32 index; |
| u32 reserved; |
| u64 value; |
| } __attribute__((packed)); |
| |
| #define MSR_MAGIC 0x31415926 |
| struct vmx_msr_entry *exit_msr_store, *entry_msr_load, *exit_msr_load; |
| |
| static int msr_switch_init(struct vmcs *vmcs) |
| { |
| msr_bmp_init(); |
| exit_msr_store = alloc_page(); |
| exit_msr_load = alloc_page(); |
| entry_msr_load = alloc_page(); |
| entry_msr_load[0].index = MSR_KERNEL_GS_BASE; |
| entry_msr_load[0].value = MSR_MAGIC; |
| |
| vmx_set_test_stage(1); |
| vmcs_write(ENT_MSR_LD_CNT, 1); |
| vmcs_write(ENTER_MSR_LD_ADDR, (u64)entry_msr_load); |
| vmcs_write(EXI_MSR_ST_CNT, 1); |
| vmcs_write(EXIT_MSR_ST_ADDR, (u64)exit_msr_store); |
| vmcs_write(EXI_MSR_LD_CNT, 1); |
| vmcs_write(EXIT_MSR_LD_ADDR, (u64)exit_msr_load); |
| return VMX_TEST_START; |
| } |
| |
| static void msr_switch_main(void) |
| { |
| if (vmx_get_test_stage() == 1) { |
| report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC, |
| "VM entry MSR load"); |
| vmx_set_test_stage(2); |
| wrmsr(MSR_KERNEL_GS_BASE, MSR_MAGIC + 1); |
| exit_msr_store[0].index = MSR_KERNEL_GS_BASE; |
| exit_msr_load[0].index = MSR_KERNEL_GS_BASE; |
| exit_msr_load[0].value = MSR_MAGIC + 2; |
| } |
| vmcall(); |
| } |
| |
| static int msr_switch_exit_handler(union exit_reason exit_reason) |
| { |
| if (exit_reason.basic == VMX_VMCALL && vmx_get_test_stage() == 2) { |
| report(exit_msr_store[0].value == MSR_MAGIC + 1, |
| "VM exit MSR store"); |
| report(rdmsr(MSR_KERNEL_GS_BASE) == MSR_MAGIC + 2, |
| "VM exit MSR load"); |
| vmx_set_test_stage(3); |
| entry_msr_load[0].index = MSR_FS_BASE; |
| return VMX_TEST_RESUME; |
| } |
| printf("ERROR %s: unexpected stage=%u or reason=0x%x\n", |
| __func__, vmx_get_test_stage(), exit_reason.full); |
| return VMX_TEST_EXIT; |
| } |
| |
| static int msr_switch_entry_failure(struct vmentry_result *result) |
| { |
| if (result->vm_fail) { |
| printf("ERROR %s: VM-Fail on %s\n", __func__, result->instr); |
| return VMX_TEST_EXIT; |
| } |
| |
| if (result->exit_reason.failed_vmentry && |
| result->exit_reason.basic == VMX_FAIL_MSR && |
| vmx_get_test_stage() == 3) { |
| report(vmcs_read(EXI_QUALIFICATION) == 1, |
| "VM entry MSR load: try to load FS_BASE"); |
| return VMX_TEST_VMEXIT; |
| } |
| printf("ERROR %s: unexpected stage=%u or reason=%x\n", |
| __func__, vmx_get_test_stage(), result->exit_reason.full); |
| return VMX_TEST_EXIT; |
| } |
| |
| static int vmmcall_init(struct vmcs *vmcs) |
| { |
| vmcs_write(EXC_BITMAP, 1 << UD_VECTOR); |
| return VMX_TEST_START; |
| } |
| |
| static void vmmcall_main(void) |
| { |
| asm volatile( |
| "mov $0xABCD, %%rax\n\t" |
| "vmmcall\n\t" |
| ::: "rax"); |
| |
| report_fail("VMMCALL"); |
| } |
| |
| static int vmmcall_exit_handler(union exit_reason exit_reason) |
| { |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| printf("here\n"); |
| report_fail("VMMCALL triggers #UD"); |
| break; |
| case VMX_EXC_NMI: |
| report((vmcs_read(EXI_INTR_INFO) & 0xff) == UD_VECTOR, |
| "VMMCALL triggers #UD"); |
| break; |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static int disable_rdtscp_init(struct vmcs *vmcs) |
| { |
| u32 ctrl_cpu1; |
| |
| if (ctrl_cpu_rev[0].clr & CPU_SECONDARY) { |
| ctrl_cpu1 = vmcs_read(CPU_EXEC_CTRL1); |
| ctrl_cpu1 &= ~CPU_RDTSCP; |
| vmcs_write(CPU_EXEC_CTRL1, ctrl_cpu1); |
| } |
| |
| return VMX_TEST_START; |
| } |
| |
| static void disable_rdtscp_ud_handler(struct ex_regs *regs) |
| { |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report_pass("RDTSCP triggers #UD"); |
| vmx_inc_test_stage(); |
| regs->rip += 3; |
| break; |
| case 2: |
| report_pass("RDPID triggers #UD"); |
| vmx_inc_test_stage(); |
| regs->rip += 4; |
| break; |
| } |
| return; |
| |
| } |
| |
| static void disable_rdtscp_main(void) |
| { |
| /* Test that #UD is properly injected in L2. */ |
| handle_exception(UD_VECTOR, disable_rdtscp_ud_handler); |
| |
| vmx_set_test_stage(0); |
| asm volatile("rdtscp" : : : "eax", "ecx", "edx"); |
| vmcall(); |
| asm volatile(".byte 0xf3, 0x0f, 0xc7, 0xf8" : : : "eax"); |
| |
| handle_exception(UD_VECTOR, 0); |
| vmcall(); |
| } |
| |
| static int disable_rdtscp_exit_handler(union exit_reason exit_reason) |
| { |
| switch (exit_reason.basic) { |
| case VMX_VMCALL: |
| switch (vmx_get_test_stage()) { |
| case 0: |
| report_fail("RDTSCP triggers #UD"); |
| vmx_inc_test_stage(); |
| /* fallthrough */ |
| case 1: |
| vmx_inc_test_stage(); |
| vmcs_write(GUEST_RIP, vmcs_read(GUEST_RIP) + 3); |
| return VMX_TEST_RESUME; |
| case 2: |
| report_fail("RDPID triggers #UD"); |
| break; |
| } |
| break; |
| |
| default: |
| report_fail("Unknown exit reason, 0x%x", exit_reason.full); |
| print_vmexit_info(exit_reason); |
| } |
| return VMX_TEST_VMEXIT; |
| } |
| |
| static void exit_monitor_from_l2_main(void) |
| { |
| printf("Calling exit(0) from l2...\n"); |
| exit(0); |
| } |
| |
| static int exit_monitor_from_l2_handler(union exit_reason exit_reason) |
| { |
| report_fail("The guest should have killed the VMM"); |
| return VMX_TEST_EXIT; |
| } |
| |
| static void assert_exit_reason(u64 expected) |
| { |
| u64 actual = vmcs_read(EXI_REASON); |
| |
| TEST_ASSERT_EQ_MSG(expected, actual, "Expected %s, got %s.", |
| exit_reason_description(expected), |
| exit_reason_description(actual)); |
| } |
| |
| static void skip_exit_insn(void) |
| { |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u32 insn_len = vmcs_read(EXI_INST_LEN); |
| vmcs_write(GUEST_RIP, guest_rip + insn_len); |
| } |
| |
| static void skip_exit_vmcall(void) |
| { |
| assert_exit_reason(VMX_VMCALL); |
| skip_exit_insn(); |
| } |
| |
| static void v2_null_test_guest(void) |
| { |
| } |
| |
| static void v2_null_test(void) |
| { |
| test_set_guest(v2_null_test_guest); |
| enter_guest(); |
| report_pass(__func__); |
| } |
| |
| static void v2_multiple_entries_test_guest(void) |
| { |
| vmx_set_test_stage(1); |
| vmcall(); |
| vmx_set_test_stage(2); |
| } |
| |
| static void v2_multiple_entries_test(void) |
| { |
| test_set_guest(v2_multiple_entries_test_guest); |
| enter_guest(); |
| TEST_ASSERT_EQ(vmx_get_test_stage(), 1); |
| skip_exit_vmcall(); |
| enter_guest(); |
| TEST_ASSERT_EQ(vmx_get_test_stage(), 2); |
| report_pass(__func__); |
| } |
| |
| static int fixture_test_data = 1; |
| |
| static void fixture_test_teardown(void *data) |
| { |
| *((int *) data) = 1; |
| } |
| |
| static void fixture_test_guest(void) |
| { |
| fixture_test_data++; |
| } |
| |
| |
| static void fixture_test_setup(void) |
| { |
| TEST_ASSERT_EQ_MSG(1, fixture_test_data, |
| "fixture_test_teardown didn't run?!"); |
| fixture_test_data = 2; |
| test_add_teardown(fixture_test_teardown, &fixture_test_data); |
| test_set_guest(fixture_test_guest); |
| } |
| |
| static void fixture_test_case1(void) |
| { |
| fixture_test_setup(); |
| TEST_ASSERT_EQ(2, fixture_test_data); |
| enter_guest(); |
| TEST_ASSERT_EQ(3, fixture_test_data); |
| report_pass(__func__); |
| } |
| |
| static void fixture_test_case2(void) |
| { |
| fixture_test_setup(); |
| TEST_ASSERT_EQ(2, fixture_test_data); |
| enter_guest(); |
| TEST_ASSERT_EQ(3, fixture_test_data); |
| report_pass(__func__); |
| } |
| |
| enum ept_access_op { |
| OP_READ, |
| OP_WRITE, |
| OP_EXEC, |
| OP_FLUSH_TLB, |
| OP_EXIT, |
| }; |
| |
| static struct ept_access_test_data { |
| unsigned long gpa; |
| unsigned long *gva; |
| unsigned long hpa; |
| unsigned long *hva; |
| enum ept_access_op op; |
| } ept_access_test_data; |
| |
| extern unsigned char ret42_start; |
| extern unsigned char ret42_end; |
| |
| /* Returns 42. */ |
| asm( |
| ".align 64\n" |
| "ret42_start:\n" |
| "mov $42, %eax\n" |
| "ret\n" |
| "ret42_end:\n" |
| ); |
| |
| static void |
| diagnose_ept_violation_qual(u64 expected, u64 actual) |
| { |
| |
| #define DIAGNOSE(flag) \ |
| do { \ |
| if ((expected & flag) != (actual & flag)) \ |
| printf(#flag " %sexpected\n", \ |
| (expected & flag) ? "" : "un"); \ |
| } while (0) |
| |
| DIAGNOSE(EPT_VLT_RD); |
| DIAGNOSE(EPT_VLT_WR); |
| DIAGNOSE(EPT_VLT_FETCH); |
| DIAGNOSE(EPT_VLT_PERM_RD); |
| DIAGNOSE(EPT_VLT_PERM_WR); |
| DIAGNOSE(EPT_VLT_PERM_EX); |
| DIAGNOSE(EPT_VLT_LADDR_VLD); |
| DIAGNOSE(EPT_VLT_PADDR); |
| |
| #undef DIAGNOSE |
| } |
| |
| static void do_ept_access_op(enum ept_access_op op) |
| { |
| ept_access_test_data.op = op; |
| enter_guest(); |
| } |
| |
| /* |
| * Force the guest to flush its TLB (i.e., flush gva -> gpa mappings). Only |
| * needed by tests that modify guest PTEs. |
| */ |
| static void ept_access_test_guest_flush_tlb(void) |
| { |
| do_ept_access_op(OP_FLUSH_TLB); |
| skip_exit_vmcall(); |
| } |
| |
| /* |
| * Modifies the EPT entry at @level in the mapping of @gpa. First clears the |
| * bits in @clear then sets the bits in @set. @mkhuge transforms the entry into |
| * a huge page. |
| */ |
| static unsigned long ept_twiddle(unsigned long gpa, bool mkhuge, int level, |
| unsigned long clear, unsigned long set) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| unsigned long pte; |
| |
| /* Screw with the mapping at the requested level. */ |
| TEST_ASSERT(get_ept_pte(pml4, gpa, level, &orig_pte)); |
| pte = orig_pte; |
| if (mkhuge) |
| pte = (orig_pte & ~EPT_ADDR_MASK) | data->hpa | EPT_LARGE_PAGE; |
| else |
| pte = orig_pte; |
| pte = (pte & ~clear) | set; |
| set_ept_pte(pml4, gpa, level, pte); |
| invept(INVEPT_SINGLE, eptp); |
| |
| return orig_pte; |
| } |
| |
| static void ept_untwiddle(unsigned long gpa, int level, unsigned long orig_pte) |
| { |
| set_ept_pte(pml4, gpa, level, orig_pte); |
| invept(INVEPT_SINGLE, eptp); |
| } |
| |
| static void do_ept_violation(bool leaf, enum ept_access_op op, |
| u64 expected_qual, u64 expected_paddr) |
| { |
| u64 qual; |
| |
| /* Try the access and observe the violation. */ |
| do_ept_access_op(op); |
| |
| assert_exit_reason(VMX_EPT_VIOLATION); |
| |
| qual = vmcs_read(EXI_QUALIFICATION); |
| |
| /* Mask undefined bits (which may later be defined in certain cases). */ |
| qual &= ~(EPT_VLT_GUEST_USER | EPT_VLT_GUEST_RW | EPT_VLT_GUEST_EX | |
| EPT_VLT_PERM_USER_EX); |
| |
| diagnose_ept_violation_qual(expected_qual, qual); |
| TEST_EXPECT_EQ(expected_qual, qual); |
| |
| #if 0 |
| /* Disable for now otherwise every test will fail */ |
| TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), |
| (unsigned long) ( |
| op == OP_EXEC ? data->gva + 1 : data->gva)); |
| #endif |
| /* |
| * TODO: tests that probe expected_paddr in pages other than the one at |
| * the beginning of the 1g region. |
| */ |
| TEST_EXPECT_EQ(vmcs_read(INFO_PHYS_ADDR), expected_paddr); |
| } |
| |
| static void |
| ept_violation_at_level_mkhuge(bool mkhuge, int level, unsigned long clear, |
| unsigned long set, enum ept_access_op op, |
| u64 expected_qual) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| |
| orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); |
| |
| do_ept_violation(level == 1 || mkhuge, op, expected_qual, |
| op == OP_EXEC ? data->gpa + sizeof(unsigned long) : |
| data->gpa); |
| |
| /* Fix the violation and resume the op loop. */ |
| ept_untwiddle(data->gpa, level, orig_pte); |
| enter_guest(); |
| skip_exit_vmcall(); |
| } |
| |
| static void |
| ept_violation_at_level(int level, unsigned long clear, unsigned long set, |
| enum ept_access_op op, u64 expected_qual) |
| { |
| ept_violation_at_level_mkhuge(false, level, clear, set, op, |
| expected_qual); |
| if (ept_huge_pages_supported(level)) |
| ept_violation_at_level_mkhuge(true, level, clear, set, op, |
| expected_qual); |
| } |
| |
| static void ept_violation(unsigned long clear, unsigned long set, |
| enum ept_access_op op, u64 expected_qual) |
| { |
| ept_violation_at_level(1, clear, set, op, expected_qual); |
| ept_violation_at_level(2, clear, set, op, expected_qual); |
| ept_violation_at_level(3, clear, set, op, expected_qual); |
| ept_violation_at_level(4, clear, set, op, expected_qual); |
| } |
| |
| static void ept_access_violation(unsigned long access, enum ept_access_op op, |
| u64 expected_qual) |
| { |
| ept_violation(EPT_PRESENT, access, op, |
| expected_qual | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| /* |
| * For translations that don't involve a GVA, that is physical address (paddr) |
| * accesses, EPT violations don't set the flag EPT_VLT_PADDR. For a typical |
| * guest memory access, the hardware does GVA -> GPA -> HPA. However, certain |
| * translations don't involve GVAs, such as when the hardware does the guest |
| * page table walk. For example, in translating GVA_1 -> GPA_1, the guest MMU |
| * might try to set an A bit on a guest PTE. If the GPA_2 that the PTE resides |
| * on isn't present in the EPT, then the EPT violation will be for GPA_2 and |
| * the EPT_VLT_PADDR bit will be clear in the exit qualification. |
| * |
| * Note that paddr violations can also be triggered by loading PAE page tables |
| * with wonky addresses. We don't test that yet. |
| * |
| * This function modifies the EPT entry that maps the GPA that the guest page |
| * table entry mapping ept_access_test_data.gva resides on. |
| * |
| * @ept_access EPT permissions to set. Other permissions are cleared. |
| * |
| * @pte_ad Set the A/D bits on the guest PTE accordingly. |
| * |
| * @op Guest operation to perform with |
| * ept_access_test_data.gva. |
| * |
| * @expect_violation |
| * Is a violation expected during the paddr access? |
| * |
| * @expected_qual Expected qualification for the EPT violation. |
| * EPT_VLT_PADDR should be clear. |
| */ |
| static void ept_access_paddr(unsigned long ept_access, unsigned long pte_ad, |
| enum ept_access_op op, bool expect_violation, |
| u64 expected_qual) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long *ptep; |
| unsigned long gpa; |
| unsigned long orig_epte; |
| unsigned long epte; |
| int i; |
| |
| /* Modify the guest PTE mapping data->gva according to @pte_ad. */ |
| ptep = get_pte_level(current_page_table(), data->gva, /*level=*/1); |
| TEST_ASSERT(ptep); |
| TEST_ASSERT_EQ(*ptep & PT_ADDR_MASK, data->gpa); |
| *ptep = (*ptep & ~PT_AD_MASK) | pte_ad; |
| ept_access_test_guest_flush_tlb(); |
| |
| /* |
| * Now modify the access bits on the EPT entry for the GPA that the |
| * guest PTE resides on. Note that by modifying a single EPT entry, |
| * we're potentially affecting 512 guest PTEs. However, we've carefully |
| * constructed our test such that those other 511 PTEs aren't used by |
| * the guest: data->gva is at the beginning of a 1G huge page, thus the |
| * PTE we're modifying is at the beginning of a 4K page and the |
| * following 511 entries are also under our control (and not touched by |
| * the guest). |
| */ |
| gpa = virt_to_phys(ptep); |
| TEST_ASSERT_EQ(gpa & ~PAGE_MASK, 0); |
| /* |
| * Make sure the guest page table page is mapped with a 4K EPT entry, |
| * otherwise our level=1 twiddling below will fail. We use the |
| * identity map (gpa = gpa) since page tables are shared with the host. |
| */ |
| install_ept(pml4, gpa, gpa, EPT_PRESENT); |
| orig_epte = ept_twiddle(gpa, /*mkhuge=*/0, /*level=*/1, |
| /*clear=*/EPT_PRESENT, /*set=*/ept_access); |
| |
| if (expect_violation) { |
| do_ept_violation(/*leaf=*/true, op, |
| expected_qual | EPT_VLT_LADDR_VLD, gpa); |
| ept_untwiddle(gpa, /*level=*/1, orig_epte); |
| do_ept_access_op(op); |
| } else { |
| do_ept_access_op(op); |
| if (ept_ad_enabled()) { |
| for (i = EPT_PAGE_LEVEL; i > 0; i--) { |
| TEST_ASSERT(get_ept_pte(pml4, gpa, i, &epte)); |
| TEST_ASSERT(epte & EPT_ACCESS_FLAG); |
| if (i == 1) |
| TEST_ASSERT(epte & EPT_DIRTY_FLAG); |
| else |
| TEST_ASSERT_EQ(epte & EPT_DIRTY_FLAG, 0); |
| } |
| } |
| |
| ept_untwiddle(gpa, /*level=*/1, orig_epte); |
| } |
| |
| TEST_ASSERT(*ptep & PT_ACCESSED_MASK); |
| if ((pte_ad & PT_DIRTY_MASK) || op == OP_WRITE) |
| TEST_ASSERT(*ptep & PT_DIRTY_MASK); |
| |
| skip_exit_vmcall(); |
| } |
| |
| static void ept_access_allowed_paddr(unsigned long ept_access, |
| unsigned long pte_ad, |
| enum ept_access_op op) |
| { |
| ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/false, |
| /*expected_qual=*/-1); |
| } |
| |
| static void ept_access_violation_paddr(unsigned long ept_access, |
| unsigned long pte_ad, |
| enum ept_access_op op, |
| u64 expected_qual) |
| { |
| ept_access_paddr(ept_access, pte_ad, op, /*expect_violation=*/true, |
| expected_qual); |
| } |
| |
| |
| static void ept_allowed_at_level_mkhuge(bool mkhuge, int level, |
| unsigned long clear, |
| unsigned long set, |
| enum ept_access_op op) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| |
| orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); |
| |
| /* No violation. Should proceed to vmcall. */ |
| do_ept_access_op(op); |
| skip_exit_vmcall(); |
| |
| ept_untwiddle(data->gpa, level, orig_pte); |
| } |
| |
| static void ept_allowed_at_level(int level, unsigned long clear, |
| unsigned long set, enum ept_access_op op) |
| { |
| ept_allowed_at_level_mkhuge(false, level, clear, set, op); |
| if (ept_huge_pages_supported(level)) |
| ept_allowed_at_level_mkhuge(true, level, clear, set, op); |
| } |
| |
| static void ept_allowed(unsigned long clear, unsigned long set, |
| enum ept_access_op op) |
| { |
| ept_allowed_at_level(1, clear, set, op); |
| ept_allowed_at_level(2, clear, set, op); |
| ept_allowed_at_level(3, clear, set, op); |
| ept_allowed_at_level(4, clear, set, op); |
| } |
| |
| static void ept_ignored_bit(int bit) |
| { |
| /* Set the bit. */ |
| ept_allowed(0, 1ul << bit, OP_READ); |
| ept_allowed(0, 1ul << bit, OP_WRITE); |
| ept_allowed(0, 1ul << bit, OP_EXEC); |
| |
| /* Clear the bit. */ |
| ept_allowed(1ul << bit, 0, OP_READ); |
| ept_allowed(1ul << bit, 0, OP_WRITE); |
| ept_allowed(1ul << bit, 0, OP_EXEC); |
| } |
| |
| static void ept_access_allowed(unsigned long access, enum ept_access_op op) |
| { |
| ept_allowed(EPT_PRESENT, access, op); |
| } |
| |
| |
| static void ept_misconfig_at_level_mkhuge_op(bool mkhuge, int level, |
| unsigned long clear, |
| unsigned long set, |
| enum ept_access_op op) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long orig_pte; |
| |
| orig_pte = ept_twiddle(data->gpa, mkhuge, level, clear, set); |
| |
| do_ept_access_op(op); |
| assert_exit_reason(VMX_EPT_MISCONFIG); |
| |
| /* Intel 27.2.1, "For all other VM exits, this field is cleared." */ |
| #if 0 |
| /* broken: */ |
| TEST_EXPECT_EQ_MSG(vmcs_read(EXI_QUALIFICATION), 0); |
| #endif |
| #if 0 |
| /* |
| * broken: |
| * According to description of exit qual for EPT violation, |
| * EPT_VLT_LADDR_VLD indicates if GUEST_LINEAR_ADDRESS is valid. |
| * However, I can't find anything that says GUEST_LINEAR_ADDRESS ought |
| * to be set for msiconfig. |
| */ |
| TEST_EXPECT_EQ(vmcs_read(GUEST_LINEAR_ADDRESS), |
| (unsigned long) ( |
| op == OP_EXEC ? data->gva + 1 : data->gva)); |
| #endif |
| |
| /* Fix the violation and resume the op loop. */ |
| ept_untwiddle(data->gpa, level, orig_pte); |
| enter_guest(); |
| skip_exit_vmcall(); |
| } |
| |
| static void ept_misconfig_at_level_mkhuge(bool mkhuge, int level, |
| unsigned long clear, |
| unsigned long set) |
| { |
| /* The op shouldn't matter (read, write, exec), so try them all! */ |
| ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_READ); |
| ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_WRITE); |
| ept_misconfig_at_level_mkhuge_op(mkhuge, level, clear, set, OP_EXEC); |
| } |
| |
| static void ept_misconfig_at_level(int level, unsigned long clear, |
| unsigned long set) |
| { |
| ept_misconfig_at_level_mkhuge(false, level, clear, set); |
| if (ept_huge_pages_supported(level)) |
| ept_misconfig_at_level_mkhuge(true, level, clear, set); |
| } |
| |
| static void ept_misconfig(unsigned long clear, unsigned long set) |
| { |
| ept_misconfig_at_level(1, clear, set); |
| ept_misconfig_at_level(2, clear, set); |
| ept_misconfig_at_level(3, clear, set); |
| ept_misconfig_at_level(4, clear, set); |
| } |
| |
| static void ept_access_misconfig(unsigned long access) |
| { |
| ept_misconfig(EPT_PRESENT, access); |
| } |
| |
| static void ept_reserved_bit_at_level_nohuge(int level, int bit) |
| { |
| /* Setting the bit causes a misconfig. */ |
| ept_misconfig_at_level_mkhuge(false, level, 0, 1ul << bit); |
| |
| /* Making the entry non-present turns reserved bits into ignored. */ |
| ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, |
| EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| static void ept_reserved_bit_at_level_huge(int level, int bit) |
| { |
| /* Setting the bit causes a misconfig. */ |
| ept_misconfig_at_level_mkhuge(true, level, 0, 1ul << bit); |
| |
| /* Making the entry non-present turns reserved bits into ignored. */ |
| ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, |
| EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| static void ept_reserved_bit_at_level(int level, int bit) |
| { |
| /* Setting the bit causes a misconfig. */ |
| ept_misconfig_at_level(level, 0, 1ul << bit); |
| |
| /* Making the entry non-present turns reserved bits into ignored. */ |
| ept_violation_at_level(level, EPT_PRESENT, 1ul << bit, OP_READ, |
| EPT_VLT_RD | EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| } |
| |
| static void ept_reserved_bit(int bit) |
| { |
| ept_reserved_bit_at_level(1, bit); |
| ept_reserved_bit_at_level(2, bit); |
| ept_reserved_bit_at_level(3, bit); |
| ept_reserved_bit_at_level(4, bit); |
| } |
| |
| #define PAGE_2M_ORDER 9 |
| #define PAGE_1G_ORDER 18 |
| |
| static void *get_1g_page(void) |
| { |
| static void *alloc; |
| |
| if (!alloc) |
| alloc = alloc_pages(PAGE_1G_ORDER); |
| return alloc; |
| } |
| |
| static void ept_access_test_teardown(void *unused) |
| { |
| /* Exit the guest cleanly. */ |
| do_ept_access_op(OP_EXIT); |
| } |
| |
| static void ept_access_test_guest(void) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| int (*code)(void) = (int (*)(void)) &data->gva[1]; |
| |
| while (true) { |
| switch (data->op) { |
| case OP_READ: |
| TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_1); |
| break; |
| case OP_WRITE: |
| *data->gva = MAGIC_VAL_2; |
| TEST_ASSERT_EQ(*data->gva, MAGIC_VAL_2); |
| *data->gva = MAGIC_VAL_1; |
| break; |
| case OP_EXEC: |
| TEST_ASSERT_EQ(42, code()); |
| break; |
| case OP_FLUSH_TLB: |
| write_cr3(read_cr3()); |
| break; |
| case OP_EXIT: |
| return; |
| default: |
| TEST_ASSERT_MSG(false, "Unknown op %d", data->op); |
| } |
| vmcall(); |
| } |
| } |
| |
| static void ept_access_test_setup(void) |
| { |
| struct ept_access_test_data *data = &ept_access_test_data; |
| unsigned long npages = 1ul << PAGE_1G_ORDER; |
| unsigned long size = npages * PAGE_SIZE; |
| unsigned long *page_table = current_page_table(); |
| unsigned long pte; |
| |
| if (setup_ept(false)) |
| test_skip("EPT not supported"); |
| |
| /* We use data->gpa = 1 << 39 so that test data has a separate pml4 entry */ |
| if (cpuid_maxphyaddr() < 40) |
| test_skip("Test needs MAXPHYADDR >= 40"); |
| |
| test_set_guest(ept_access_test_guest); |
| test_add_teardown(ept_access_test_teardown, NULL); |
| |
| data->hva = get_1g_page(); |
| TEST_ASSERT(data->hva); |
| data->hpa = virt_to_phys(data->hva); |
| |
| data->gpa = 1ul << 39; |
| data->gva = (void *) ALIGN((unsigned long) alloc_vpages(npages * 2), |
| size); |
| TEST_ASSERT(!any_present_pages(page_table, data->gva, size)); |
| install_pages(page_table, data->gpa, size, data->gva); |
| |
| /* |
| * Make sure nothing's mapped here so the tests that screw with the |
| * pml4 entry don't inadvertently break something. |
| */ |
| TEST_ASSERT(get_ept_pte(pml4, data->gpa, 4, &pte) && pte == 0); |
| TEST_ASSERT(get_ept_pte(pml4, data->gpa + size - 1, 4, &pte) && pte == 0); |
| install_ept(pml4, data->hpa, data->gpa, EPT_PRESENT); |
| |
| data->hva[0] = MAGIC_VAL_1; |
| memcpy(&data->hva[1], &ret42_start, &ret42_end - &ret42_start); |
| } |
| |
| static void ept_access_test_not_present(void) |
| { |
| ept_access_test_setup(); |
| /* --- */ |
| ept_access_violation(0, OP_READ, EPT_VLT_RD); |
| ept_access_violation(0, OP_WRITE, EPT_VLT_WR); |
| ept_access_violation(0, OP_EXEC, EPT_VLT_FETCH); |
| } |
| |
| static void ept_access_test_read_only(void) |
| { |
| ept_access_test_setup(); |
| |
| /* r-- */ |
| ept_access_allowed(EPT_RA, OP_READ); |
| ept_access_violation(EPT_RA, OP_WRITE, EPT_VLT_WR | EPT_VLT_PERM_RD); |
| ept_access_violation(EPT_RA, OP_EXEC, EPT_VLT_FETCH | EPT_VLT_PERM_RD); |
| } |
| |
| static void ept_access_test_write_only(void) |
| { |
| ept_access_test_setup(); |
| /* -w- */ |
| ept_access_misconfig(EPT_WA); |
| } |
| |
| static void ept_access_test_read_write(void) |
| { |
| ept_access_test_setup(); |
| /* rw- */ |
| ept_access_allowed(EPT_RA | EPT_WA, OP_READ); |
| ept_access_allowed(EPT_RA | EPT_WA, OP_WRITE); |
| ept_access_violation(EPT_RA | EPT_WA, OP_EXEC, |
| EPT_VLT_FETCH | EPT_VLT_PERM_RD | EPT_VLT_PERM_WR); |
| } |
| |
| |
| static void ept_access_test_execute_only(void) |
| { |
| ept_access_test_setup(); |
| /* --x */ |
| if (ept_execute_only_supported()) { |
| ept_access_violation(EPT_EA, OP_READ, |
| EPT_VLT_RD | EPT_VLT_PERM_EX); |
| ept_access_violation(EPT_EA, OP_WRITE, |
| EPT_VLT_WR | EPT_VLT_PERM_EX); |
| ept_access_allowed(EPT_EA, OP_EXEC); |
| } else { |
| ept_access_misconfig(EPT_EA); |
| } |
| } |
| |
| static void ept_access_test_read_execute(void) |
| { |
| ept_access_test_setup(); |
| /* r-x */ |
| ept_access_allowed(EPT_RA | EPT_EA, OP_READ); |
| ept_access_violation(EPT_RA | EPT_EA, OP_WRITE, |
| EPT_VLT_WR | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX); |
| ept_access_allowed(EPT_RA | EPT_EA, OP_EXEC); |
| } |
| |
| static void ept_access_test_write_execute(void) |
| { |
| ept_access_test_setup(); |
| /* -wx */ |
| ept_access_misconfig(EPT_WA | EPT_EA); |
| } |
| |
| static void ept_access_test_read_write_execute(void) |
| { |
| ept_access_test_setup(); |
| /* rwx */ |
| ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_READ); |
| ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_WRITE); |
| ept_access_allowed(EPT_RA | EPT_WA | EPT_EA, OP_EXEC); |
| } |
| |
| static void ept_access_test_reserved_bits(void) |
| { |
| int i; |
| int maxphyaddr; |
| |
| ept_access_test_setup(); |
| |
| /* Reserved bits above maxphyaddr. */ |
| maxphyaddr = cpuid_maxphyaddr(); |
| for (i = maxphyaddr; i <= 51; i++) { |
| report_prefix_pushf("reserved_bit=%d", i); |
| ept_reserved_bit(i); |
| report_prefix_pop(); |
| } |
| |
| /* Level-specific reserved bits. */ |
| ept_reserved_bit_at_level_nohuge(2, 3); |
| ept_reserved_bit_at_level_nohuge(2, 4); |
| ept_reserved_bit_at_level_nohuge(2, 5); |
| ept_reserved_bit_at_level_nohuge(2, 6); |
| /* 2M alignment. */ |
| for (i = 12; i < 20; i++) { |
| report_prefix_pushf("reserved_bit=%d", i); |
| ept_reserved_bit_at_level_huge(2, i); |
| report_prefix_pop(); |
| } |
| ept_reserved_bit_at_level_nohuge(3, 3); |
| ept_reserved_bit_at_level_nohuge(3, 4); |
| ept_reserved_bit_at_level_nohuge(3, 5); |
| ept_reserved_bit_at_level_nohuge(3, 6); |
| /* 1G alignment. */ |
| for (i = 12; i < 29; i++) { |
| report_prefix_pushf("reserved_bit=%d", i); |
| ept_reserved_bit_at_level_huge(3, i); |
| report_prefix_pop(); |
| } |
| ept_reserved_bit_at_level(4, 3); |
| ept_reserved_bit_at_level(4, 4); |
| ept_reserved_bit_at_level(4, 5); |
| ept_reserved_bit_at_level(4, 6); |
| ept_reserved_bit_at_level(4, 7); |
| } |
| |
| static void ept_access_test_ignored_bits(void) |
| { |
| ept_access_test_setup(); |
| /* |
| * Bits ignored at every level. Bits 8 and 9 (A and D) are ignored as |
| * far as translation is concerned even if AD bits are enabled in the |
| * EPTP. Bit 63 is ignored because "EPT-violation #VE" VM-execution |
| * control is 0. |
| */ |
| ept_ignored_bit(8); |
| ept_ignored_bit(9); |
| ept_ignored_bit(10); |
| ept_ignored_bit(11); |
| ept_ignored_bit(52); |
| ept_ignored_bit(53); |
| ept_ignored_bit(54); |
| ept_ignored_bit(55); |
| ept_ignored_bit(56); |
| ept_ignored_bit(57); |
| ept_ignored_bit(58); |
| ept_ignored_bit(59); |
| ept_ignored_bit(60); |
| ept_ignored_bit(61); |
| ept_ignored_bit(62); |
| ept_ignored_bit(63); |
| } |
| |
| static void ept_access_test_paddr_not_present_ad_disabled(void) |
| { |
| ept_access_test_setup(); |
| ept_disable_ad_bits(); |
| |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, EPT_VLT_RD); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, EPT_VLT_RD); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, EPT_VLT_RD); |
| } |
| |
| static void ept_access_test_paddr_not_present_ad_enabled(void) |
| { |
| u64 qual = EPT_VLT_RD | EPT_VLT_WR; |
| |
| ept_access_test_setup(); |
| ept_enable_ad_bits_or_skip_test(); |
| |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_READ, qual); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(0, PT_AD_MASK, OP_EXEC, qual); |
| } |
| |
| static void ept_access_test_paddr_read_only_ad_disabled(void) |
| { |
| /* |
| * When EPT AD bits are disabled, all accesses to guest paging |
| * structures are reported separately as a read and (after |
| * translation of the GPA to host physical address) a read+write |
| * if the A/D bits have to be set. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; |
| |
| ept_access_test_setup(); |
| ept_disable_ad_bits(); |
| |
| /* Can't update A bit, so all accesses fail. */ |
| ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); |
| /* AD bits disabled, so only writes try to update the D bit. */ |
| ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_allowed_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC); |
| /* Both A and D already set, so read-only is OK. */ |
| ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_READ); |
| ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_WRITE); |
| ept_access_allowed_paddr(EPT_RA, PT_AD_MASK, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_only_ad_enabled(void) |
| { |
| /* |
| * When EPT AD bits are enabled, all accesses to guest paging |
| * structures are considered writes as far as EPT translation |
| * is concerned. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD; |
| |
| ept_access_test_setup(); |
| ept_enable_ad_bits_or_skip_test(); |
| |
| ept_access_violation_paddr(EPT_RA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, 0, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, PT_ACCESSED_MASK, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA, PT_AD_MASK, OP_EXEC, qual); |
| } |
| |
| static void ept_access_test_paddr_read_write(void) |
| { |
| ept_access_test_setup(); |
| /* Read-write access to paging structure. */ |
| ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_READ); |
| ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_WRITE); |
| ept_access_allowed_paddr(EPT_RA | EPT_WA, 0, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_write_execute(void) |
| { |
| ept_access_test_setup(); |
| /* RWX access to paging structure. */ |
| ept_access_allowed_paddr(EPT_PRESENT, 0, OP_READ); |
| ept_access_allowed_paddr(EPT_PRESENT, 0, OP_WRITE); |
| ept_access_allowed_paddr(EPT_PRESENT, 0, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_execute_ad_disabled(void) |
| { |
| /* |
| * When EPT AD bits are disabled, all accesses to guest paging |
| * structures are reported separately as a read and (after |
| * translation of the GPA to host physical address) a read+write |
| * if the A/D bits have to be set. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; |
| |
| ept_access_test_setup(); |
| ept_disable_ad_bits(); |
| |
| /* Can't update A bit, so all accesses fail. */ |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); |
| /* AD bits disabled, so only writes try to update the D bit. */ |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC); |
| /* Both A and D already set, so read-only is OK. */ |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ); |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE); |
| ept_access_allowed_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC); |
| } |
| |
| static void ept_access_test_paddr_read_execute_ad_enabled(void) |
| { |
| /* |
| * When EPT AD bits are enabled, all accesses to guest paging |
| * structures are considered writes as far as EPT translation |
| * is concerned. |
| */ |
| u64 qual = EPT_VLT_WR | EPT_VLT_RD | EPT_VLT_PERM_RD | EPT_VLT_PERM_EX; |
| |
| ept_access_test_setup(); |
| ept_enable_ad_bits_or_skip_test(); |
| |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, 0, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_ACCESSED_MASK, OP_EXEC, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_READ, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_WRITE, qual); |
| ept_access_violation_paddr(EPT_RA | EPT_EA, PT_AD_MASK, OP_EXEC, qual); |
| } |
| |
| static void ept_access_test_paddr_not_present_page_fault(void) |
| { |
| ept_access_test_setup(); |
| /* |
| * TODO: test no EPT violation as long as guest PF occurs. e.g., GPA is |
| * page is read-only in EPT but GVA is also mapped read only in PT. |
| * Thus guest page fault before host takes EPT violation for trying to |
| * update A bit. |
| */ |
| } |
| |
| static void ept_access_test_force_2m_page(void) |
| { |
| ept_access_test_setup(); |
| |
| TEST_ASSERT_EQ(ept_2m_supported(), true); |
| ept_allowed_at_level_mkhuge(true, 2, 0, 0, OP_READ); |
| ept_violation_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_RA, OP_WRITE, |
| EPT_VLT_WR | EPT_VLT_PERM_RD | |
| EPT_VLT_LADDR_VLD | EPT_VLT_PADDR); |
| ept_misconfig_at_level_mkhuge(true, 2, EPT_PRESENT, EPT_WA); |
| } |
| |
| static bool invvpid_valid(u64 type, u64 vpid, u64 gla) |
| { |
| if (!is_invvpid_type_supported(type)) |
| return false; |
| |
| if (vpid >> 16) |
| return false; |
| |
| if (type != INVVPID_ALL && !vpid) |
| return false; |
| |
| if (type == INVVPID_ADDR && !is_canonical(gla)) |
| return false; |
| |
| return true; |
| } |
| |
| static void try_invvpid(u64 type, u64 vpid, u64 gla) |
| { |
| int rc; |
| bool valid = invvpid_valid(type, vpid, gla); |
| u64 expected = valid ? VMXERR_UNSUPPORTED_VMCS_COMPONENT |
| : VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID; |
| /* |
| * Set VMX_INST_ERROR to VMXERR_UNVALID_VMCS_COMPONENT, so |
| * that we can tell if it is updated by INVVPID. |
| */ |
| vmcs_read(~0); |
| rc = __invvpid(type, vpid, gla); |
| report(!rc == valid, "INVVPID type %ld VPID %lx GLA %lx %s", type, |
| vpid, gla, |
| valid ? "passes" : "fails"); |
| report(vmcs_read(VMX_INST_ERROR) == expected, |
| "After %s INVVPID, VMX_INST_ERR is %ld (actual %ld)", |
| rc ? "failed" : "successful", |
| expected, vmcs_read(VMX_INST_ERROR)); |
| } |
| |
| static inline unsigned long get_first_supported_invvpid_type(void) |
| { |
| u64 type = ffs(ept_vpid.val >> VPID_CAP_INVVPID_TYPES_SHIFT) - 1; |
| |
| __TEST_ASSERT(type >= INVVPID_ADDR && type <= INVVPID_CONTEXT_LOCAL); |
| return type; |
| } |
| |
| static void ds_invvpid(void *data) |
| { |
| asm volatile("invvpid %0, %1" |
| : |
| : "m"(*(struct invvpid_operand *)data), |
| "r"(get_first_supported_invvpid_type())); |
| } |
| |
| /* |
| * The SS override is ignored in 64-bit mode, so we use an addressing |
| * mode with %rsp as the base register to generate an implicit SS |
| * reference. |
| */ |
| static void ss_invvpid(void *data) |
| { |
| asm volatile("sub %%rsp,%0; invvpid (%%rsp,%0,1), %1" |
| : "+r"(data) |
| : "r"(get_first_supported_invvpid_type())); |
| } |
| |
| static void invvpid_test_gp(void) |
| { |
| bool fault; |
| |
| fault = test_for_exception(GP_VECTOR, &ds_invvpid, |
| (void *)NONCANONICAL); |
| report(fault, "INVVPID with non-canonical DS operand raises #GP"); |
| } |
| |
| static void invvpid_test_ss(void) |
| { |
| bool fault; |
| |
| fault = test_for_exception(SS_VECTOR, &ss_invvpid, |
| (void *)NONCANONICAL); |
| report(fault, "INVVPID with non-canonical SS operand raises #SS"); |
| } |
| |
| static void invvpid_test_pf(void) |
| { |
| void *vpage = alloc_vpage(); |
| bool fault; |
| |
| fault = test_for_exception(PF_VECTOR, &ds_invvpid, vpage); |
| report(fault, "INVVPID with unmapped operand raises #PF"); |
| } |
| |
| static void try_compat_invvpid(void *unused) |
| { |
| struct far_pointer32 fp = { |
| .offset = (uintptr_t)&&invvpid, |
| .selector = KERNEL_CS32, |
| }; |
| uintptr_t rsp; |
| |
| asm volatile ("mov %%rsp, %0" : "=r"(rsp)); |
| |
| TEST_ASSERT_MSG(fp.offset == (uintptr_t)&&invvpid, |
| "Code address too high."); |
| TEST_ASSERT_MSG(rsp == (u32)rsp, "Stack address too high."); |
| |
| asm goto ("lcall *%0" : : "m" (fp) : "rax" : invvpid); |
| return; |
| invvpid: |
| asm volatile (".code32;" |
| "invvpid (%eax), %eax;" |
| "lret;" |
| ".code64"); |
| __builtin_unreachable(); |
| } |
| |
| static void invvpid_test_compatibility_mode(void) |
| { |
| bool fault; |
| |
| fault = test_for_exception(UD_VECTOR, &try_compat_invvpid, NULL); |
| report(fault, "Compatibility mode INVVPID raises #UD"); |
| } |
| |
| static void invvpid_test_not_in_vmx_operation(void) |
| { |
| bool fault; |
| |
| TEST_ASSERT(!vmx_off()); |
| fault = test_for_exception(UD_VECTOR, &ds_invvpid, NULL); |
| report(fault, "INVVPID outside of VMX operation raises #UD"); |
| TEST_ASSERT(!vmx_on()); |
| } |
| |
| /* |
| * This does not test real-address mode, virtual-8086 mode, protected mode, |
| * or CPL > 0. |
| */ |
| static void invvpid_test(void) |
| { |
| int i; |
| unsigned types = 0; |
| unsigned type; |
| |
| if (!is_vpid_supported()) |
| test_skip("VPID not supported"); |
| |
| if (!is_invvpid_supported()) |
| test_skip("INVVPID not supported.\n"); |
| |
| if (is_invvpid_type_supported(INVVPID_ADDR)) |
| types |= 1u << INVVPID_ADDR; |
| if (is_invvpid_type_supported(INVVPID_CONTEXT_GLOBAL)) |
| types |= 1u << INVVPID_CONTEXT_GLOBAL; |
| if (is_invvpid_type_supported(INVVPID_ALL)) |
| types |= 1u << INVVPID_ALL; |
| if (is_invvpid_type_supported(INVVPID_CONTEXT_LOCAL)) |
| types |= 1u << INVVPID_CONTEXT_LOCAL; |
| |
| if (!types) |
| test_skip("No INVVPID types supported.\n"); |
| |
| for (i = -127; i < 128; i++) |
| try_invvpid(i, 0xffff, 0); |
| |
| /* |
| * VPID must not be more than 16 bits. |
| */ |
| for (i = 0; i < 64; i++) |
| for (type = 0; type < 4; type++) |
| if (types & (1u << type)) |
| try_invvpid(type, 1ul << i, 0); |
| |
| /* |
| * VPID must not be zero, except for "all contexts." |
| */ |
| for (type = 0; type < 4; type++) |
| if (types & (1u << type)) |
| try_invvpid(type, 0, 0); |
| |
| /* |
| * The gla operand is only validated for single-address INVVPID. |
| */ |
| if (types & (1u << INVVPID_ADDR)) |
| try_invvpid(INVVPID_ADDR, 0xffff, NONCANONICAL); |
| |
| invvpid_test_gp(); |
| invvpid_test_ss(); |
| invvpid_test_pf(); |
| invvpid_test_compatibility_mode(); |
| invvpid_test_not_in_vmx_operation(); |
| } |
| |
| static void test_assert_vmlaunch_inst_error(u32 expected_error) |
| { |
| u32 vmx_inst_err = vmcs_read(VMX_INST_ERROR); |
| |
| report(vmx_inst_err == expected_error, |
| "VMX inst error is %d (actual %d)", expected_error, vmx_inst_err); |
| } |
| |
| /* |
| * This version is wildly unsafe and should _only_ be used to test VM-Fail |
| * scenarios involving HOST_RIP. |
| */ |
| static void test_vmx_vmlaunch_must_fail(u32 expected_error) |
| { |
| /* Read the function name. */ |
| TEST_ASSERT(expected_error); |
| |
| /* |
| * Don't bother with any prep work, if VMLAUNCH passes the VM-Fail |
| * consistency checks and generates a VM-Exit, then the test is doomed |
| * no matter what as it will jump to a garbage RIP. |
| */ |
| __asm__ __volatile__ ("vmlaunch"); |
| test_assert_vmlaunch_inst_error(expected_error); |
| } |
| |
| /* |
| * Test for early VMLAUNCH failure. Returns true if VMLAUNCH makes it |
| * at least as far as the guest-state checks. Returns false if the |
| * VMLAUNCH fails early and execution falls through to the next |
| * instruction. |
| */ |
| static bool vmlaunch(void) |
| { |
| u32 exit_reason; |
| |
| /* |
| * Indirectly set VMX_INST_ERR to 12 ("VMREAD/VMWRITE from/to |
| * unsupported VMCS component"). The caller can then check |
| * to see if a failed VM-entry sets VMX_INST_ERR as expected. |
| */ |
| vmcs_write(~0u, 0); |
| |
| vmcs_write(HOST_RIP, (uintptr_t)&&success); |
| __asm__ __volatile__ goto ("vmwrite %%rsp, %0; vmlaunch" |
| : |
| : "r" ((u64)HOST_RSP) |
| : "cc", "memory" |
| : success); |
| return false; |
| success: |
| exit_reason = vmcs_read(EXI_REASON); |
| TEST_ASSERT(exit_reason == (VMX_FAIL_STATE | VMX_ENTRY_FAILURE) || |
| exit_reason == (VMX_FAIL_MSR | VMX_ENTRY_FAILURE)); |
| return true; |
| } |
| |
| /* |
| * Try to launch the current VMCS. |
| */ |
| static void test_vmx_vmlaunch(u32 xerror) |
| { |
| bool success = vmlaunch(); |
| |
| report(success == !xerror, "vmlaunch %s", |
| !xerror ? "succeeds" : "fails"); |
| if (!success && xerror) |
| test_assert_vmlaunch_inst_error(xerror); |
| } |
| |
| /* |
| * Try to launch the current VMCS, and expect one of two possible |
| * errors (or success) codes. |
| */ |
| static void test_vmx_vmlaunch2(u32 xerror1, u32 xerror2) |
| { |
| bool success = vmlaunch(); |
| u32 vmx_inst_err; |
| |
| if (!xerror1 == !xerror2) |
| report(success == !xerror1, "vmlaunch %s", |
| !xerror1 ? "succeeds" : "fails"); |
| |
| if (!success && (xerror1 || xerror2)) { |
| vmx_inst_err = vmcs_read(VMX_INST_ERROR); |
| report(vmx_inst_err == xerror1 || vmx_inst_err == xerror2, |
| "VMX inst error is %d or %d (actual %d)", xerror1, |
| xerror2, vmx_inst_err); |
| } |
| } |
| |
| static void test_vmx_invalid_controls(void) |
| { |
| test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| } |
| |
| static void test_vmx_valid_controls(void) |
| { |
| test_vmx_vmlaunch(0); |
| } |
| |
| /* |
| * Test a particular value of a VM-execution control bit, if the value |
| * is required or if the value is zero. |
| */ |
| static void test_rsvd_ctl_bit_value(const char *name, union vmx_ctrl_msr msr, |
| enum Encoding encoding, unsigned bit, |
| unsigned val) |
| { |
| u32 mask = 1u << bit; |
| bool expected; |
| u32 controls; |
| |
| if (msr.set & mask) |
| TEST_ASSERT(msr.clr & mask); |
| |
| /* |
| * We can't arbitrarily turn on a control bit, because it may |
| * introduce dependencies on other VMCS fields. So, we only |
| * test turning on bits that have a required setting. |
| */ |
| if (val && (msr.clr & mask) && !(msr.set & mask)) |
| return; |
| |
| report_prefix_pushf("%s %s bit %d", |
| val ? "Set" : "Clear", name, bit); |
| |
| controls = vmcs_read(encoding); |
| if (val) { |
| vmcs_write(encoding, msr.set | mask); |
| expected = (msr.clr & mask); |
| } else { |
| vmcs_write(encoding, msr.set & ~mask); |
| expected = !(msr.set & mask); |
| } |
| if (expected) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| vmcs_write(encoding, controls); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * Test reserved values of a VM-execution control bit, based on the |
| * allowed bit settings from the corresponding VMX capability MSR. |
| */ |
| static void test_rsvd_ctl_bit(const char *name, union vmx_ctrl_msr msr, |
| enum Encoding encoding, unsigned bit) |
| { |
| test_rsvd_ctl_bit_value(name, msr, encoding, bit, 0); |
| test_rsvd_ctl_bit_value(name, msr, encoding, bit, 1); |
| } |
| |
| /* |
| * Reserved bits in the pin-based VM-execution controls must be set |
| * properly. Software may consult the VMX capability MSRs to determine |
| * the proper settings. |
| * [Intel SDM] |
| */ |
| static void test_pin_based_ctls(void) |
| { |
| unsigned bit; |
| |
| printf("%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PIN" : |
| "MSR_IA32_VMX_PINBASED_CTLS", ctrl_pin_rev.val); |
| for (bit = 0; bit < 32; bit++) |
| test_rsvd_ctl_bit("pin-based controls", |
| ctrl_pin_rev, PIN_CONTROLS, bit); |
| } |
| |
| /* |
| * Reserved bits in the primary processor-based VM-execution controls |
| * must be set properly. Software may consult the VMX capability MSRs |
| * to determine the proper settings. |
| * [Intel SDM] |
| */ |
| static void test_primary_processor_based_ctls(void) |
| { |
| unsigned bit; |
| |
| printf("\n%s: %lx\n", basic.ctrl ? "MSR_IA32_VMX_TRUE_PROC" : |
| "MSR_IA32_VMX_PROCBASED_CTLS", ctrl_cpu_rev[0].val); |
| for (bit = 0; bit < 32; bit++) |
| test_rsvd_ctl_bit("primary processor-based controls", |
| ctrl_cpu_rev[0], CPU_EXEC_CTRL0, bit); |
| } |
| |
| /* |
| * If the "activate secondary controls" primary processor-based |
| * VM-execution control is 1, reserved bits in the secondary |
| * processor-based VM-execution controls must be cleared. Software may |
| * consult the VMX capability MSRs to determine which bits are |
| * reserved. |
| * If the "activate secondary controls" primary processor-based |
| * VM-execution control is 0 (or if the processor does not support the |
| * 1-setting of that control), no checks are performed on the |
| * secondary processor-based VM-execution controls. |
| * [Intel SDM] |
| */ |
| static void test_secondary_processor_based_ctls(void) |
| { |
| u32 primary; |
| u32 secondary; |
| unsigned bit; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) |
| return; |
| |
| primary = vmcs_read(CPU_EXEC_CTRL0); |
| secondary = vmcs_read(CPU_EXEC_CTRL1); |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); |
| printf("\nMSR_IA32_VMX_PROCBASED_CTLS2: %lx\n", ctrl_cpu_rev[1].val); |
| for (bit = 0; bit < 32; bit++) |
| test_rsvd_ctl_bit("secondary processor-based controls", |
| ctrl_cpu_rev[1], CPU_EXEC_CTRL1, bit); |
| |
| /* |
| * When the "activate secondary controls" VM-execution control |
| * is clear, there are no checks on the secondary controls. |
| */ |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, ~0); |
| report(vmlaunch(), |
| "Secondary processor-based controls ignored"); |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| } |
| |
| static void try_cr3_target_count(unsigned i, unsigned max) |
| { |
| report_prefix_pushf("CR3 target count 0x%x", i); |
| vmcs_write(CR3_TARGET_COUNT, i); |
| if (i <= max) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * The CR3-target count must not be greater than 4. Future processors |
| * may support a different number of CR3-target values. Software |
| * should read the VMX capability MSR IA32_VMX_MISC to determine the |
| * number of values supported. |
| * [Intel SDM] |
| */ |
| static void test_cr3_targets(void) |
| { |
| unsigned supported_targets = (rdmsr(MSR_IA32_VMX_MISC) >> 16) & 0x1ff; |
| u32 cr3_targets = vmcs_read(CR3_TARGET_COUNT); |
| unsigned i; |
| |
| printf("\nSupported CR3 targets: %d\n", supported_targets); |
| TEST_ASSERT(supported_targets <= 256); |
| |
| try_cr3_target_count(-1u, supported_targets); |
| try_cr3_target_count(0x80000000, supported_targets); |
| try_cr3_target_count(0x7fffffff, supported_targets); |
| for (i = 0; i <= supported_targets + 1; i++) |
| try_cr3_target_count(i, supported_targets); |
| vmcs_write(CR3_TARGET_COUNT, cr3_targets); |
| |
| /* VMWRITE to nonexistent target fields should fail. */ |
| for (i = supported_targets; i < 256; i++) |
| TEST_ASSERT(vmcs_write(CR3_TARGET_0 + i*2, 0)); |
| } |
| |
| /* |
| * Test a particular address setting in the VMCS |
| */ |
| static void test_vmcs_addr(const char *name, |
| enum Encoding encoding, |
| u64 align, |
| bool ignored, |
| bool skip_beyond_mapped_ram, |
| u64 addr) |
| { |
| report_prefix_pushf("%s = %lx", name, addr); |
| vmcs_write(encoding, addr); |
| if (skip_beyond_mapped_ram && |
| addr > fwcfg_get_u64(FW_CFG_RAM_SIZE) - align && |
| addr < (1ul << cpuid_maxphyaddr())) |
| printf("Skipping physical address beyond mapped RAM\n"); |
| else if (ignored || (IS_ALIGNED(addr, align) && |
| addr < (1ul << cpuid_maxphyaddr()))) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * Test interesting values for a VMCS address |
| */ |
| static void test_vmcs_addr_values(const char *name, |
| enum Encoding encoding, |
| u64 align, |
| bool ignored, |
| bool skip_beyond_mapped_ram, |
| u32 bit_start, u32 bit_end) |
| { |
| unsigned i; |
| u64 orig_val = vmcs_read(encoding); |
| |
| for (i = bit_start; i <= bit_end; i++) |
| test_vmcs_addr(name, encoding, align, ignored, |
| skip_beyond_mapped_ram, 1ul << i); |
| |
| test_vmcs_addr(name, encoding, align, ignored, |
| skip_beyond_mapped_ram, PAGE_SIZE - 1); |
| test_vmcs_addr(name, encoding, align, ignored, |
| skip_beyond_mapped_ram, PAGE_SIZE); |
| test_vmcs_addr(name, encoding, align, ignored, |
| skip_beyond_mapped_ram, |
| (1ul << cpuid_maxphyaddr()) - PAGE_SIZE); |
| test_vmcs_addr(name, encoding, align, ignored, |
| skip_beyond_mapped_ram, -1ul); |
| |
| vmcs_write(encoding, orig_val); |
| } |
| |
| /* |
| * Test a physical address reference in the VMCS, when the corresponding |
| * feature is enabled and when the corresponding feature is disabled. |
| */ |
| static void test_vmcs_addr_reference(u32 control_bit, enum Encoding field, |
| const char *field_name, |
| const char *control_name, u64 align, |
| bool skip_beyond_mapped_ram, |
| bool control_primary) |
| { |
| u32 primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 secondary = vmcs_read(CPU_EXEC_CTRL1); |
| u64 page_addr; |
| |
| if (control_primary) { |
| if (!(ctrl_cpu_rev[0].clr & control_bit)) |
| return; |
| } else { |
| if (!(ctrl_cpu_rev[1].clr & control_bit)) |
| return; |
| } |
| |
| page_addr = vmcs_read(field); |
| |
| report_prefix_pushf("%s enabled", control_name); |
| if (control_primary) { |
| vmcs_write(CPU_EXEC_CTRL0, primary | control_bit); |
| } else { |
| vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, secondary | control_bit); |
| } |
| |
| test_vmcs_addr_values(field_name, field, align, false, |
| skip_beyond_mapped_ram, 0, 63); |
| report_prefix_pop(); |
| |
| report_prefix_pushf("%s disabled", control_name); |
| if (control_primary) { |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~control_bit); |
| } else { |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, secondary & ~control_bit); |
| } |
| |
| test_vmcs_addr_values(field_name, field, align, true, false, 0, 63); |
| report_prefix_pop(); |
| |
| vmcs_write(field, page_addr); |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| } |
| |
| /* |
| * If the "use I/O bitmaps" VM-execution control is 1, bits 11:0 of |
| * each I/O-bitmap address must be 0. Neither address should set any |
| * bits beyond the processor's physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_io_bitmaps(void) |
| { |
| test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_A, |
| "I/O bitmap A", "Use I/O bitmaps", |
| PAGE_SIZE, false, true); |
| test_vmcs_addr_reference(CPU_IO_BITMAP, IO_BITMAP_B, |
| "I/O bitmap B", "Use I/O bitmaps", |
| PAGE_SIZE, false, true); |
| } |
| |
| /* |
| * If the "use MSR bitmaps" VM-execution control is 1, bits 11:0 of |
| * the MSR-bitmap address must be 0. The address should not set any |
| * bits beyond the processor's physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_msr_bitmap(void) |
| { |
| test_vmcs_addr_reference(CPU_MSR_BITMAP, MSR_BITMAP, |
| "MSR bitmap", "Use MSR bitmaps", |
| PAGE_SIZE, false, true); |
| } |
| |
| /* |
| * If the "use TPR shadow" VM-execution control is 1, the virtual-APIC |
| * address must satisfy the following checks: |
| * - Bits 11:0 of the address must be 0. |
| * - The address should not set any bits beyond the processor's |
| * physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_apic_virt_addr(void) |
| { |
| /* |
| * Ensure the processor will never use the virtual-APIC page, since |
| * we will point it to invalid RAM. Otherwise KVM is puzzled about |
| * what we're trying to achieve and fails vmentry. |
| */ |
| u32 cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); |
| vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0 | CPU_CR8_LOAD | CPU_CR8_STORE); |
| test_vmcs_addr_reference(CPU_TPR_SHADOW, APIC_VIRT_ADDR, |
| "virtual-APIC address", "Use TPR shadow", |
| PAGE_SIZE, false, true); |
| vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); |
| } |
| |
| /* |
| * If the "virtualize APIC-accesses" VM-execution control is 1, the |
| * APIC-access address must satisfy the following checks: |
| * - Bits 11:0 of the address must be 0. |
| * - The address should not set any bits beyond the processor's |
| * physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_apic_access_addr(void) |
| { |
| void *apic_access_page = alloc_page(); |
| |
| vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_page)); |
| |
| test_vmcs_addr_reference(CPU_VIRT_APIC_ACCESSES, APIC_ACCS_ADDR, |
| "APIC-access address", |
| "virtualize APIC-accesses", PAGE_SIZE, |
| true, false); |
| } |
| |
| static bool set_bit_pattern(u8 mask, u32 *secondary) |
| { |
| u8 i; |
| bool flag = false; |
| u32 test_bits[3] = { |
| CPU_VIRT_X2APIC, |
| CPU_APIC_REG_VIRT, |
| CPU_VINTD |
| }; |
| |
| for (i = 0; i < ARRAY_SIZE(test_bits); i++) { |
| if ((mask & (1u << i)) && |
| (ctrl_cpu_rev[1].clr & test_bits[i])) { |
| *secondary |= test_bits[i]; |
| flag = true; |
| } |
| } |
| |
| return (flag); |
| } |
| |
| /* |
| * If the "use TPR shadow" VM-execution control is 0, the following |
| * VM-execution controls must also be 0: |
| * - virtualize x2APIC mode |
| * - APIC-register virtualization |
| * - virtual-interrupt delivery |
| * [Intel SDM] |
| * |
| * 2. If the "virtualize x2APIC mode" VM-execution control is 1, the |
| * "virtualize APIC accesses" VM-execution control must be 0. |
| * [Intel SDM] |
| */ |
| static void test_apic_virtual_ctls(void) |
| { |
| u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); |
| u32 primary = saved_primary; |
| u32 secondary = saved_secondary; |
| bool is_ctrl_valid = false; |
| char str[10] = "disabled"; |
| u8 i = 0, j; |
| |
| /* |
| * First test |
| */ |
| if (!((ctrl_cpu_rev[0].clr & (CPU_SECONDARY | CPU_TPR_SHADOW)) == |
| (CPU_SECONDARY | CPU_TPR_SHADOW))) |
| return; |
| |
| primary |= CPU_SECONDARY; |
| primary &= ~CPU_TPR_SHADOW; |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| |
| while (1) { |
| for (j = 1; j < 8; j++) { |
| secondary &= ~(CPU_VIRT_X2APIC | CPU_APIC_REG_VIRT | CPU_VINTD); |
| if (primary & CPU_TPR_SHADOW) { |
| is_ctrl_valid = true; |
| } else { |
| if (! set_bit_pattern(j, &secondary)) |
| is_ctrl_valid = true; |
| else |
| is_ctrl_valid = false; |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Use TPR shadow %s, virtualize x2APIC mode %s, APIC-register virtualization %s, virtual-interrupt delivery %s", |
| str, (secondary & CPU_VIRT_X2APIC) ? "enabled" : "disabled", (secondary & CPU_APIC_REG_VIRT) ? "enabled" : "disabled", (secondary & CPU_VINTD) ? "enabled" : "disabled"); |
| if (is_ctrl_valid) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| if (i == 1) |
| break; |
| i++; |
| |
| primary |= CPU_TPR_SHADOW; |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| strcpy(str, "enabled"); |
| } |
| |
| /* |
| * Second test |
| */ |
| u32 apic_virt_ctls = (CPU_VIRT_X2APIC | CPU_VIRT_APIC_ACCESSES); |
| |
| primary = saved_primary; |
| secondary = saved_secondary; |
| if (!((ctrl_cpu_rev[1].clr & apic_virt_ctls) == apic_virt_ctls)) |
| return; |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY); |
| secondary &= ~CPU_VIRT_APIC_ACCESSES; |
| vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_X2APIC); |
| report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_APIC_ACCESSES); |
| report_prefix_pushf("Virtualize x2APIC mode disabled; virtualize APIC access enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VIRT_X2APIC); |
| report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VIRT_APIC_ACCESSES); |
| report_prefix_pushf("Virtualize x2APIC mode enabled; virtualize APIC access disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, saved_primary); |
| vmcs_write(CPU_EXEC_CTRL1, saved_secondary); |
| } |
| |
| /* |
| * If the "virtual-interrupt delivery" VM-execution control is 1, the |
| * "external-interrupt exiting" VM-execution control must be 1. |
| * [Intel SDM] |
| */ |
| static void test_virtual_intr_ctls(void) |
| { |
| u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); |
| u32 saved_pin = vmcs_read(PIN_CONTROLS); |
| u32 primary = saved_primary; |
| u32 secondary = saved_secondary; |
| u32 pin = saved_pin; |
| |
| if (!((ctrl_cpu_rev[1].clr & CPU_VINTD) && |
| (ctrl_pin_rev.clr & PIN_EXTINT))) |
| return; |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); |
| vmcs_write(CPU_EXEC_CTRL1, secondary & ~CPU_VINTD); |
| vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); |
| report_prefix_pushf("Virtualize interrupt-delivery disabled; external-interrupt exiting disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary | CPU_VINTD); |
| report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, pin | PIN_EXTINT); |
| report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, pin & ~PIN_EXTINT); |
| report_prefix_pushf("Virtualize interrupt-delivery enabled; external-interrupt exiting disabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, saved_primary); |
| vmcs_write(CPU_EXEC_CTRL1, saved_secondary); |
| vmcs_write(PIN_CONTROLS, saved_pin); |
| } |
| |
| static void test_pi_desc_addr(u64 addr, bool is_ctrl_valid) |
| { |
| vmcs_write(POSTED_INTR_DESC_ADDR, addr); |
| report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-descriptor-address 0x%lx", addr); |
| if (is_ctrl_valid) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * If the "process posted interrupts" VM-execution control is 1, the |
| * following must be true: |
| * |
| * - The "virtual-interrupt delivery" VM-execution control is 1. |
| * - The "acknowledge interrupt on exit" VM-exit control is 1. |
| * - The posted-interrupt notification vector has a value in the |
| * - range 0 - 255 (bits 15:8 are all 0). |
| * - Bits 5:0 of the posted-interrupt descriptor address are all 0. |
| * - The posted-interrupt descriptor address does not set any bits |
| * beyond the processor's physical-address width. |
| * [Intel SDM] |
| */ |
| static void test_posted_intr(void) |
| { |
| u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); |
| u32 saved_pin = vmcs_read(PIN_CONTROLS); |
| u32 exit_ctl_saved = vmcs_read(EXI_CONTROLS); |
| u32 primary = saved_primary; |
| u32 secondary = saved_secondary; |
| u32 pin = saved_pin; |
| u32 exit_ctl = exit_ctl_saved; |
| u16 vec; |
| int i; |
| |
| if (!((ctrl_pin_rev.clr & PIN_POST_INTR) && |
| (ctrl_cpu_rev[1].clr & CPU_VINTD) && |
| (ctrl_exit_rev.clr & EXI_INTA))) |
| return; |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary | CPU_SECONDARY | CPU_TPR_SHADOW); |
| |
| /* |
| * Test virtual-interrupt-delivery and acknowledge-interrupt-on-exit |
| */ |
| pin |= PIN_POST_INTR; |
| vmcs_write(PIN_CONTROLS, pin); |
| secondary &= ~CPU_VINTD; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| secondary |= CPU_VINTD; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| exit_ctl &= ~EXI_INTA; |
| vmcs_write(EXI_CONTROLS, exit_ctl); |
| report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit disabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| exit_ctl |= EXI_INTA; |
| vmcs_write(EXI_CONTROLS, exit_ctl); |
| report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| secondary &= ~CPU_VINTD; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery disabled; acknowledge-interrupt-on-exit enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| secondary |= CPU_VINTD; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Process-posted-interrupts enabled; virtual-interrupt-delivery enabled; acknowledge-interrupt-on-exit enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| /* |
| * Test posted-interrupt notification vector |
| */ |
| for (i = 0; i < 8; i++) { |
| vec = (1ul << i); |
| vmcs_write(PINV, vec); |
| report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| } |
| for (i = 8; i < 16; i++) { |
| vec = (1ul << i); |
| vmcs_write(PINV, vec); |
| report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| vec &= ~(0xff << 8); |
| vmcs_write(PINV, vec); |
| report_prefix_pushf("Process-posted-interrupts enabled; posted-interrupt-notification-vector %u", vec); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| /* |
| * Test posted-interrupt descriptor address |
| */ |
| for (i = 0; i < 6; i++) { |
| test_pi_desc_addr(1ul << i, false); |
| } |
| |
| test_pi_desc_addr(0xf0, false); |
| test_pi_desc_addr(0xff, false); |
| test_pi_desc_addr(0x0f, false); |
| test_pi_desc_addr(0x8000, true); |
| test_pi_desc_addr(0x00, true); |
| test_pi_desc_addr(0xc000, true); |
| |
| test_vmcs_addr_values("process-posted interrupts", |
| POSTED_INTR_DESC_ADDR, 64, |
| false, false, 0, 63); |
| |
| vmcs_write(CPU_EXEC_CTRL0, saved_primary); |
| vmcs_write(CPU_EXEC_CTRL1, saved_secondary); |
| vmcs_write(PIN_CONTROLS, saved_pin); |
| } |
| |
| static void test_apic_ctls(void) |
| { |
| test_apic_virt_addr(); |
| test_apic_access_addr(); |
| test_apic_virtual_ctls(); |
| test_virtual_intr_ctls(); |
| test_posted_intr(); |
| } |
| |
| /* |
| * If the "enable VPID" VM-execution control is 1, the value of the |
| * of the VPID VM-execution control field must not be 0000H. |
| * [Intel SDM] |
| */ |
| static void test_vpid(void) |
| { |
| u32 saved_primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 saved_secondary = vmcs_read(CPU_EXEC_CTRL1); |
| u16 vpid = 0x0000; |
| int i; |
| |
| if (!is_vpid_supported()) { |
| report_skip("%s : Secondary controls and/or VPID not supported", __func__); |
| return; |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL0, saved_primary | CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, saved_secondary & ~CPU_VPID); |
| vmcs_write(VPID, vpid); |
| report_prefix_pushf("VPID disabled; VPID value %x", vpid); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, saved_secondary | CPU_VPID); |
| report_prefix_pushf("VPID enabled; VPID value %x", vpid); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| for (i = 0; i < 16; i++) { |
| vpid = (short)1 << i;; |
| vmcs_write(VPID, vpid); |
| report_prefix_pushf("VPID enabled; VPID value %x", vpid); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL0, saved_primary); |
| vmcs_write(CPU_EXEC_CTRL1, saved_secondary); |
| } |
| |
| static void set_vtpr(unsigned vtpr) |
| { |
| *(u32 *)phys_to_virt(vmcs_read(APIC_VIRT_ADDR) + APIC_TASKPRI) = vtpr; |
| } |
| |
| static void try_tpr_threshold_and_vtpr(unsigned threshold, unsigned vtpr) |
| { |
| bool valid = true; |
| u32 primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 secondary = vmcs_read(CPU_EXEC_CTRL1); |
| |
| if ((primary & CPU_TPR_SHADOW) && |
| (!(primary & CPU_SECONDARY) || |
| !(secondary & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) |
| valid = (threshold & 0xf) <= ((vtpr >> 4) & 0xf); |
| |
| set_vtpr(vtpr); |
| report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0x%x", |
| threshold, (vtpr >> 4) & 0xf); |
| if (valid) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| static void test_invalid_event_injection(void) |
| { |
| u32 ent_intr_info_save = vmcs_read(ENT_INTR_INFO); |
| u32 ent_intr_error_save = vmcs_read(ENT_INTR_ERROR); |
| u32 ent_inst_len_save = vmcs_read(ENT_INST_LEN); |
| u32 primary_save = vmcs_read(CPU_EXEC_CTRL0); |
| u32 secondary_save = vmcs_read(CPU_EXEC_CTRL1); |
| u64 guest_cr0_save = vmcs_read(GUEST_CR0); |
| u32 ent_intr_info_base = INTR_INFO_VALID_MASK; |
| u32 ent_intr_info, ent_intr_err, ent_intr_len; |
| u32 cnt; |
| |
| /* Setup */ |
| report_prefix_push("invalid event injection"); |
| vmcs_write(ENT_INTR_ERROR, 0x00000000); |
| vmcs_write(ENT_INST_LEN, 0x00000001); |
| |
| /* The field's interruption type is not set to a reserved value. */ |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_RESERVED | DE_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "RESERVED interruption type invalid [-]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_EXT_INTR | |
| DE_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "RESERVED interruption type invalid [+]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| /* If the interruption type is other event, the vector is 0. */ |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_OTHER_EVENT | DB_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "(OTHER EVENT && vector != 0) invalid [-]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| /* If the interruption type is NMI, the vector is 2 (negative case). */ |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | DE_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "(NMI && vector != 2) invalid [-]", ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| /* If the interruption type is NMI, the vector is 2 (positive case). */ |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_NMI_INTR | NMI_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "(NMI && vector == 2) valid [+]", ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| /* |
| * If the interruption type |
| * is HW exception, the vector is at most 31. |
| */ |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | 0x20; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "(HW exception && vector > 31) invalid [-]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| /* |
| * deliver-error-code is 1 iff either |
| * (a) the "unrestricted guest" VM-execution control is 0 |
| * (b) CR0.PE is set. |
| */ |
| |
| /* Assert that unrestricted guest is disabled or unsupported */ |
| assert(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(secondary_save & CPU_URG)); |
| |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | |
| GP_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "error code <-> (!URG || prot_mode) [-]", |
| ent_intr_info); |
| vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | |
| INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "error code <-> (!URG || prot_mode) [+]", |
| ent_intr_info); |
| vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| if (enable_unrestricted_guest(false)) |
| goto skip_unrestricted_guest; |
| |
| ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | |
| INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "error code <-> (!URG || prot_mode) [-]", |
| ent_intr_info); |
| vmcs_write(GUEST_CR0, guest_cr0_save & ~X86_CR0_PE & ~X86_CR0_PG); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| ent_intr_info = ent_intr_info_base | INTR_TYPE_HARD_EXCEPTION | |
| GP_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "error code <-> (!URG || prot_mode) [-]", |
| ent_intr_info); |
| vmcs_write(GUEST_CR0, guest_cr0_save | X86_CR0_PE); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary_save); |
| vmcs_write(CPU_EXEC_CTRL0, primary_save); |
| |
| skip_unrestricted_guest: |
| vmcs_write(GUEST_CR0, guest_cr0_save); |
| |
| /* deliver-error-code is 1 iff the interruption type is HW exception */ |
| report_prefix_push("error code <-> HW exception"); |
| for (cnt = 0; cnt < 8; cnt++) { |
| u32 exception_type_mask = cnt << 8; |
| u32 deliver_error_code_mask = |
| exception_type_mask != INTR_TYPE_HARD_EXCEPTION ? |
| INTR_INFO_DELIVER_CODE_MASK : 0; |
| |
| ent_intr_info = ent_intr_info_base | deliver_error_code_mask | |
| exception_type_mask | GP_VECTOR; |
| report_prefix_pushf("VM-entry intr info=0x%x [-]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| report_prefix_pop(); |
| |
| /* |
| * deliver-error-code is 1 iff the the vector |
| * indicates an exception that would normally deliver an error code |
| */ |
| report_prefix_push("error code <-> vector delivers error code"); |
| for (cnt = 0; cnt < 32; cnt++) { |
| bool has_error_code = false; |
| u32 deliver_error_code_mask; |
| |
| switch (cnt) { |
| case DF_VECTOR: |
| case TS_VECTOR: |
| case NP_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| case PF_VECTOR: |
| case AC_VECTOR: |
| has_error_code = true; |
| case CP_VECTOR: |
| /* Some CPUs have error code and some do not, skip */ |
| continue; |
| } |
| |
| /* Negative case */ |
| deliver_error_code_mask = has_error_code ? |
| 0 : |
| INTR_INFO_DELIVER_CODE_MASK; |
| ent_intr_info = ent_intr_info_base | deliver_error_code_mask | |
| INTR_TYPE_HARD_EXCEPTION | cnt; |
| report_prefix_pushf("VM-entry intr info=0x%x [-]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| /* Positive case */ |
| deliver_error_code_mask = has_error_code ? |
| INTR_INFO_DELIVER_CODE_MASK : |
| 0; |
| ent_intr_info = ent_intr_info_base | deliver_error_code_mask | |
| INTR_TYPE_HARD_EXCEPTION | cnt; |
| report_prefix_pushf("VM-entry intr info=0x%x [+]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| } |
| report_prefix_pop(); |
| |
| /* Reserved bits in the field (30:12) are 0. */ |
| report_prefix_push("reserved bits clear"); |
| for (cnt = 12; cnt <= 30; cnt++) { |
| ent_intr_info = ent_intr_info_base | |
| INTR_INFO_DELIVER_CODE_MASK | |
| INTR_TYPE_HARD_EXCEPTION | GP_VECTOR | |
| (1U << cnt); |
| report_prefix_pushf("VM-entry intr info=0x%x [-]", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| report_prefix_pop(); |
| |
| /* |
| * If deliver-error-code is 1 |
| * bits 31:16 of the VM-entry exception error-code field are 0. |
| */ |
| ent_intr_info = ent_intr_info_base | INTR_INFO_DELIVER_CODE_MASK | |
| INTR_TYPE_HARD_EXCEPTION | GP_VECTOR; |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "VM-entry exception error code[31:16] clear", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| for (cnt = 16; cnt <= 31; cnt++) { |
| ent_intr_err = 1U << cnt; |
| report_prefix_pushf("VM-entry intr error=0x%x [-]", |
| ent_intr_err); |
| vmcs_write(ENT_INTR_ERROR, ent_intr_err); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| vmcs_write(ENT_INTR_ERROR, 0x00000000); |
| report_prefix_pop(); |
| |
| /* |
| * If the interruption type is software interrupt, software exception, |
| * or privileged software exception, the VM-entry instruction-length |
| * field is in the range 0 - 15. |
| */ |
| |
| for (cnt = 0; cnt < 3; cnt++) { |
| switch (cnt) { |
| case 0: |
| ent_intr_info = ent_intr_info_base | |
| INTR_TYPE_SOFT_INTR; |
| break; |
| case 1: |
| ent_intr_info = ent_intr_info_base | |
| INTR_TYPE_SOFT_EXCEPTION; |
| break; |
| case 2: |
| ent_intr_info = ent_intr_info_base | |
| INTR_TYPE_PRIV_SW_EXCEPTION; |
| break; |
| } |
| report_prefix_pushf("%s, VM-entry intr info=0x%x", |
| "VM-entry instruction-length check", |
| ent_intr_info); |
| vmcs_write(ENT_INTR_INFO, ent_intr_info); |
| |
| /* Instruction length set to -1 (0xFFFFFFFF) should fail */ |
| ent_intr_len = -1; |
| report_prefix_pushf("VM-entry intr length = 0x%x [-]", |
| ent_intr_len); |
| vmcs_write(ENT_INST_LEN, ent_intr_len); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| /* Instruction length set to 16 should fail */ |
| ent_intr_len = 0x00000010; |
| report_prefix_pushf("VM-entry intr length = 0x%x [-]", |
| ent_intr_len); |
| vmcs_write(ENT_INST_LEN, 0x00000010); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| report_prefix_pop(); |
| } |
| |
| /* Cleanup */ |
| vmcs_write(ENT_INTR_INFO, ent_intr_info_save); |
| vmcs_write(ENT_INTR_ERROR, ent_intr_error_save); |
| vmcs_write(ENT_INST_LEN, ent_inst_len_save); |
| vmcs_write(CPU_EXEC_CTRL0, primary_save); |
| vmcs_write(CPU_EXEC_CTRL1, secondary_save); |
| vmcs_write(GUEST_CR0, guest_cr0_save); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * Test interesting vTPR values for a given TPR threshold. |
| */ |
| static void test_vtpr_values(unsigned threshold) |
| { |
| try_tpr_threshold_and_vtpr(threshold, (threshold - 1) << 4); |
| try_tpr_threshold_and_vtpr(threshold, threshold << 4); |
| try_tpr_threshold_and_vtpr(threshold, (threshold + 1) << 4); |
| } |
| |
| static void try_tpr_threshold(unsigned threshold) |
| { |
| bool valid = true; |
| |
| u32 primary = vmcs_read(CPU_EXEC_CTRL0); |
| u32 secondary = vmcs_read(CPU_EXEC_CTRL1); |
| |
| if ((primary & CPU_TPR_SHADOW) && !((primary & CPU_SECONDARY) && |
| (secondary & CPU_VINTD))) |
| valid = !(threshold >> 4); |
| |
| set_vtpr(-1); |
| vmcs_write(TPR_THRESHOLD, threshold); |
| report_prefix_pushf("TPR threshold 0x%x, VTPR.class 0xf", threshold); |
| if (valid) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| if (valid) |
| test_vtpr_values(threshold); |
| } |
| |
| /* |
| * Test interesting TPR threshold values. |
| */ |
| static void test_tpr_threshold_values(void) |
| { |
| unsigned i; |
| |
| for (i = 0; i < 0x10; i++) |
| try_tpr_threshold(i); |
| for (i = 4; i < 32; i++) |
| try_tpr_threshold(1u << i); |
| try_tpr_threshold(-1u); |
| try_tpr_threshold(0x7fffffff); |
| } |
| |
| /* |
| * This test covers the following two VM entry checks: |
| * |
| * i) If the "use TPR shadow" VM-execution control is 1 and the |
| * "virtual-interrupt delivery" VM-execution control is 0, bits |
| * 31:4 of the TPR threshold VM-execution control field must |
| be 0. |
| * [Intel SDM] |
| * |
| * ii) If the "use TPR shadow" VM-execution control is 1, the |
| * "virtual-interrupt delivery" VM-execution control is 0 |
| * and the "virtualize APIC accesses" VM-execution control |
| * is 0, the value of bits 3:0 of the TPR threshold VM-execution |
| * control field must not be greater than the value of bits |
| * 7:4 of VTPR. |
| * [Intel SDM] |
| */ |
| static void test_tpr_threshold(void) |
| { |
| u32 primary = vmcs_read(CPU_EXEC_CTRL0); |
| u64 apic_virt_addr = vmcs_read(APIC_VIRT_ADDR); |
| u64 threshold = vmcs_read(TPR_THRESHOLD); |
| void *virtual_apic_page; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) |
| return; |
| |
| virtual_apic_page = alloc_page(); |
| memset(virtual_apic_page, 0xff, PAGE_SIZE); |
| vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary & ~(CPU_TPR_SHADOW | CPU_SECONDARY)); |
| report_prefix_pushf("Use TPR shadow disabled, secondary controls disabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | CPU_TPR_SHADOW); |
| report_prefix_pushf("Use TPR shadow enabled, secondary controls disabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| |
| if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && |
| (ctrl_cpu_rev[1].clr & (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)))) |
| goto out; |
| u32 secondary = vmcs_read(CPU_EXEC_CTRL1); |
| |
| if (ctrl_cpu_rev[1].clr & CPU_VINTD) { |
| vmcs_write(CPU_EXEC_CTRL1, CPU_VINTD); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, |
| vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses disabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| } |
| |
| if (ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES) { |
| vmcs_write(CPU_EXEC_CTRL0, |
| vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, CPU_VIRT_APIC_ACCESSES); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, |
| vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| } |
| |
| if ((ctrl_cpu_rev[1].clr & |
| (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) == |
| (CPU_VINTD | CPU_VIRT_APIC_ACCESSES)) { |
| vmcs_write(CPU_EXEC_CTRL0, |
| vmcs_read(CPU_EXEC_CTRL0) & ~CPU_SECONDARY); |
| vmcs_write(CPU_EXEC_CTRL1, |
| CPU_VINTD | CPU_VIRT_APIC_ACCESSES); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls disabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, |
| vmcs_read(CPU_EXEC_CTRL0) | CPU_SECONDARY); |
| report_prefix_pushf("Use TPR shadow enabled; secondary controls enabled; virtual-interrupt delivery enabled; virtualize APIC accesses enabled"); |
| test_tpr_threshold_values(); |
| report_prefix_pop(); |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| out: |
| vmcs_write(TPR_THRESHOLD, threshold); |
| vmcs_write(APIC_VIRT_ADDR, apic_virt_addr); |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| } |
| |
| /* |
| * This test verifies the following two vmentry checks: |
| * |
| * If the "NMI exiting" VM-execution control is 0, "Virtual NMIs" |
| * VM-execution control must be 0. |
| * [Intel SDM] |
| * |
| * If the "virtual NMIs" VM-execution control is 0, the "NMI-window |
| * exiting" VM-execution control must be 0. |
| * [Intel SDM] |
| */ |
| static void test_nmi_ctrls(void) |
| { |
| u32 pin_ctrls, cpu_ctrls0, test_pin_ctrls, test_cpu_ctrls0; |
| |
| if ((ctrl_pin_rev.clr & (PIN_NMI | PIN_VIRT_NMI)) != |
| (PIN_NMI | PIN_VIRT_NMI)) { |
| report_skip("%s : NMI exiting and/or Virtual NMIs not supported", __func__); |
| return; |
| } |
| |
| /* Save the controls so that we can restore them after our tests */ |
| pin_ctrls = vmcs_read(PIN_CONTROLS); |
| cpu_ctrls0 = vmcs_read(CPU_EXEC_CTRL0); |
| |
| test_pin_ctrls = pin_ctrls & ~(PIN_NMI | PIN_VIRT_NMI); |
| test_cpu_ctrls0 = cpu_ctrls0 & ~CPU_NMI_WINDOW; |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls); |
| report_prefix_pushf("NMI-exiting disabled, virtual-NMIs disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_VIRT_NMI); |
| report_prefix_pushf("NMI-exiting disabled, virtual-NMIs enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); |
| report_prefix_pushf("NMI-exiting enabled, virtual-NMIs enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls | PIN_NMI); |
| report_prefix_pushf("NMI-exiting enabled, virtual-NMIs disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { |
| report_info("NMI-window exiting is not supported, skipping..."); |
| goto done; |
| } |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls); |
| vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); |
| report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls); |
| vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); |
| report_prefix_pushf("Virtual-NMIs disabled, NMI-window-exiting disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); |
| vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0 | CPU_NMI_WINDOW); |
| report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, test_pin_ctrls | (PIN_NMI | PIN_VIRT_NMI)); |
| vmcs_write(CPU_EXEC_CTRL0, test_cpu_ctrls0); |
| report_prefix_pushf("Virtual-NMIs enabled, NMI-window-exiting disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| /* Restore the controls to their original values */ |
| vmcs_write(CPU_EXEC_CTRL0, cpu_ctrls0); |
| done: |
| vmcs_write(PIN_CONTROLS, pin_ctrls); |
| } |
| |
| static void test_eptp_ad_bit(u64 eptp, bool is_ctrl_valid) |
| { |
| vmcs_write(EPTP, eptp); |
| report_prefix_pushf("Enable-EPT enabled; EPT accessed and dirty flag %s", |
| (eptp & EPTP_AD_FLAG) ? "1": "0"); |
| if (is_ctrl_valid) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| } |
| |
| /* |
| * 1. If the "enable EPT" VM-execution control is 1, the "EPTP VM-execution" |
| * control field must satisfy the following checks: |
| * |
| * - The EPT memory type (bits 2:0) must be a value supported by the |
| * processor as indicated in the IA32_VMX_EPT_VPID_CAP MSR. |
| * - Bits 5:3 (1 less than the EPT page-walk length) must indicate a |
| * supported EPT page-walk length. |
| * - Bit 6 (enable bit for accessed and dirty flags for EPT) must be |
| * 0 if bit 21 of the IA32_VMX_EPT_VPID_CAP MSR is read as 0, |
| * indicating that the processor does not support accessed and dirty |
| * dirty flags for EPT. |
| * - Reserved bits 11:7 and 63:N (where N is the processor's |
| * physical-address width) must all be 0. |
| * |
| * 2. If the "unrestricted guest" VM-execution control is 1, the |
| * "enable EPT" VM-execution control must also be 1. |
| */ |
| static void test_ept_eptp(void) |
| { |
| u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); |
| u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); |
| u64 eptp_saved = vmcs_read(EPTP); |
| u32 secondary; |
| u64 eptp; |
| u32 i, maxphysaddr; |
| u64 j, resv_bits_mask = 0; |
| |
| if (__setup_ept(0xfed40000, false)) { |
| report_skip("%s : EPT not supported", __func__); |
| return; |
| } |
| |
| test_vmx_valid_controls(); |
| |
| setup_dummy_ept(); |
| |
| secondary = vmcs_read(CPU_EXEC_CTRL1); |
| eptp = vmcs_read(EPTP); |
| |
| for (i = 0; i < 8; i++) { |
| eptp = (eptp & ~EPT_MEM_TYPE_MASK) | i; |
| vmcs_write(EPTP, eptp); |
| report_prefix_pushf("Enable-EPT enabled; EPT memory type %lu", |
| eptp & EPT_MEM_TYPE_MASK); |
| if (is_ept_memtype_supported(i)) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| eptp = (eptp & ~EPT_MEM_TYPE_MASK) | 6ul; |
| |
| /* |
| * Page walk length (bits 5:3). Note, the value in VMCS.EPTP "is 1 |
| * less than the EPT page-walk length". |
| */ |
| for (i = 0; i < 8; i++) { |
| eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | |
| (i << EPTP_PG_WALK_LEN_SHIFT); |
| |
| vmcs_write(EPTP, eptp); |
| report_prefix_pushf("Enable-EPT enabled; EPT page walk length %lu", |
| eptp & EPTP_PG_WALK_LEN_MASK); |
| if (i == 3 || (i == 4 && is_5_level_ept_supported())) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| eptp = (eptp & ~EPTP_PG_WALK_LEN_MASK) | |
| 3ul << EPTP_PG_WALK_LEN_SHIFT; |
| |
| /* |
| * Accessed and dirty flag (bit 6) |
| */ |
| if (ept_ad_bits_supported()) { |
| report_info("Processor supports accessed and dirty flag"); |
| eptp &= ~EPTP_AD_FLAG; |
| test_eptp_ad_bit(eptp, true); |
| |
| eptp |= EPTP_AD_FLAG; |
| test_eptp_ad_bit(eptp, true); |
| } else { |
| report_info("Processor does not supports accessed and dirty flag"); |
| eptp &= ~EPTP_AD_FLAG; |
| test_eptp_ad_bit(eptp, true); |
| |
| eptp |= EPTP_AD_FLAG; |
| test_eptp_ad_bit(eptp, false); |
| } |
| |
| /* |
| * Reserved bits [11:7] and [63:N] |
| */ |
| for (i = 0; i < 32; i++) { |
| eptp = (eptp & |
| ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)) | |
| (i << EPTP_RESERV_BITS_SHIFT); |
| vmcs_write(EPTP, eptp); |
| report_prefix_pushf("Enable-EPT enabled; reserved bits [11:7] %lu", |
| (eptp >> EPTP_RESERV_BITS_SHIFT) & |
| EPTP_RESERV_BITS_MASK); |
| if (i == 0) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| eptp = (eptp & ~(EPTP_RESERV_BITS_MASK << EPTP_RESERV_BITS_SHIFT)); |
| |
| maxphysaddr = cpuid_maxphyaddr(); |
| for (i = 0; i < (63 - maxphysaddr + 1); i++) { |
| resv_bits_mask |= 1ul << i; |
| } |
| |
| for (j = maxphysaddr - 1; j <= 63; j++) { |
| eptp = (eptp & ~(resv_bits_mask << maxphysaddr)) | |
| (j < maxphysaddr ? 0 : 1ul << j); |
| vmcs_write(EPTP, eptp); |
| report_prefix_pushf("Enable-EPT enabled; reserved bits [63:N] %lu", |
| (eptp >> maxphysaddr) & resv_bits_mask); |
| if (j < maxphysaddr) |
| test_vmx_valid_controls(); |
| else |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| secondary &= ~(CPU_EPT | CPU_URG); |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Enable-EPT disabled, unrestricted-guest disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| if (!(ctrl_cpu_rev[1].clr & CPU_URG)) |
| goto skip_unrestricted_guest; |
| |
| secondary |= CPU_URG; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Enable-EPT disabled, unrestricted-guest enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| secondary |= CPU_EPT; |
| setup_dummy_ept(); |
| report_prefix_pushf("Enable-EPT enabled, unrestricted-guest enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| skip_unrestricted_guest: |
| secondary &= ~CPU_URG; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("Enable-EPT enabled, unrestricted-guest disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary_saved); |
| vmcs_write(CPU_EXEC_CTRL1, secondary_saved); |
| vmcs_write(EPTP, eptp_saved); |
| } |
| |
| /* |
| * If the 'enable PML' VM-execution control is 1, the 'enable EPT' |
| * VM-execution control must also be 1. In addition, the PML address |
| * must satisfy the following checks: |
| * |
| * * Bits 11:0 of the address must be 0. |
| * * The address should not set any bits beyond the processor's |
| * physical-address width. |
| * |
| * [Intel SDM] |
| */ |
| static void test_pml(void) |
| { |
| u32 primary_saved = vmcs_read(CPU_EXEC_CTRL0); |
| u32 secondary_saved = vmcs_read(CPU_EXEC_CTRL1); |
| u32 primary = primary_saved; |
| u32 secondary = secondary_saved; |
| |
| if (!((ctrl_cpu_rev[0].clr & CPU_SECONDARY) && |
| (ctrl_cpu_rev[1].clr & CPU_EPT) && (ctrl_cpu_rev[1].clr & CPU_PML))) { |
| report_skip("%s : \"Secondary execution\" or \"enable EPT\" or \"enable PML\" control not supported", __func__); |
| return; |
| } |
| |
| primary |= CPU_SECONDARY; |
| vmcs_write(CPU_EXEC_CTRL0, primary); |
| secondary &= ~(CPU_PML | CPU_EPT); |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("enable-PML disabled, enable-EPT disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| secondary |= CPU_PML; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("enable-PML enabled, enable-EPT disabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| secondary |= CPU_EPT; |
| setup_dummy_ept(); |
| report_prefix_pushf("enable-PML enabled, enable-EPT enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| secondary &= ~CPU_PML; |
| vmcs_write(CPU_EXEC_CTRL1, secondary); |
| report_prefix_pushf("enable-PML disabled, enable EPT enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| test_vmcs_addr_reference(CPU_PML, PMLADDR, "PML address", "PML", |
| PAGE_SIZE, false, false); |
| |
| vmcs_write(CPU_EXEC_CTRL0, primary_saved); |
| vmcs_write(CPU_EXEC_CTRL1, secondary_saved); |
| } |
| |
| /* |
| * If the "activate VMX-preemption timer" VM-execution control is 0, the |
| * the "save VMX-preemption timer value" VM-exit control must also be 0. |
| * |
| * [Intel SDM] |
| */ |
| static void test_vmx_preemption_timer(void) |
| { |
| u32 saved_pin = vmcs_read(PIN_CONTROLS); |
| u32 saved_exit = vmcs_read(EXI_CONTROLS); |
| u32 pin = saved_pin; |
| u32 exit = saved_exit; |
| |
| if (!((ctrl_exit_rev.clr & EXI_SAVE_PREEMPT) || |
| (ctrl_pin_rev.clr & PIN_PREEMPT))) { |
| report_skip("%s : \"Save-VMX-preemption-timer\" and/or \"Enable-VMX-preemption-timer\" control not supported", __func__); |
| return; |
| } |
| |
| pin |= PIN_PREEMPT; |
| vmcs_write(PIN_CONTROLS, pin); |
| exit &= ~EXI_SAVE_PREEMPT; |
| vmcs_write(EXI_CONTROLS, exit); |
| report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| exit |= EXI_SAVE_PREEMPT; |
| vmcs_write(EXI_CONTROLS, exit); |
| report_prefix_pushf("enable-VMX-preemption-timer enabled, save-VMX-preemption-timer enabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| pin &= ~PIN_PREEMPT; |
| vmcs_write(PIN_CONTROLS, pin); |
| report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer enabled"); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| |
| exit &= ~EXI_SAVE_PREEMPT; |
| vmcs_write(EXI_CONTROLS, exit); |
| report_prefix_pushf("enable-VMX-preemption-timer disabled, save-VMX-preemption-timer disabled"); |
| test_vmx_valid_controls(); |
| report_prefix_pop(); |
| |
| vmcs_write(PIN_CONTROLS, saved_pin); |
| vmcs_write(EXI_CONTROLS, saved_exit); |
| } |
| |
| extern unsigned char test_mtf1; |
| extern unsigned char test_mtf2; |
| extern unsigned char test_mtf3; |
| extern unsigned char test_mtf4; |
| |
| static void test_mtf_guest(void) |
| { |
| asm ("vmcall;\n\t" |
| "out %al, $0x80;\n\t" |
| "test_mtf1:\n\t" |
| "vmcall;\n\t" |
| "out %al, $0x80;\n\t" |
| "test_mtf2:\n\t" |
| /* |
| * Prepare for the 'MOV CR3' test. Attempt to induce a |
| * general-protection fault by moving a non-canonical address into |
| * CR3. The 'MOV CR3' instruction does not take an imm64 operand, |
| * so we must MOV the desired value into a register first. |
| * |
| * MOV RAX is done before the VMCALL such that MTF is only enabled |
| * for the instruction under test. |
| */ |
| "mov $0xaaaaaaaaaaaaaaaa, %rax;\n\t" |
| "vmcall;\n\t" |
| "mov %rax, %cr3;\n\t" |
| "test_mtf3:\n\t" |
| "vmcall;\n\t" |
| /* |
| * ICEBP/INT1 instruction. Though the instruction is now |
| * documented, don't rely on assemblers enumerating the |
| * instruction. Resort to hand assembly. |
| */ |
| ".byte 0xf1;\n\t" |
| "vmcall;\n\t" |
| "test_mtf4:\n\t" |
| "mov $0, %eax;\n\t"); |
| } |
| |
| static void test_mtf_gp_handler(struct ex_regs *regs) |
| { |
| regs->rip = (unsigned long) &test_mtf3; |
| } |
| |
| static void test_mtf_db_handler(struct ex_regs *regs) |
| { |
| } |
| |
| static void enable_mtf(void) |
| { |
| u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); |
| |
| vmcs_write(CPU_EXEC_CTRL0, ctrl0 | CPU_MTF); |
| } |
| |
| static void disable_mtf(void) |
| { |
| u32 ctrl0 = vmcs_read(CPU_EXEC_CTRL0); |
| |
| vmcs_write(CPU_EXEC_CTRL0, ctrl0 & ~CPU_MTF); |
| } |
| |
| static void enable_tf(void) |
| { |
| unsigned long rflags = vmcs_read(GUEST_RFLAGS); |
| |
| vmcs_write(GUEST_RFLAGS, rflags | X86_EFLAGS_TF); |
| } |
| |
| static void disable_tf(void) |
| { |
| unsigned long rflags = vmcs_read(GUEST_RFLAGS); |
| |
| vmcs_write(GUEST_RFLAGS, rflags & ~X86_EFLAGS_TF); |
| } |
| |
| static void report_mtf(const char *insn_name, unsigned long exp_rip) |
| { |
| unsigned long rip = vmcs_read(GUEST_RIP); |
| |
| assert_exit_reason(VMX_MTF); |
| report(rip == exp_rip, "MTF VM-exit after %s. RIP: 0x%lx (expected 0x%lx)", |
| insn_name, rip, exp_rip); |
| } |
| |
| static void vmx_mtf_test(void) |
| { |
| unsigned long pending_dbg; |
| handler old_gp, old_db; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { |
| report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); |
| return; |
| } |
| |
| test_set_guest(test_mtf_guest); |
| |
| /* Expect an MTF VM-exit after OUT instruction */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| enable_mtf(); |
| enter_guest(); |
| report_mtf("OUT", (unsigned long) &test_mtf1); |
| disable_mtf(); |
| |
| /* |
| * Concurrent #DB trap and MTF on instruction boundary. Expect MTF |
| * VM-exit with populated 'pending debug exceptions' VMCS field. |
| */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| enable_mtf(); |
| enable_tf(); |
| |
| enter_guest(); |
| report_mtf("OUT", (unsigned long) &test_mtf2); |
| pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); |
| report(pending_dbg & DR6_BS, |
| "'pending debug exceptions' field after MTF VM-exit: 0x%lx (expected 0x%lx)", |
| pending_dbg, (unsigned long) DR6_BS); |
| |
| disable_mtf(); |
| disable_tf(); |
| vmcs_write(GUEST_PENDING_DEBUG, 0); |
| |
| /* |
| * #GP exception takes priority over MTF. Expect MTF VM-exit with RIP |
| * advanced to first instruction of #GP handler. |
| */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| old_gp = handle_exception(GP_VECTOR, test_mtf_gp_handler); |
| |
| enable_mtf(); |
| enter_guest(); |
| report_mtf("MOV CR3", (unsigned long) get_idt_addr(&boot_idt[GP_VECTOR])); |
| disable_mtf(); |
| |
| /* |
| * Concurrent MTF and privileged software exception (i.e. ICEBP/INT1). |
| * MTF should follow the delivery of #DB trap, though the SDM doesn't |
| * provide clear indication of the relative priority. |
| */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| handle_exception(GP_VECTOR, old_gp); |
| old_db = handle_exception(DB_VECTOR, test_mtf_db_handler); |
| |
| enable_mtf(); |
| enter_guest(); |
| report_mtf("INT1", (unsigned long) get_idt_addr(&boot_idt[DB_VECTOR])); |
| disable_mtf(); |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| handle_exception(DB_VECTOR, old_db); |
| vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | INTR_TYPE_OTHER_EVENT); |
| enter_guest(); |
| report_mtf("injected MTF", (unsigned long) &test_mtf4); |
| enter_guest(); |
| } |
| |
| extern char vmx_mtf_pdpte_guest_begin; |
| extern char vmx_mtf_pdpte_guest_end; |
| |
| asm("vmx_mtf_pdpte_guest_begin:\n\t" |
| "mov %cr0, %rax\n\t" /* save CR0 with PG=1 */ |
| "vmcall\n\t" /* on return from this CR0.PG=0 */ |
| "mov %rax, %cr0\n\t" /* restore CR0.PG=1 to enter PAE mode */ |
| "vmcall\n\t" |
| "retq\n\t" |
| "vmx_mtf_pdpte_guest_end:"); |
| |
| static void vmx_mtf_pdpte_test(void) |
| { |
| void *test_mtf_pdpte_guest; |
| pteval_t *pdpt; |
| u32 guest_ar_cs; |
| u64 guest_efer; |
| pteval_t *pte; |
| u64 guest_cr0; |
| u64 guest_cr3; |
| u64 guest_cr4; |
| u64 ent_ctls; |
| int i; |
| |
| if (setup_ept(false)) |
| return; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_MTF)) { |
| report_skip("%s : \"Monitor trap flag\" exec control not supported", __func__); |
| return; |
| } |
| |
| if (!(ctrl_cpu_rev[1].clr & CPU_URG)) { |
| report_skip("%s : \"Unrestricted guest\" exec control not supported", __func__); |
| return; |
| } |
| |
| vmcs_write(EXC_BITMAP, ~0); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | CPU_URG); |
| |
| /* |
| * Copy the guest code to an identity-mapped page. |
| */ |
| test_mtf_pdpte_guest = alloc_page(); |
| memcpy(test_mtf_pdpte_guest, &vmx_mtf_pdpte_guest_begin, |
| &vmx_mtf_pdpte_guest_end - &vmx_mtf_pdpte_guest_begin); |
| |
| test_set_guest(test_mtf_pdpte_guest); |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| /* |
| * Put the guest in non-paged 32-bit protected mode, ready to enter |
| * PAE mode when CR0.PG is set. CR4.PAE will already have been set |
| * when the guest started out in long mode. |
| */ |
| ent_ctls = vmcs_read(ENT_CONTROLS); |
| vmcs_write(ENT_CONTROLS, ent_ctls & ~ENT_GUEST_64); |
| |
| guest_efer = vmcs_read(GUEST_EFER); |
| vmcs_write(GUEST_EFER, guest_efer & ~(EFER_LMA | EFER_LME)); |
| |
| /* |
| * Set CS access rights bits for 32-bit protected mode: |
| * 3:0 B execute/read/accessed |
| * 4 1 code or data |
| * 6:5 0 descriptor privilege level |
| * 7 1 present |
| * 11:8 0 reserved |
| * 12 0 available for use by system software |
| * 13 0 64 bit mode not active |
| * 14 1 default operation size 32-bit segment |
| * 15 1 page granularity: segment limit in 4K units |
| * 16 0 segment usable |
| * 31:17 0 reserved |
| */ |
| guest_ar_cs = vmcs_read(GUEST_AR_CS); |
| vmcs_write(GUEST_AR_CS, 0xc09b); |
| |
| guest_cr0 = vmcs_read(GUEST_CR0); |
| vmcs_write(GUEST_CR0, guest_cr0 & ~X86_CR0_PG); |
| |
| guest_cr4 = vmcs_read(GUEST_CR4); |
| vmcs_write(GUEST_CR4, guest_cr4 & ~X86_CR4_PCIDE); |
| |
| guest_cr3 = vmcs_read(GUEST_CR3); |
| |
| /* |
| * Turn the 4-level page table into a PAE page table by following the 0th |
| * PML4 entry to a PDPT page, and grab the first four PDPTEs from that |
| * page. |
| * |
| * Why does this work? |
| * |
| * PAE uses 32-bit addressing which implies: |
| * Bits 11:0 page offset |
| * Bits 20:12 entry into 512-entry page table |
| * Bits 29:21 entry into a 512-entry directory table |
| * Bits 31:30 entry into the page directory pointer table. |
| * Bits 63:32 zero |
| * |
| * As only 2 bits are needed to select the PDPTEs for the entire |
| * 32-bit address space, take the first 4 PDPTEs in the level 3 page |
| * directory pointer table. It doesn't matter which of these PDPTEs |
| * are present because they must cover the guest code given that it |
| * has already run successfully. |
| * |
| * Get a pointer to PTE for GVA=0 in the page directory pointer table |
| */ |
| pte = get_pte_level( |
| (pgd_t *)phys_to_virt(guest_cr3 & ~X86_CR3_PCID_MASK), 0, |
| PDPT_LEVEL); |
| |
| /* |
| * Need some memory for the 4-entry PAE page directory pointer |
| * table. Use the end of the identity-mapped page where the guest code |
| * is stored. There is definitely space as the guest code is only a |
| * few bytes. |
| */ |
| pdpt = test_mtf_pdpte_guest + PAGE_SIZE - 4 * sizeof(pteval_t); |
| |
| /* |
| * Copy the first four PDPTEs into the PAE page table with reserved |
| * bits cleared. Note that permission bits from the PML4E and PDPTE |
| * are not propagated. |
| */ |
| for (i = 0; i < 4; i++) { |
| TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_RSVD_MASK), |
| "PDPTE has invalid reserved bits"); |
| TEST_ASSERT_EQ_MSG(0, (pte[i] & PDPTE64_PAGE_SIZE_MASK), |
| "Cannot use 1GB super pages for PAE"); |
| pdpt[i] = pte[i] & ~(PAE_PDPTE_RSVD_MASK); |
| } |
| vmcs_write(GUEST_CR3, virt_to_phys(pdpt)); |
| |
| enable_mtf(); |
| enter_guest(); |
| assert_exit_reason(VMX_MTF); |
| disable_mtf(); |
| |
| /* |
| * The four PDPTEs should have been loaded into the VMCS when |
| * the guest set CR0.PG to enter PAE mode. |
| */ |
| for (i = 0; i < 4; i++) { |
| u64 pdpte = vmcs_read(GUEST_PDPTE + 2 * i); |
| |
| report(pdpte == pdpt[i], "PDPTE%d is 0x%lx (expected 0x%lx)", |
| i, pdpte, pdpt[i]); |
| } |
| |
| /* |
| * Now, try to enter the guest in PAE mode. If the PDPTEs in the |
| * vmcs are wrong, this will fail. |
| */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| /* |
| * Return guest to 64-bit mode and wrap up. |
| */ |
| vmcs_write(ENT_CONTROLS, ent_ctls); |
| vmcs_write(GUEST_EFER, guest_efer); |
| vmcs_write(GUEST_AR_CS, guest_ar_cs); |
| vmcs_write(GUEST_CR0, guest_cr0); |
| vmcs_write(GUEST_CR4, guest_cr4); |
| vmcs_write(GUEST_CR3, guest_cr3); |
| |
| enter_guest(); |
| } |
| |
| /* |
| * Tests for VM-execution control fields |
| */ |
| static void test_vm_execution_ctls(void) |
| { |
| test_pin_based_ctls(); |
| test_primary_processor_based_ctls(); |
| test_secondary_processor_based_ctls(); |
| test_cr3_targets(); |
| test_io_bitmaps(); |
| test_msr_bitmap(); |
| test_apic_ctls(); |
| test_tpr_threshold(); |
| test_nmi_ctrls(); |
| test_pml(); |
| test_vpid(); |
| test_ept_eptp(); |
| test_vmx_preemption_timer(); |
| } |
| |
| /* |
| * The following checks are performed for the VM-entry MSR-load address if |
| * the VM-entry MSR-load count field is non-zero: |
| * |
| * - The lower 4 bits of the VM-entry MSR-load address must be 0. |
| * The address should not set any bits beyond the processor's |
| * physical-address width. |
| * |
| * - The address of the last byte in the VM-entry MSR-load area |
| * should not set any bits beyond the processor's physical-address |
| * width. The address of this last byte is VM-entry MSR-load address |
| * + (MSR count * 16) - 1. (The arithmetic used for the computation |
| * uses more bits than the processor's physical-address width.) |
| * |
| * |
| * [Intel SDM] |
| */ |
| static void test_entry_msr_load(void) |
| { |
| entry_msr_load = alloc_page(); |
| u64 tmp; |
| u32 entry_msr_ld_cnt = 1; |
| int i; |
| u32 addr_len = 64; |
| |
| vmcs_write(ENT_MSR_LD_CNT, entry_msr_ld_cnt); |
| |
| /* Check first 4 bits of VM-entry MSR-load address */ |
| for (i = 0; i < 4; i++) { |
| tmp = (u64)entry_msr_load | 1ull << i; |
| vmcs_write(ENTER_MSR_LD_ADDR, tmp); |
| report_prefix_pushf("VM-entry MSR-load addr [4:0] %lx", |
| tmp & 0xf); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| if (basic.val & (1ul << 48)) |
| addr_len = 32; |
| |
| test_vmcs_addr_values("VM-entry-MSR-load address", |
| ENTER_MSR_LD_ADDR, 16, false, false, |
| 4, addr_len - 1); |
| |
| /* |
| * Check last byte of VM-entry MSR-load address |
| */ |
| entry_msr_load = (struct vmx_msr_entry *)((u64)entry_msr_load & ~0xf); |
| |
| for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); |
| i < 64; i++) { |
| tmp = ((u64)entry_msr_load + entry_msr_ld_cnt * 16 - 1) | |
| 1ul << i; |
| vmcs_write(ENTER_MSR_LD_ADDR, |
| tmp - (entry_msr_ld_cnt * 16 - 1)); |
| test_vmx_invalid_controls(); |
| } |
| |
| vmcs_write(ENT_MSR_LD_CNT, 2); |
| vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); |
| test_vmx_invalid_controls(); |
| vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); |
| test_vmx_valid_controls(); |
| vmcs_write(ENTER_MSR_LD_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); |
| test_vmx_valid_controls(); |
| } |
| |
| static struct vmx_state_area_test_data { |
| u32 msr; |
| u64 exp; |
| bool enabled; |
| } vmx_state_area_test_data; |
| |
| static void guest_state_test_main(void) |
| { |
| u64 obs; |
| struct vmx_state_area_test_data *data = &vmx_state_area_test_data; |
| |
| while (1) { |
| if (vmx_get_test_stage() == 2) |
| break; |
| |
| if (data->enabled) { |
| obs = rdmsr(data->msr); |
| report(data->exp == obs, |
| "Guest state is 0x%lx (expected 0x%lx)", |
| obs, data->exp); |
| } |
| |
| vmcall(); |
| } |
| |
| asm volatile("fnop"); |
| } |
| |
| static void test_guest_state(const char *test, bool xfail, u64 field, |
| const char * field_name) |
| { |
| struct vmentry_result result; |
| u8 abort_flags; |
| |
| abort_flags = ABORT_ON_EARLY_VMENTRY_FAIL; |
| if (!xfail) |
| abort_flags = ABORT_ON_INVALID_GUEST_STATE; |
| |
| __enter_guest(abort_flags, &result); |
| |
| report(result.exit_reason.failed_vmentry == xfail && |
| ((xfail && result.exit_reason.basic == VMX_FAIL_STATE) || |
| (!xfail && result.exit_reason.basic == VMX_VMCALL)) && |
| (!xfail || vmcs_read(EXI_QUALIFICATION) == ENTRY_FAIL_DEFAULT), |
| "%s, %s = %lx", test, field_name, field); |
| |
| if (!result.exit_reason.failed_vmentry) |
| skip_exit_insn(); |
| } |
| |
| /* |
| * Tests for VM-entry control fields |
| */ |
| static void test_vm_entry_ctls(void) |
| { |
| test_invalid_event_injection(); |
| test_entry_msr_load(); |
| } |
| |
| /* |
| * The following checks are performed for the VM-exit MSR-store address if |
| * the VM-exit MSR-store count field is non-zero: |
| * |
| * - The lower 4 bits of the VM-exit MSR-store address must be 0. |
| * The address should not set any bits beyond the processor's |
| * physical-address width. |
| * |
| * - The address of the last byte in the VM-exit MSR-store area |
| * should not set any bits beyond the processor's physical-address |
| * width. The address of this last byte is VM-exit MSR-store address |
| * + (MSR count * 16) - 1. (The arithmetic used for the computation |
| * uses more bits than the processor's physical-address width.) |
| * |
| * If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits |
| * in the range 63:32. |
| * |
| * [Intel SDM] |
| */ |
| static void test_exit_msr_store(void) |
| { |
| exit_msr_store = alloc_page(); |
| u64 tmp; |
| u32 exit_msr_st_cnt = 1; |
| int i; |
| u32 addr_len = 64; |
| |
| vmcs_write(EXI_MSR_ST_CNT, exit_msr_st_cnt); |
| |
| /* Check first 4 bits of VM-exit MSR-store address */ |
| for (i = 0; i < 4; i++) { |
| tmp = (u64)exit_msr_store | 1ull << i; |
| vmcs_write(EXIT_MSR_ST_ADDR, tmp); |
| report_prefix_pushf("VM-exit MSR-store addr [4:0] %lx", |
| tmp & 0xf); |
| test_vmx_invalid_controls(); |
| report_prefix_pop(); |
| } |
| |
| if (basic.val & (1ul << 48)) |
| addr_len = 32; |
| |
| test_vmcs_addr_values("VM-exit-MSR-store address", |
| EXIT_MSR_ST_ADDR, 16, false, false, |
| 4, addr_len - 1); |
| |
| /* |
| * Check last byte of VM-exit MSR-store address |
| */ |
| exit_msr_store = (struct vmx_msr_entry *)((u64)exit_msr_store & ~0xf); |
| |
| for (i = (addr_len == 64 ? cpuid_maxphyaddr(): addr_len); |
| i < 64; i++) { |
| tmp = ((u64)exit_msr_store + exit_msr_st_cnt * 16 - 1) | |
| 1ul << i; |
| vmcs_write(EXIT_MSR_ST_ADDR, |
| tmp - (exit_msr_st_cnt * 16 - 1)); |
| test_vmx_invalid_controls(); |
| } |
| |
| vmcs_write(EXI_MSR_ST_CNT, 2); |
| vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 16); |
| test_vmx_invalid_controls(); |
| vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 32); |
| test_vmx_valid_controls(); |
| vmcs_write(EXIT_MSR_ST_ADDR, (1ULL << cpuid_maxphyaddr()) - 48); |
| test_vmx_valid_controls(); |
| } |
| |
| /* |
| * Tests for VM-exit controls |
| */ |
| static void test_vm_exit_ctls(void) |
| { |
| test_exit_msr_store(); |
| } |
| |
| /* |
| * Check that the virtual CPU checks all of the VMX controls as |
| * documented in the Intel SDM. |
| */ |
| static void vmx_controls_test(void) |
| { |
| /* |
| * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will |
| * fail due to invalid guest state, should we make it that |
| * far. |
| */ |
| vmcs_write(GUEST_RFLAGS, 0); |
| |
| test_vm_execution_ctls(); |
| test_vm_exit_ctls(); |
| test_vm_entry_ctls(); |
| } |
| |
| struct apic_reg_virt_config { |
| bool apic_register_virtualization; |
| bool use_tpr_shadow; |
| bool virtualize_apic_accesses; |
| bool virtualize_x2apic_mode; |
| bool activate_secondary_controls; |
| }; |
| |
| struct apic_reg_test { |
| const char *name; |
| struct apic_reg_virt_config apic_reg_virt_config; |
| }; |
| |
| struct apic_reg_virt_expectation { |
| enum Reason rd_exit_reason; |
| enum Reason wr_exit_reason; |
| u32 val; |
| u32 (*virt_fn)(u32); |
| |
| /* |
| * If false, accessing the APIC access address from L2 is treated as a |
| * normal memory operation, rather than triggering virtualization. |
| */ |
| bool virtualize_apic_accesses; |
| }; |
| |
| static u32 apic_virt_identity(u32 val) |
| { |
| return val; |
| } |
| |
| static u32 apic_virt_nibble1(u32 val) |
| { |
| return val & 0xf0; |
| } |
| |
| static u32 apic_virt_byte3(u32 val) |
| { |
| return val & (0xff << 24); |
| } |
| |
| static bool apic_reg_virt_exit_expectation( |
| u32 reg, struct apic_reg_virt_config *config, |
| struct apic_reg_virt_expectation *expectation) |
| { |
| /* Good configs, where some L2 APIC accesses are virtualized. */ |
| bool virtualize_apic_accesses_only = |
| config->virtualize_apic_accesses && |
| !config->use_tpr_shadow && |
| !config->apic_register_virtualization && |
| !config->virtualize_x2apic_mode && |
| config->activate_secondary_controls; |
| bool virtualize_apic_accesses_and_use_tpr_shadow = |
| config->virtualize_apic_accesses && |
| config->use_tpr_shadow && |
| !config->apic_register_virtualization && |
| !config->virtualize_x2apic_mode && |
| config->activate_secondary_controls; |
| bool apic_register_virtualization = |
| config->virtualize_apic_accesses && |
| config->use_tpr_shadow && |
| config->apic_register_virtualization && |
| !config->virtualize_x2apic_mode && |
| config->activate_secondary_controls; |
| |
| expectation->val = MAGIC_VAL_1; |
| expectation->virt_fn = apic_virt_identity; |
| expectation->virtualize_apic_accesses = |
| config->virtualize_apic_accesses && |
| config->activate_secondary_controls; |
| if (virtualize_apic_accesses_only) { |
| expectation->rd_exit_reason = VMX_APIC_ACCESS; |
| expectation->wr_exit_reason = VMX_APIC_ACCESS; |
| } else if (virtualize_apic_accesses_and_use_tpr_shadow) { |
| switch (reg) { |
| case APIC_TASKPRI: |
| expectation->rd_exit_reason = VMX_VMCALL; |
| expectation->wr_exit_reason = VMX_VMCALL; |
| expectation->virt_fn = apic_virt_nibble1; |
| break; |
| default: |
| expectation->rd_exit_reason = VMX_APIC_ACCESS; |
| expectation->wr_exit_reason = VMX_APIC_ACCESS; |
| } |
| } else if (apic_register_virtualization) { |
| expectation->rd_exit_reason = VMX_VMCALL; |
| |
| switch (reg) { |
| case APIC_ID: |
| case APIC_EOI: |
| case APIC_LDR: |
| case APIC_DFR: |
| case APIC_SPIV: |
| case APIC_ESR: |
| case APIC_ICR: |
| case APIC_LVTT: |
| case APIC_LVTTHMR: |
| case APIC_LVTPC: |
| case APIC_LVT0: |
| case APIC_LVT1: |
| case APIC_LVTERR: |
| case APIC_TMICT: |
| case APIC_TDCR: |
| expectation->wr_exit_reason = VMX_APIC_WRITE; |
| break; |
| case APIC_LVR: |
| case APIC_ISR ... APIC_ISR + 0x70: |
| case APIC_TMR ... APIC_TMR + 0x70: |
| case APIC_IRR ... APIC_IRR + 0x70: |
| expectation->wr_exit_reason = VMX_APIC_ACCESS; |
| break; |
| case APIC_TASKPRI: |
| expectation->wr_exit_reason = VMX_VMCALL; |
| expectation->virt_fn = apic_virt_nibble1; |
| break; |
| case APIC_ICR2: |
| expectation->wr_exit_reason = VMX_VMCALL; |
| expectation->virt_fn = apic_virt_byte3; |
| break; |
| default: |
| expectation->rd_exit_reason = VMX_APIC_ACCESS; |
| expectation->wr_exit_reason = VMX_APIC_ACCESS; |
| } |
| } else if (!expectation->virtualize_apic_accesses) { |
| /* |
| * No APIC registers are directly virtualized. This includes |
| * VTPR, which can be virtualized through MOV to/from CR8 via |
| * the use TPR shadow control, but not through directly |
| * accessing VTPR. |
| */ |
| expectation->rd_exit_reason = VMX_VMCALL; |
| expectation->wr_exit_reason = VMX_VMCALL; |
| } else { |
| printf("Cannot parse APIC register virtualization config:\n" |
| "\tvirtualize_apic_accesses: %d\n" |
| "\tuse_tpr_shadow: %d\n" |
| "\tapic_register_virtualization: %d\n" |
| "\tvirtualize_x2apic_mode: %d\n" |
| "\tactivate_secondary_controls: %d\n", |
| config->virtualize_apic_accesses, |
| config->use_tpr_shadow, |
| config->apic_register_virtualization, |
| config->virtualize_x2apic_mode, |
| config->activate_secondary_controls); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| struct apic_reg_test apic_reg_tests[] = { |
| /* Good configs, where some L2 APIC accesses are virtualized. */ |
| { |
| .name = "Virtualize APIC accesses", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = false, |
| .apic_register_virtualization = false, |
| .virtualize_x2apic_mode = false, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| { |
| .name = "Virtualize APIC accesses + Use TPR shadow", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = true, |
| .apic_register_virtualization = false, |
| .virtualize_x2apic_mode = false, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| { |
| .name = "APIC-register virtualization", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = true, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = false, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| |
| /* |
| * Test that the secondary processor-based VM-execution controls are |
| * correctly ignored when "activate secondary controls" is disabled. |
| */ |
| { |
| .name = "Activate secondary controls off", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = false, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = false, |
| }, |
| }, |
| { |
| .name = "Activate secondary controls off + Use TPR shadow", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = true, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = false, |
| }, |
| }, |
| |
| /* |
| * Test that the APIC access address is treated like an arbitrary memory |
| * address when "virtualize APIC accesses" is disabled. |
| */ |
| { |
| .name = "Virtualize APIC accesses off + Use TPR shadow", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = false, |
| .use_tpr_shadow = true, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| |
| /* |
| * Test that VM entry fails due to invalid controls when |
| * "APIC-register virtualization" is enabled while "use TPR shadow" is |
| * disabled. |
| */ |
| { |
| .name = "APIC-register virtualization + Use TPR shadow off", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = false, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = false, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| |
| /* |
| * Test that VM entry fails due to invalid controls when |
| * "Virtualize x2APIC mode" is enabled while "use TPR shadow" is |
| * disabled. |
| */ |
| { |
| .name = "Virtualize x2APIC mode + Use TPR shadow off", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = false, |
| .use_tpr_shadow = false, |
| .apic_register_virtualization = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| { |
| .name = "Virtualize x2APIC mode + Use TPR shadow off v2", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = false, |
| .use_tpr_shadow = false, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| |
| /* |
| * Test that VM entry fails due to invalid controls when |
| * "virtualize x2APIC mode" is enabled while "virtualize APIC accesses" |
| * is enabled. |
| */ |
| { |
| .name = "Virtualize x2APIC mode + Virtualize APIC accesses", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = true, |
| .apic_register_virtualization = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| { |
| .name = "Virtualize x2APIC mode + Virtualize APIC accesses v2", |
| .apic_reg_virt_config = { |
| .virtualize_apic_accesses = true, |
| .use_tpr_shadow = true, |
| .apic_register_virtualization = true, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }; |
| |
| enum Apic_op { |
| APIC_OP_XAPIC_RD, |
| APIC_OP_XAPIC_WR, |
| TERMINATE, |
| }; |
| |
| static u32 vmx_xapic_read(u32 *apic_access_address, u32 reg) |
| { |
| return *(volatile u32 *)((uintptr_t)apic_access_address + reg); |
| } |
| |
| static void vmx_xapic_write(u32 *apic_access_address, u32 reg, u32 val) |
| { |
| *(volatile u32 *)((uintptr_t)apic_access_address + reg) = val; |
| } |
| |
| struct apic_reg_virt_guest_args { |
| enum Apic_op op; |
| u32 *apic_access_address; |
| u32 reg; |
| u32 val; |
| bool check_rd; |
| u32 (*virt_fn)(u32); |
| } apic_reg_virt_guest_args; |
| |
| static void apic_reg_virt_guest(void) |
| { |
| volatile struct apic_reg_virt_guest_args *args = |
| &apic_reg_virt_guest_args; |
| |
| for (;;) { |
| enum Apic_op op = args->op; |
| u32 *apic_access_address = args->apic_access_address; |
| u32 reg = args->reg; |
| u32 val = args->val; |
| bool check_rd = args->check_rd; |
| u32 (*virt_fn)(u32) = args->virt_fn; |
| |
| if (op == TERMINATE) |
| break; |
| |
| if (op == APIC_OP_XAPIC_RD) { |
| u32 ret = vmx_xapic_read(apic_access_address, reg); |
| |
| if (check_rd) { |
| u32 want = virt_fn(val); |
| u32 got = virt_fn(ret); |
| |
| report(got == want, |
| "read 0x%x, expected 0x%x.", got, want); |
| } |
| } else if (op == APIC_OP_XAPIC_WR) { |
| vmx_xapic_write(apic_access_address, reg, val); |
| } |
| |
| /* |
| * The L1 should always execute a vmcall after it's done testing |
| * an individual APIC operation. This helps to validate that the |
| * L1 and L2 are in sync with each other, as expected. |
| */ |
| vmcall(); |
| } |
| } |
| |
| static void test_xapic_rd( |
| u32 reg, struct apic_reg_virt_expectation *expectation, |
| u32 *apic_access_address, u32 *virtual_apic_page) |
| { |
| u32 val = expectation->val; |
| u32 exit_reason_want = expectation->rd_exit_reason; |
| struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; |
| |
| report_prefix_pushf("xapic - reading 0x%03x", reg); |
| |
| /* Configure guest to do an xapic read */ |
| args->op = APIC_OP_XAPIC_RD; |
| args->apic_access_address = apic_access_address; |
| args->reg = reg; |
| args->val = val; |
| args->check_rd = exit_reason_want == VMX_VMCALL; |
| args->virt_fn = expectation->virt_fn; |
| |
| /* Setup virtual APIC page */ |
| if (!expectation->virtualize_apic_accesses) { |
| apic_access_address[apic_reg_index(reg)] = val; |
| virtual_apic_page[apic_reg_index(reg)] = 0; |
| } else if (exit_reason_want == VMX_VMCALL) { |
| apic_access_address[apic_reg_index(reg)] = 0; |
| virtual_apic_page[apic_reg_index(reg)] = val; |
| } |
| |
| /* Enter guest */ |
| enter_guest(); |
| |
| /* |
| * Validate the behavior and |
| * pass a magic value back to the guest. |
| */ |
| if (exit_reason_want == VMX_APIC_ACCESS) { |
| u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; |
| |
| assert_exit_reason(exit_reason_want); |
| report(apic_page_offset == reg, |
| "got APIC access exit @ page offset 0x%03x, want 0x%03x", |
| apic_page_offset, reg); |
| skip_exit_insn(); |
| |
| /* Reenter guest so it can consume/check rcx and exit again. */ |
| enter_guest(); |
| } else if (exit_reason_want != VMX_VMCALL) { |
| report_fail("Oops, bad exit expectation: %u.", exit_reason_want); |
| } |
| |
| skip_exit_vmcall(); |
| report_prefix_pop(); |
| } |
| |
| static void test_xapic_wr( |
| u32 reg, struct apic_reg_virt_expectation *expectation, |
| u32 *apic_access_address, u32 *virtual_apic_page) |
| { |
| u32 val = expectation->val; |
| u32 exit_reason_want = expectation->wr_exit_reason; |
| struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; |
| bool virtualized = |
| expectation->virtualize_apic_accesses && |
| (exit_reason_want == VMX_APIC_WRITE || |
| exit_reason_want == VMX_VMCALL); |
| bool checked = false; |
| |
| report_prefix_pushf("xapic - writing 0x%x to 0x%03x", val, reg); |
| |
| /* Configure guest to do an xapic read */ |
| args->op = APIC_OP_XAPIC_WR; |
| args->apic_access_address = apic_access_address; |
| args->reg = reg; |
| args->val = val; |
| |
| /* Setup virtual APIC page */ |
| if (virtualized || !expectation->virtualize_apic_accesses) { |
| apic_access_address[apic_reg_index(reg)] = 0; |
| virtual_apic_page[apic_reg_index(reg)] = 0; |
| } |
| |
| /* Enter guest */ |
| enter_guest(); |
| |
| /* |
| * Validate the behavior and |
| * pass a magic value back to the guest. |
| */ |
| if (exit_reason_want == VMX_APIC_ACCESS) { |
| u32 apic_page_offset = vmcs_read(EXI_QUALIFICATION) & 0xfff; |
| |
| assert_exit_reason(exit_reason_want); |
| report(apic_page_offset == reg, |
| "got APIC access exit @ page offset 0x%03x, want 0x%03x", |
| apic_page_offset, reg); |
| skip_exit_insn(); |
| |
| /* Reenter guest so it can consume/check rcx and exit again. */ |
| enter_guest(); |
| } else if (exit_reason_want == VMX_APIC_WRITE) { |
| assert_exit_reason(exit_reason_want); |
| report(virtual_apic_page[apic_reg_index(reg)] == val, |
| "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%x", |
| apic_reg_index(reg), |
| virtual_apic_page[apic_reg_index(reg)], val); |
| checked = true; |
| |
| /* Reenter guest so it can consume/check rcx and exit again. */ |
| enter_guest(); |
| } else if (exit_reason_want != VMX_VMCALL) { |
| report_fail("Oops, bad exit expectation: %u.", exit_reason_want); |
| } |
| |
| assert_exit_reason(VMX_VMCALL); |
| if (virtualized && !checked) { |
| u32 want = expectation->virt_fn(val); |
| u32 got = virtual_apic_page[apic_reg_index(reg)]; |
| got = expectation->virt_fn(got); |
| |
| report(got == want, "exitless write; val is 0x%x, want 0x%x", |
| got, want); |
| } else if (!expectation->virtualize_apic_accesses && !checked) { |
| u32 got = apic_access_address[apic_reg_index(reg)]; |
| |
| report(got == val, |
| "non-virtualized write; val is 0x%x, want 0x%x", got, |
| val); |
| } else if (!expectation->virtualize_apic_accesses && checked) { |
| report_fail("Non-virtualized write was prematurely checked!"); |
| } |
| |
| skip_exit_vmcall(); |
| report_prefix_pop(); |
| } |
| |
| enum Config_type { |
| CONFIG_TYPE_GOOD, |
| CONFIG_TYPE_UNSUPPORTED, |
| CONFIG_TYPE_VMENTRY_FAILS_EARLY, |
| }; |
| |
| static enum Config_type configure_apic_reg_virt_test( |
| struct apic_reg_virt_config *apic_reg_virt_config) |
| { |
| u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); |
| u32 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); |
| /* Configs where L2 entry fails early, due to invalid controls. */ |
| bool use_tpr_shadow_incorrectly_off = |
| !apic_reg_virt_config->use_tpr_shadow && |
| (apic_reg_virt_config->apic_register_virtualization || |
| apic_reg_virt_config->virtualize_x2apic_mode) && |
| apic_reg_virt_config->activate_secondary_controls; |
| bool virtualize_apic_accesses_incorrectly_on = |
| apic_reg_virt_config->virtualize_apic_accesses && |
| apic_reg_virt_config->virtualize_x2apic_mode && |
| apic_reg_virt_config->activate_secondary_controls; |
| bool vmentry_fails_early = |
| use_tpr_shadow_incorrectly_off || |
| virtualize_apic_accesses_incorrectly_on; |
| |
| if (apic_reg_virt_config->activate_secondary_controls) { |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { |
| printf("VM-execution control \"activate secondary controls\" NOT supported.\n"); |
| return CONFIG_TYPE_UNSUPPORTED; |
| } |
| cpu_exec_ctrl0 |= CPU_SECONDARY; |
| } else { |
| cpu_exec_ctrl0 &= ~CPU_SECONDARY; |
| } |
| |
| if (apic_reg_virt_config->virtualize_apic_accesses) { |
| if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_APIC_ACCESSES)) { |
| printf("VM-execution control \"virtualize APIC accesses\" NOT supported.\n"); |
| return CONFIG_TYPE_UNSUPPORTED; |
| } |
| cpu_exec_ctrl1 |= CPU_VIRT_APIC_ACCESSES; |
| } else { |
| cpu_exec_ctrl1 &= ~CPU_VIRT_APIC_ACCESSES; |
| } |
| |
| if (apic_reg_virt_config->use_tpr_shadow) { |
| if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { |
| printf("VM-execution control \"use TPR shadow\" NOT supported.\n"); |
| return CONFIG_TYPE_UNSUPPORTED; |
| } |
| cpu_exec_ctrl0 |= CPU_TPR_SHADOW; |
| } else { |
| cpu_exec_ctrl0 &= ~CPU_TPR_SHADOW; |
| } |
| |
| if (apic_reg_virt_config->apic_register_virtualization) { |
| if (!(ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT)) { |
| printf("VM-execution control \"APIC-register virtualization\" NOT supported.\n"); |
| return CONFIG_TYPE_UNSUPPORTED; |
| } |
| cpu_exec_ctrl1 |= CPU_APIC_REG_VIRT; |
| } else { |
| cpu_exec_ctrl1 &= ~CPU_APIC_REG_VIRT; |
| } |
| |
| if (apic_reg_virt_config->virtualize_x2apic_mode) { |
| if (!(ctrl_cpu_rev[1].clr & CPU_VIRT_X2APIC)) { |
| printf("VM-execution control \"virtualize x2APIC mode\" NOT supported.\n"); |
| return CONFIG_TYPE_UNSUPPORTED; |
| } |
| cpu_exec_ctrl1 |= CPU_VIRT_X2APIC; |
| } else { |
| cpu_exec_ctrl1 &= ~CPU_VIRT_X2APIC; |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); |
| vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); |
| |
| if (vmentry_fails_early) |
| return CONFIG_TYPE_VMENTRY_FAILS_EARLY; |
| |
| return CONFIG_TYPE_GOOD; |
| } |
| |
| static bool cpu_has_apicv(void) |
| { |
| return ((ctrl_cpu_rev[1].clr & CPU_APIC_REG_VIRT) && |
| (ctrl_cpu_rev[1].clr & CPU_VINTD) && |
| (ctrl_pin_rev.clr & PIN_POST_INTR)); |
| } |
| |
| /* Validates APIC register access across valid virtualization configurations. */ |
| static void apic_reg_virt_test(void) |
| { |
| u32 *apic_access_address; |
| u32 *virtual_apic_page; |
| u64 control; |
| u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); |
| u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); |
| int i; |
| struct apic_reg_virt_guest_args *args = &apic_reg_virt_guest_args; |
| |
| if (!cpu_has_apicv()) { |
| report_skip("%s : Not all required APICv bits supported", __func__); |
| return; |
| } |
| |
| control = cpu_exec_ctrl1; |
| control &= ~CPU_VINTD; |
| vmcs_write(CPU_EXEC_CTRL1, control); |
| |
| test_set_guest(apic_reg_virt_guest); |
| |
| /* |
| * From the SDM: The 1-setting of the "virtualize APIC accesses" |
| * VM-execution is guaranteed to apply only if translations to the |
| * APIC-access address use a 4-KByte page. |
| */ |
| apic_access_address = alloc_page(); |
| force_4k_page(apic_access_address); |
| vmcs_write(APIC_ACCS_ADDR, virt_to_phys(apic_access_address)); |
| |
| virtual_apic_page = alloc_page(); |
| vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); |
| |
| for (i = 0; i < ARRAY_SIZE(apic_reg_tests); i++) { |
| struct apic_reg_test *apic_reg_test = &apic_reg_tests[i]; |
| struct apic_reg_virt_config *apic_reg_virt_config = |
| &apic_reg_test->apic_reg_virt_config; |
| enum Config_type config_type; |
| u32 reg; |
| |
| printf("--- %s test ---\n", apic_reg_test->name); |
| config_type = |
| configure_apic_reg_virt_test(apic_reg_virt_config); |
| if (config_type == CONFIG_TYPE_UNSUPPORTED) { |
| printf("Skip because of missing features.\n"); |
| continue; |
| } |
| |
| if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { |
| enter_guest_with_bad_controls(); |
| continue; |
| } |
| |
| for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { |
| struct apic_reg_virt_expectation expectation = {}; |
| bool ok; |
| |
| ok = apic_reg_virt_exit_expectation( |
| reg, apic_reg_virt_config, &expectation); |
| if (!ok) { |
| report_fail("Malformed test."); |
| break; |
| } |
| |
| test_xapic_rd(reg, &expectation, apic_access_address, |
| virtual_apic_page); |
| test_xapic_wr(reg, &expectation, apic_access_address, |
| virtual_apic_page); |
| } |
| } |
| |
| /* Terminate the guest */ |
| vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); |
| vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); |
| args->op = TERMINATE; |
| enter_guest(); |
| assert_exit_reason(VMX_VMCALL); |
| } |
| |
| struct virt_x2apic_mode_config { |
| struct apic_reg_virt_config apic_reg_virt_config; |
| bool virtual_interrupt_delivery; |
| bool use_msr_bitmaps; |
| bool disable_x2apic_msr_intercepts; |
| bool disable_x2apic; |
| }; |
| |
| struct virt_x2apic_mode_test_case { |
| const char *name; |
| struct virt_x2apic_mode_config virt_x2apic_mode_config; |
| }; |
| |
| enum Virt_x2apic_mode_behavior_type { |
| X2APIC_ACCESS_VIRTUALIZED, |
| X2APIC_ACCESS_PASSED_THROUGH, |
| X2APIC_ACCESS_TRIGGERS_GP, |
| }; |
| |
| struct virt_x2apic_mode_expectation { |
| enum Reason rd_exit_reason; |
| enum Reason wr_exit_reason; |
| |
| /* |
| * RDMSR and WRMSR handle 64-bit values. However, except for ICR, all of |
| * the x2APIC registers are 32 bits. Notice: |
| * 1. vmx_x2apic_read() clears the upper 32 bits for 32-bit registers. |
| * 2. vmx_x2apic_write() expects the val arg to be well-formed. |
| */ |
| u64 rd_val; |
| u64 wr_val; |
| |
| /* |
| * Compares input to virtualized output; |
| * 1st arg is pointer to return expected virtualization output. |
| */ |
| u64 (*virt_fn)(u64); |
| |
| enum Virt_x2apic_mode_behavior_type rd_behavior; |
| enum Virt_x2apic_mode_behavior_type wr_behavior; |
| bool wr_only; |
| }; |
| |
| static u64 virt_x2apic_mode_identity(u64 val) |
| { |
| return val; |
| } |
| |
| static u64 virt_x2apic_mode_nibble1(u64 val) |
| { |
| return val & 0xf0; |
| } |
| |
| static void virt_x2apic_mode_rd_expectation( |
| u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, |
| bool apic_register_virtualization, bool virtual_interrupt_delivery, |
| struct virt_x2apic_mode_expectation *expectation) |
| { |
| enum x2apic_reg_semantics semantics = get_x2apic_reg_semantics(reg); |
| |
| expectation->rd_exit_reason = VMX_VMCALL; |
| expectation->virt_fn = virt_x2apic_mode_identity; |
| if (virt_x2apic_mode_on && apic_register_virtualization) { |
| expectation->rd_val = MAGIC_VAL_1; |
| if (reg == APIC_PROCPRI && virtual_interrupt_delivery) |
| expectation->virt_fn = virt_x2apic_mode_nibble1; |
| else if (reg == APIC_TASKPRI) |
| expectation->virt_fn = virt_x2apic_mode_nibble1; |
| expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; |
| } else if (virt_x2apic_mode_on && !apic_register_virtualization && |
| reg == APIC_TASKPRI) { |
| expectation->rd_val = MAGIC_VAL_1; |
| expectation->virt_fn = virt_x2apic_mode_nibble1; |
| expectation->rd_behavior = X2APIC_ACCESS_VIRTUALIZED; |
| } else if (!disable_x2apic && (semantics & X2APIC_READABLE)) { |
| expectation->rd_val = apic_read(reg); |
| expectation->rd_behavior = X2APIC_ACCESS_PASSED_THROUGH; |
| } else { |
| expectation->rd_behavior = X2APIC_ACCESS_TRIGGERS_GP; |
| } |
| } |
| |
| /* |
| * get_x2apic_wr_val() creates an innocuous write value for an x2APIC register. |
| * |
| * For writable registers, get_x2apic_wr_val() deposits the write value into the |
| * val pointer arg and returns true. For non-writable registers, val is not |
| * modified and get_x2apic_wr_val() returns false. |
| */ |
| static bool get_x2apic_wr_val(u32 reg, u64 *val) |
| { |
| switch (reg) { |
| case APIC_TASKPRI: |
| /* Bits 31:8 are reserved. */ |
| *val &= 0xff; |
| break; |
| case APIC_EOI: |
| case APIC_ESR: |
| case APIC_TMICT: |
| /* |
| * EOI, ESR: WRMSR of a non-zero value causes #GP(0). |
| * TMICT: A write of 0 to the initial-count register effectively |
| * stops the local APIC timer, in both one-shot and |
| * periodic mode. |
| */ |
| *val = 0; |
| break; |
| case APIC_SPIV: |
| case APIC_LVTT: |
| case APIC_LVTTHMR: |
| case APIC_LVTPC: |
| case APIC_LVT0: |
| case APIC_LVT1: |
| case APIC_LVTERR: |
| case APIC_TDCR: |
| /* |
| * To avoid writing a 1 to a reserved bit or causing some other |
| * unintended side effect, read the current value and use it as |
| * the write value. |
| */ |
| *val = apic_read(reg); |
| break; |
| case APIC_CMCI: |
| if (!apic_lvt_entry_supported(6)) |
| return false; |
| *val = apic_read(reg); |
| break; |
| case APIC_ICR: |
| *val = 0x40000 | 0xf1; |
| break; |
| case APIC_SELF_IPI: |
| /* |
| * With special processing (i.e., virtualize x2APIC mode + |
| * virtual interrupt delivery), writing zero causes an |
| * APIC-write VM exit. We plan to add a test for enabling |
| * "virtual-interrupt delivery" in VMCS12, and that's where we |
| * will test a self IPI with special processing. |
| */ |
| *val = 0x0; |
| break; |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool special_processing_applies(u32 reg, u64 *val, |
| bool virt_int_delivery) |
| { |
| bool special_processing = |
| (reg == APIC_TASKPRI) || |
| (virt_int_delivery && |
| (reg == APIC_EOI || reg == APIC_SELF_IPI)); |
| |
| if (special_processing) { |
| TEST_ASSERT(get_x2apic_wr_val(reg, val)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void virt_x2apic_mode_wr_expectation( |
| u32 reg, bool virt_x2apic_mode_on, bool disable_x2apic, |
| bool virt_int_delivery, |
| struct virt_x2apic_mode_expectation *expectation) |
| { |
| expectation->wr_exit_reason = VMX_VMCALL; |
| expectation->wr_val = MAGIC_VAL_1; |
| expectation->wr_only = false; |
| |
| if (virt_x2apic_mode_on && |
| special_processing_applies(reg, &expectation->wr_val, |
| virt_int_delivery)) { |
| expectation->wr_behavior = X2APIC_ACCESS_VIRTUALIZED; |
| if (reg == APIC_SELF_IPI) |
| expectation->wr_exit_reason = VMX_APIC_WRITE; |
| } else if (!disable_x2apic && |
| get_x2apic_wr_val(reg, &expectation->wr_val)) { |
| expectation->wr_behavior = X2APIC_ACCESS_PASSED_THROUGH; |
| if (reg == APIC_EOI || reg == APIC_SELF_IPI) |
| expectation->wr_only = true; |
| if (reg == APIC_ICR) |
| expectation->wr_exit_reason = VMX_EXTINT; |
| } else { |
| expectation->wr_behavior = X2APIC_ACCESS_TRIGGERS_GP; |
| /* |
| * Writing 1 to a reserved bit triggers a #GP. |
| * Thus, set the write value to 0, which seems |
| * the most likely to detect a missed #GP. |
| */ |
| expectation->wr_val = 0; |
| } |
| } |
| |
| static void virt_x2apic_mode_exit_expectation( |
| u32 reg, struct virt_x2apic_mode_config *config, |
| struct virt_x2apic_mode_expectation *expectation) |
| { |
| struct apic_reg_virt_config *base_config = |
| &config->apic_reg_virt_config; |
| bool virt_x2apic_mode_on = |
| base_config->virtualize_x2apic_mode && |
| config->use_msr_bitmaps && |
| config->disable_x2apic_msr_intercepts && |
| base_config->activate_secondary_controls; |
| |
| virt_x2apic_mode_wr_expectation( |
| reg, virt_x2apic_mode_on, config->disable_x2apic, |
| config->virtual_interrupt_delivery, expectation); |
| virt_x2apic_mode_rd_expectation( |
| reg, virt_x2apic_mode_on, config->disable_x2apic, |
| base_config->apic_register_virtualization, |
| config->virtual_interrupt_delivery, expectation); |
| } |
| |
| struct virt_x2apic_mode_test_case virt_x2apic_mode_tests[] = { |
| /* |
| * Baseline "virtualize x2APIC mode" configuration: |
| * - virtualize x2APIC mode |
| * - virtual-interrupt delivery |
| * - APIC-register virtualization |
| * - x2APIC MSR intercepts disabled |
| * |
| * Reads come from virtual APIC page, special processing applies to |
| * VTPR, EOI, and SELF IPI, and all other writes pass through to L1 |
| * APIC. |
| */ |
| { |
| .name = "Baseline", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = false, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = true, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| { |
| .name = "Baseline w/ x2apic disabled", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = true, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = true, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| |
| /* |
| * Baseline, minus virtual-interrupt delivery. Reads come from virtual |
| * APIC page, special processing applies to VTPR, and all other writes |
| * pass through to L1 APIC. |
| */ |
| { |
| .name = "Baseline - virtual interrupt delivery", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = false, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = false, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = true, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| |
| /* |
| * Baseline, minus APIC-register virtualization. x2APIC reads pass |
| * through to L1's APIC, unless reading VTPR |
| */ |
| { |
| .name = "Virtualize x2APIC mode, no APIC reg virt", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = false, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = false, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| { |
| .name = "Virtualize x2APIC mode, no APIC reg virt, x2APIC off", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = true, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = false, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| |
| /* |
| * Enable "virtualize x2APIC mode" and "APIC-register virtualization", |
| * and disable intercepts for the x2APIC MSRs, but fail to enable |
| * "activate secondary controls" (i.e. L2 gets access to L1's x2APIC |
| * MSRs). |
| */ |
| { |
| .name = "Fail to enable activate secondary controls", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = false, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = true, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = true, |
| .activate_secondary_controls = false, |
| }, |
| }, |
| }, |
| |
| /* |
| * Enable "APIC-register virtualization" and enable "activate secondary |
| * controls" and disable intercepts for the x2APIC MSRs, but do not |
| * enable the "virtualize x2APIC mode" VM-execution control (i.e. L2 |
| * gets access to L1's x2APIC MSRs). |
| */ |
| { |
| .name = "Fail to enable virtualize x2APIC mode", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = false, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = true, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = false, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| |
| /* |
| * Disable "Virtualize x2APIC mode", disable x2APIC MSR intercepts, and |
| * enable "APIC-register virtualization" --> L2 gets L1's x2APIC MSRs. |
| */ |
| { |
| .name = "Baseline", |
| .virt_x2apic_mode_config = { |
| .virtual_interrupt_delivery = true, |
| .use_msr_bitmaps = true, |
| .disable_x2apic_msr_intercepts = true, |
| .disable_x2apic = false, |
| .apic_reg_virt_config = { |
| .apic_register_virtualization = true, |
| .use_tpr_shadow = true, |
| .virtualize_apic_accesses = false, |
| .virtualize_x2apic_mode = false, |
| .activate_secondary_controls = true, |
| }, |
| }, |
| }, |
| }; |
| |
| enum X2apic_op { |
| X2APIC_OP_RD, |
| X2APIC_OP_WR, |
| X2APIC_TERMINATE, |
| }; |
| |
| static u64 vmx_x2apic_read(u32 reg) |
| { |
| u32 msr_addr = x2apic_msr(reg); |
| u64 val; |
| |
| val = rdmsr(msr_addr); |
| |
| return val; |
| } |
| |
| static void vmx_x2apic_write(u32 reg, u64 val) |
| { |
| u32 msr_addr = x2apic_msr(reg); |
| |
| wrmsr(msr_addr, val); |
| } |
| |
| struct virt_x2apic_mode_guest_args { |
| enum X2apic_op op; |
| u32 reg; |
| u64 val; |
| bool should_gp; |
| u64 (*virt_fn)(u64); |
| } virt_x2apic_mode_guest_args; |
| |
| static volatile bool handle_x2apic_gp_ran; |
| static volatile u32 handle_x2apic_gp_insn_len; |
| static void handle_x2apic_gp(struct ex_regs *regs) |
| { |
| handle_x2apic_gp_ran = true; |
| regs->rip += handle_x2apic_gp_insn_len; |
| } |
| |
| static handler setup_x2apic_gp_handler(void) |
| { |
| handler old_handler; |
| |
| old_handler = handle_exception(GP_VECTOR, handle_x2apic_gp); |
| /* RDMSR and WRMSR are both 2 bytes, assuming no prefixes. */ |
| handle_x2apic_gp_insn_len = 2; |
| |
| return old_handler; |
| } |
| |
| static void teardown_x2apic_gp_handler(handler old_handler) |
| { |
| handle_exception(GP_VECTOR, old_handler); |
| |
| /* |
| * Defensively reset instruction length, so that if the handler is |
| * incorrectly used, it will loop infinitely, rather than run off into |
| * la la land. |
| */ |
| handle_x2apic_gp_insn_len = 0; |
| handle_x2apic_gp_ran = false; |
| } |
| |
| static void virt_x2apic_mode_guest(void) |
| { |
| volatile struct virt_x2apic_mode_guest_args *args = |
| &virt_x2apic_mode_guest_args; |
| |
| for (;;) { |
| enum X2apic_op op = args->op; |
| u32 reg = args->reg; |
| u64 val = args->val; |
| bool should_gp = args->should_gp; |
| u64 (*virt_fn)(u64) = args->virt_fn; |
| handler old_handler; |
| |
| if (op == X2APIC_TERMINATE) |
| break; |
| |
| if (should_gp) { |
| TEST_ASSERT(!handle_x2apic_gp_ran); |
| old_handler = setup_x2apic_gp_handler(); |
| } |
| |
| if (op == X2APIC_OP_RD) { |
| u64 ret = vmx_x2apic_read(reg); |
| |
| if (!should_gp) { |
| u64 want = virt_fn(val); |
| u64 got = virt_fn(ret); |
| |
| report(got == want, |
| "APIC read; got 0x%lx, want 0x%lx.", |
| got, want); |
| } |
| } else if (op == X2APIC_OP_WR) { |
| vmx_x2apic_write(reg, val); |
| } |
| |
| if (should_gp) { |
| report(handle_x2apic_gp_ran, |
| "x2APIC op triggered GP."); |
| teardown_x2apic_gp_handler(old_handler); |
| } |
| |
| /* |
| * The L1 should always execute a vmcall after it's done testing |
| * an individual APIC operation. This helps to validate that the |
| * L1 and L2 are in sync with each other, as expected. |
| */ |
| vmcall(); |
| } |
| } |
| |
| static void test_x2apic_rd( |
| u32 reg, struct virt_x2apic_mode_expectation *expectation, |
| u32 *virtual_apic_page) |
| { |
| u64 val = expectation->rd_val; |
| u32 exit_reason_want = expectation->rd_exit_reason; |
| struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; |
| |
| report_prefix_pushf("x2apic - reading 0x%03x", reg); |
| |
| /* Configure guest to do an x2apic read */ |
| args->op = X2APIC_OP_RD; |
| args->reg = reg; |
| args->val = val; |
| args->should_gp = expectation->rd_behavior == X2APIC_ACCESS_TRIGGERS_GP; |
| args->virt_fn = expectation->virt_fn; |
| |
| /* Setup virtual APIC page */ |
| if (expectation->rd_behavior == X2APIC_ACCESS_VIRTUALIZED) |
| virtual_apic_page[apic_reg_index(reg)] = (u32)val; |
| |
| /* Enter guest */ |
| enter_guest(); |
| |
| if (exit_reason_want != VMX_VMCALL) { |
| report_fail("Oops, bad exit expectation: %u.", exit_reason_want); |
| } |
| |
| skip_exit_vmcall(); |
| report_prefix_pop(); |
| } |
| |
| static volatile bool handle_x2apic_ipi_ran; |
| static void handle_x2apic_ipi(isr_regs_t *regs) |
| { |
| handle_x2apic_ipi_ran = true; |
| eoi(); |
| } |
| |
| static void test_x2apic_wr( |
| u32 reg, struct virt_x2apic_mode_expectation *expectation, |
| u32 *virtual_apic_page) |
| { |
| u64 val = expectation->wr_val; |
| u32 exit_reason_want = expectation->wr_exit_reason; |
| struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; |
| int ipi_vector = 0xf1; |
| u32 restore_val = 0; |
| |
| report_prefix_pushf("x2apic - writing 0x%lx to 0x%03x", val, reg); |
| |
| /* Configure guest to do an x2apic read */ |
| args->op = X2APIC_OP_WR; |
| args->reg = reg; |
| args->val = val; |
| args->should_gp = expectation->wr_behavior == X2APIC_ACCESS_TRIGGERS_GP; |
| |
| /* Setup virtual APIC page */ |
| if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) |
| virtual_apic_page[apic_reg_index(reg)] = 0; |
| if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH && !expectation->wr_only) |
| restore_val = apic_read(reg); |
| |
| /* Setup IPI handler */ |
| handle_x2apic_ipi_ran = false; |
| handle_irq(ipi_vector, handle_x2apic_ipi); |
| |
| /* Enter guest */ |
| enter_guest(); |
| |
| /* |
| * Validate the behavior and |
| * pass a magic value back to the guest. |
| */ |
| if (exit_reason_want == VMX_EXTINT) { |
| assert_exit_reason(exit_reason_want); |
| |
| /* Clear the external interrupt. */ |
| sti_nop_cli(); |
| report(handle_x2apic_ipi_ran, |
| "Got pending interrupt after IRQ enabled."); |
| |
| enter_guest(); |
| } else if (exit_reason_want == VMX_APIC_WRITE) { |
| assert_exit_reason(exit_reason_want); |
| report(virtual_apic_page[apic_reg_index(reg)] == val, |
| "got APIC write exit @ page offset 0x%03x; val is 0x%x, want 0x%lx", |
| apic_reg_index(reg), |
| virtual_apic_page[apic_reg_index(reg)], val); |
| |
| /* Reenter guest so it can consume/check rcx and exit again. */ |
| enter_guest(); |
| } else if (exit_reason_want != VMX_VMCALL) { |
| report_fail("Oops, bad exit expectation: %u.", exit_reason_want); |
| } |
| |
| assert_exit_reason(VMX_VMCALL); |
| if (expectation->wr_behavior == X2APIC_ACCESS_VIRTUALIZED) { |
| u64 want = val; |
| u32 got = virtual_apic_page[apic_reg_index(reg)]; |
| |
| report(got == want, "x2APIC write; got 0x%x, want 0x%lx", got, |
| want); |
| } else if (expectation->wr_behavior == X2APIC_ACCESS_PASSED_THROUGH) { |
| if (!expectation->wr_only) { |
| u32 got = apic_read(reg); |
| bool ok; |
| |
| /* |
| * When L1's TPR is passed through to L2, the lower |
| * nibble can be lost. For example, if L2 executes |
| * WRMSR(0x808, 0x78), then, L1 might read 0x70. |
| * |
| * Here's how the lower nibble can get lost: |
| * 1. L2 executes WRMSR(0x808, 0x78). |
| * 2. L2 exits to L0 with a WRMSR exit. |
| * 3. L0 emulates WRMSR, by writing L1's TPR. |
| * 4. L0 re-enters L2. |
| * 5. L2 exits to L0 (reason doesn't matter). |
| * 6. L0 reflects L2's exit to L1. |
| * 7. Before entering L1, L0 exits to user-space |
| * (e.g., to satisfy TPR access reporting). |
| * 8. User-space executes KVM_SET_REGS ioctl, which |
| * clears the lower nibble of L1's TPR. |
| */ |
| if (reg == APIC_TASKPRI) { |
| got = apic_virt_nibble1(got); |
| val = apic_virt_nibble1(val); |
| } |
| |
| ok = got == val; |
| report(ok, |
| "non-virtualized write; val is 0x%x, want 0x%lx", |
| got, val); |
| apic_write(reg, restore_val); |
| } else { |
| report_pass("non-virtualized and write-only OK"); |
| } |
| } |
| skip_exit_insn(); |
| |
| report_prefix_pop(); |
| } |
| |
| static enum Config_type configure_virt_x2apic_mode_test( |
| struct virt_x2apic_mode_config *virt_x2apic_mode_config, |
| u8 *msr_bitmap_page) |
| { |
| int msr; |
| u32 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); |
| u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); |
| |
| /* x2apic-specific VMCS config */ |
| if (virt_x2apic_mode_config->use_msr_bitmaps) { |
| /* virt_x2apic_mode_test() checks for MSR bitmaps support */ |
| cpu_exec_ctrl0 |= CPU_MSR_BITMAP; |
| } else { |
| cpu_exec_ctrl0 &= ~CPU_MSR_BITMAP; |
| } |
| |
| if (virt_x2apic_mode_config->virtual_interrupt_delivery) { |
| if (!(ctrl_cpu_rev[1].clr & CPU_VINTD)) { |
| report_skip("%s : \"virtual-interrupt delivery\" exec control not supported", __func__); |
| return CONFIG_TYPE_UNSUPPORTED; |
| } |
| cpu_exec_ctrl1 |= CPU_VINTD; |
| } else { |
| cpu_exec_ctrl1 &= ~CPU_VINTD; |
| } |
| |
| vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); |
| vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); |
| |
| /* x2APIC MSR intercepts are usually off for "Virtualize x2APIC mode" */ |
| for (msr = 0x800; msr <= 0x8ff; msr++) { |
| if (virt_x2apic_mode_config->disable_x2apic_msr_intercepts) { |
| clear_bit(msr, msr_bitmap_page + 0x000); |
| clear_bit(msr, msr_bitmap_page + 0x800); |
| } else { |
| set_bit(msr, msr_bitmap_page + 0x000); |
| set_bit(msr, msr_bitmap_page + 0x800); |
| } |
| } |
| |
| /* x2APIC mode can impact virtualization */ |
| reset_apic(); |
| if (!virt_x2apic_mode_config->disable_x2apic) |
| enable_x2apic(); |
| |
| return configure_apic_reg_virt_test( |
| &virt_x2apic_mode_config->apic_reg_virt_config); |
| } |
| |
| static void virt_x2apic_mode_test(void) |
| { |
| u32 *virtual_apic_page; |
| u8 *msr_bitmap_page; |
| u64 cpu_exec_ctrl0 = vmcs_read(CPU_EXEC_CTRL0); |
| u64 cpu_exec_ctrl1 = vmcs_read(CPU_EXEC_CTRL1); |
| int i; |
| struct virt_x2apic_mode_guest_args *args = &virt_x2apic_mode_guest_args; |
| |
| if (!cpu_has_apicv()) { |
| report_skip("%s : Not all required APICv bits supported", __func__); |
| return; |
| } |
| |
| /* |
| * This is to exercise an issue in KVM's logic to merge L0's and L1's |
| * MSR bitmaps. Previously, an L1 could get at L0's x2APIC MSRs by |
| * writing the IA32_SPEC_CTRL MSR or the IA32_PRED_CMD MSRs. KVM would |
| * then proceed to manipulate the MSR bitmaps, as if VMCS12 had the |
| * "Virtualize x2APIC mod" control set, even when it didn't. |
| */ |
| if (this_cpu_has(X86_FEATURE_SPEC_CTRL)) |
| wrmsr(MSR_IA32_SPEC_CTRL, 1); |
| |
| /* |
| * Check that VMCS12 supports: |
| * - "Virtual-APIC address", indicated by "use TPR shadow" |
| * - "MSR-bitmap address", indicated by "use MSR bitmaps" |
| */ |
| if (!(ctrl_cpu_rev[0].clr & CPU_TPR_SHADOW)) { |
| report_skip("%s : \"Use TPR shadow\" exec control not supported", __func__); |
| return; |
| } else if (!(ctrl_cpu_rev[0].clr & CPU_MSR_BITMAP)) { |
| report_skip("%s : \"Use MSR bitmaps\" exec control not supported", __func__); |
| return; |
| } |
| |
| test_set_guest(virt_x2apic_mode_guest); |
| |
| virtual_apic_page = alloc_page(); |
| vmcs_write(APIC_VIRT_ADDR, virt_to_phys(virtual_apic_page)); |
| |
| msr_bitmap_page = alloc_page(); |
| memset(msr_bitmap_page, 0xff, PAGE_SIZE); |
| vmcs_write(MSR_BITMAP, virt_to_phys(msr_bitmap_page)); |
| |
| for (i = 0; i < ARRAY_SIZE(virt_x2apic_mode_tests); i++) { |
| struct virt_x2apic_mode_test_case *virt_x2apic_mode_test_case = |
| &virt_x2apic_mode_tests[i]; |
| struct virt_x2apic_mode_config *virt_x2apic_mode_config = |
| &virt_x2apic_mode_test_case->virt_x2apic_mode_config; |
| enum Config_type config_type; |
| u32 reg; |
| |
| printf("--- %s test ---\n", virt_x2apic_mode_test_case->name); |
| config_type = |
| configure_virt_x2apic_mode_test(virt_x2apic_mode_config, |
| msr_bitmap_page); |
| if (config_type == CONFIG_TYPE_UNSUPPORTED) { |
| report_skip("Skip because of missing features."); |
| continue; |
| } else if (config_type == CONFIG_TYPE_VMENTRY_FAILS_EARLY) { |
| enter_guest_with_bad_controls(); |
| continue; |
| } |
| |
| for (reg = 0; reg < PAGE_SIZE / sizeof(u32); reg += 0x10) { |
| struct virt_x2apic_mode_expectation expectation; |
| |
| virt_x2apic_mode_exit_expectation( |
| reg, virt_x2apic_mode_config, &expectation); |
| |
| test_x2apic_rd(reg, &expectation, virtual_apic_page); |
| test_x2apic_wr(reg, &expectation, virtual_apic_page); |
| } |
| } |
| |
| |
| /* Terminate the guest */ |
| vmcs_write(CPU_EXEC_CTRL0, cpu_exec_ctrl0); |
| vmcs_write(CPU_EXEC_CTRL1, cpu_exec_ctrl1); |
| args->op = X2APIC_TERMINATE; |
| enter_guest(); |
| assert_exit_reason(VMX_VMCALL); |
| } |
| |
| static void test_ctl_reg(const char *cr_name, u64 cr, u64 fixed0, u64 fixed1) |
| { |
| u64 val; |
| u64 cr_saved = vmcs_read(cr); |
| int i; |
| |
| val = fixed0 & fixed1; |
| if (cr == HOST_CR4) |
| vmcs_write(cr, val | X86_CR4_PAE); |
| else |
| vmcs_write(cr, val); |
| report_prefix_pushf("%s %lx", cr_name, val); |
| if (val == fixed0) |
| test_vmx_vmlaunch(0); |
| else |
| test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| report_prefix_pop(); |
| |
| for (i = 0; i < 64; i++) { |
| |
| /* Set a bit when the corresponding bit in fixed1 is 0 */ |
| if ((fixed1 & (1ull << i)) == 0) { |
| if (cr == HOST_CR4 && ((1ull << i) & X86_CR4_SMEP || |
| (1ull << i) & X86_CR4_SMAP)) |
| continue; |
| |
| vmcs_write(cr, cr_saved | (1ull << i)); |
| report_prefix_pushf("%s %llx", cr_name, |
| cr_saved | (1ull << i)); |
| test_vmx_vmlaunch( |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| report_prefix_pop(); |
| } |
| |
| /* Unset a bit when the corresponding bit in fixed0 is 1 */ |
| if (fixed0 & (1ull << i)) { |
| vmcs_write(cr, cr_saved & ~(1ull << i)); |
| report_prefix_pushf("%s %llx", cr_name, |
| cr_saved & ~(1ull << i)); |
| test_vmx_vmlaunch( |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| report_prefix_pop(); |
| } |
| } |
| |
| vmcs_write(cr, cr_saved); |
| } |
| |
| /* |
| * 1. The CR0 field must not set any bit to a value not supported in VMX |
| * operation. |
| * 2. The CR4 field must not set any bit to a value not supported in VMX |
| * operation. |
| * 3. On processors that support Intel 64 architecture, the CR3 field must |
| * be such that bits 63:52 and bits in the range 51:32 beyond the |
| * processor's physical-address width must be 0. |
| * |
| * [Intel SDM] |
| */ |
| static void test_host_ctl_regs(void) |
| { |
| u64 fixed0, fixed1, cr3, cr3_saved; |
| int i; |
| |
| /* Test CR0 */ |
| fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0); |
| fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1); |
| test_ctl_reg("HOST_CR0", HOST_CR0, fixed0, fixed1); |
| |
| /* Test CR4 */ |
| fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0); |
| fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1) & |
| ~(X86_CR4_SMEP | X86_CR4_SMAP); |
| test_ctl_reg("HOST_CR4", HOST_CR4, fixed0, fixed1); |
| |
| /* Test CR3 */ |
| cr3_saved = vmcs_read(HOST_CR3); |
| for (i = cpuid_maxphyaddr(); i < 64; i++) { |
| cr3 = cr3_saved | (1ul << i); |
| vmcs_write(HOST_CR3, cr3); |
| report_prefix_pushf("HOST_CR3 %lx", cr3); |
| test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| report_prefix_pop(); |
| } |
| |
| vmcs_write(HOST_CR3, cr3_saved); |
| } |
| |
| static void test_efer_vmlaunch(u32 fld, bool ok) |
| { |
| if (fld == HOST_EFER) { |
| if (ok) |
| test_vmx_vmlaunch(0); |
| else |
| test_vmx_vmlaunch2(VMXERR_ENTRY_INVALID_CONTROL_FIELD, |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| } else { |
| test_guest_state("EFER test", !ok, GUEST_EFER, "GUEST_EFER"); |
| } |
| } |
| |
| static void test_efer_one(u32 fld, const char * fld_name, u64 efer, |
| u32 ctrl_fld, u64 ctrl, |
| int i, const char *efer_bit_name) |
| { |
| bool ok; |
| |
| ok = true; |
| if (ctrl_fld == EXI_CONTROLS && (ctrl & EXI_LOAD_EFER)) { |
| if (!!(efer & EFER_LMA) != !!(ctrl & EXI_HOST_64)) |
| ok = false; |
| if (!!(efer & EFER_LME) != !!(ctrl & EXI_HOST_64)) |
| ok = false; |
| } |
| if (ctrl_fld == ENT_CONTROLS && (ctrl & ENT_LOAD_EFER)) { |
| /* Check LMA too since CR0.PG is set. */ |
| if (!!(efer & EFER_LMA) != !!(ctrl & ENT_GUEST_64)) |
| ok = false; |
| if (!!(efer & EFER_LME) != !!(ctrl & ENT_GUEST_64)) |
| ok = false; |
| } |
| |
| /* |
| * Skip the test if it would enter the guest in 32-bit mode. |
| * Perhaps write the test in assembly and make sure it |
| * can be run in either mode? |
| */ |
| if (fld == GUEST_EFER && ok && !(ctrl & ENT_GUEST_64)) |
| return; |
| |
| vmcs_write(ctrl_fld, ctrl); |
| vmcs_write(fld, efer); |
| report_prefix_pushf("%s %s bit turned %s, controls %s", |
| fld_name, efer_bit_name, |
| (i & 1) ? "on" : "off", |
| (i & 2) ? "on" : "off"); |
| |
| test_efer_vmlaunch(fld, ok); |
| report_prefix_pop(); |
| } |
| |
| static void test_efer_bit(u32 fld, const char * fld_name, |
| u32 ctrl_fld, u64 ctrl_bit, u64 efer_bit, |
| const char *efer_bit_name) |
| { |
| u64 efer_saved = vmcs_read(fld); |
| u32 ctrl_saved = vmcs_read(ctrl_fld); |
| int i; |
| |
| for (i = 0; i < 4; i++) { |
| u64 efer = efer_saved & ~efer_bit; |
| u64 ctrl = ctrl_saved & ~ctrl_bit; |
| |
| if (i & 1) |
| efer |= efer_bit; |
| if (i & 2) |
| ctrl |= ctrl_bit; |
| |
| test_efer_one(fld, fld_name, efer, ctrl_fld, ctrl, |
| i, efer_bit_name); |
| } |
| |
| vmcs_write(ctrl_fld, ctrl_saved); |
| vmcs_write(fld, efer_saved); |
| } |
| |
| static void test_efer(u32 fld, const char * fld_name, u32 ctrl_fld, |
| u64 ctrl_bit1, u64 ctrl_bit2) |
| { |
| u64 efer_saved = vmcs_read(fld); |
| u32 ctrl_saved = vmcs_read(ctrl_fld); |
| u64 efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); |
| u64 i; |
| u64 efer; |
| |
| if (this_cpu_has(X86_FEATURE_NX)) |
| efer_reserved_bits &= ~EFER_NX; |
| |
| if (!ctrl_bit1) { |
| report_skip("%s : \"Load-IA32-EFER\" exit control not supported", __func__); |
| goto test_entry_exit_mode; |
| } |
| |
| report_prefix_pushf("%s %lx", fld_name, efer_saved); |
| test_efer_vmlaunch(fld, true); |
| report_prefix_pop(); |
| |
| /* |
| * Check reserved bits |
| */ |
| vmcs_write(ctrl_fld, ctrl_saved & ~ctrl_bit1); |
| for (i = 0; i < 64; i++) { |
| if ((1ull << i) & efer_reserved_bits) { |
| efer = efer_saved | (1ull << i); |
| vmcs_write(fld, efer); |
| report_prefix_pushf("%s %lx", fld_name, efer); |
| test_efer_vmlaunch(fld, true); |
| report_prefix_pop(); |
| } |
| } |
| |
| vmcs_write(ctrl_fld, ctrl_saved | ctrl_bit1); |
| for (i = 0; i < 64; i++) { |
| if ((1ull << i) & efer_reserved_bits) { |
| efer = efer_saved | (1ull << i); |
| vmcs_write(fld, efer); |
| report_prefix_pushf("%s %lx", fld_name, efer); |
| test_efer_vmlaunch(fld, false); |
| report_prefix_pop(); |
| } |
| } |
| |
| vmcs_write(ctrl_fld, ctrl_saved); |
| vmcs_write(fld, efer_saved); |
| |
| /* |
| * Check LMA and LME bits |
| */ |
| test_efer_bit(fld, fld_name, |
| ctrl_fld, ctrl_bit1, |
| EFER_LMA, |
| "EFER_LMA"); |
| test_efer_bit(fld, fld_name, |
| ctrl_fld, ctrl_bit1, |
| EFER_LME, |
| "EFER_LME"); |
| |
| test_entry_exit_mode: |
| test_efer_bit(fld, fld_name, |
| ctrl_fld, ctrl_bit2, |
| EFER_LMA, |
| "EFER_LMA"); |
| test_efer_bit(fld, fld_name, |
| ctrl_fld, ctrl_bit2, |
| EFER_LME, |
| "EFER_LME"); |
| } |
| |
| /* |
| * If the 'load IA32_EFER' VM-exit control is 1, bits reserved in the |
| * IA32_EFER MSR must be 0 in the field for that register. In addition, |
| * the values of the LMA and LME bits in the field must each be that of |
| * the 'host address-space size' VM-exit control. |
| * |
| * [Intel SDM] |
| */ |
| static void test_host_efer(void) |
| { |
| test_efer(HOST_EFER, "HOST_EFER", EXI_CONTROLS, |
| ctrl_exit_rev.clr & EXI_LOAD_EFER, |
| EXI_HOST_64); |
| } |
| |
| /* |
| * If the 'load IA32_EFER' VM-enter control is 1, bits reserved in the |
| * IA32_EFER MSR must be 0 in the field for that register. In addition, |
| * the values of the LMA and LME bits in the field must each be that of |
| * the 'IA32e-mode guest' VM-exit control. |
| */ |
| static void test_guest_efer(void) |
| { |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_EFER)) { |
| report_skip("%s : \"Load-IA32-EFER\" entry control not supported", __func__); |
| return; |
| } |
| |
| vmcs_write(GUEST_EFER, rdmsr(MSR_EFER)); |
| test_efer(GUEST_EFER, "GUEST_EFER", ENT_CONTROLS, |
| ctrl_enter_rev.clr & ENT_LOAD_EFER, |
| ENT_GUEST_64); |
| } |
| |
| /* |
| * PAT values higher than 8 are uninteresting since they're likely lumped |
| * in with "8". We only test values above 8 one bit at a time, |
| * in order to reduce the number of VM-Entries and keep the runtime reasonable. |
| */ |
| #define PAT_VAL_LIMIT 8 |
| |
| static void test_pat(u32 field, const char * field_name, u32 ctrl_field, |
| u64 ctrl_bit) |
| { |
| u32 ctrl_saved = vmcs_read(ctrl_field); |
| u64 pat_saved = vmcs_read(field); |
| u64 i, val; |
| u32 j; |
| int error; |
| |
| vmcs_clear_bits(ctrl_field, ctrl_bit); |
| |
| for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { |
| /* Test PAT0..PAT7 fields */ |
| for (j = 0; j < (i ? 8 : 1); j++) { |
| val = i << j * 8; |
| vmcs_write(field, val); |
| if (field == HOST_PAT) { |
| report_prefix_pushf("%s %lx", field_name, val); |
| test_vmx_vmlaunch(0); |
| report_prefix_pop(); |
| |
| } else { // GUEST_PAT |
| test_guest_state("ENT_LOAD_PAT enabled", false, |
| val, "GUEST_PAT"); |
| } |
| } |
| } |
| |
| vmcs_set_bits(ctrl_field, ctrl_bit); |
| for (i = 0; i < 256; i = (i < PAT_VAL_LIMIT) ? i + 1 : i * 2) { |
| /* Test PAT0..PAT7 fields */ |
| for (j = 0; j < (i ? 8 : 1); j++) { |
| val = i << j * 8; |
| vmcs_write(field, val); |
| |
| if (field == HOST_PAT) { |
| report_prefix_pushf("%s %lx", field_name, val); |
| if (i == 0x2 || i == 0x3 || i >= 0x8) |
| error = |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; |
| else |
| error = 0; |
| |
| test_vmx_vmlaunch(error); |
| report_prefix_pop(); |
| |
| } else { // GUEST_PAT |
| error = (i == 0x2 || i == 0x3 || i >= 0x8); |
| test_guest_state("ENT_LOAD_PAT enabled", !!error, |
| val, "GUEST_PAT"); |
| } |
| |
| } |
| } |
| |
| vmcs_write(ctrl_field, ctrl_saved); |
| vmcs_write(field, pat_saved); |
| } |
| |
| /* |
| * If the "load IA32_PAT" VM-exit control is 1, the value of the field |
| * for the IA32_PAT MSR must be one that could be written by WRMSR |
| * without fault at CPL 0. Specifically, each of the 8 bytes in the |
| * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), |
| * 6 (WB), or 7 (UC-). |
| * |
| * [Intel SDM] |
| */ |
| static void test_load_host_pat(void) |
| { |
| /* |
| * "load IA32_PAT" VM-exit control |
| */ |
| if (!(ctrl_exit_rev.clr & EXI_LOAD_PAT)) { |
| report_skip("%s : \"Load-IA32-PAT\" exit control not supported", __func__); |
| return; |
| } |
| |
| test_pat(HOST_PAT, "HOST_PAT", EXI_CONTROLS, EXI_LOAD_PAT); |
| } |
| |
| union cpuidA_eax { |
| struct { |
| unsigned int version_id:8; |
| unsigned int num_counters_gp:8; |
| unsigned int bit_width:8; |
| unsigned int mask_length:8; |
| } split; |
| unsigned int full; |
| }; |
| |
| union cpuidA_edx { |
| struct { |
| unsigned int num_counters_fixed:5; |
| unsigned int bit_width_fixed:8; |
| unsigned int reserved:9; |
| } split; |
| unsigned int full; |
| }; |
| |
| static bool valid_pgc(u64 val) |
| { |
| struct cpuid id; |
| union cpuidA_eax eax; |
| union cpuidA_edx edx; |
| u64 mask; |
| |
| id = cpuid(0xA); |
| eax.full = id.a; |
| edx.full = id.d; |
| mask = ~(((1ull << eax.split.num_counters_gp) - 1) | |
| (((1ull << edx.split.num_counters_fixed) - 1) << 32)); |
| |
| return !(val & mask); |
| } |
| |
| static void test_pgc_vmlaunch(u32 xerror, u32 xreason, bool xfail, bool host) |
| { |
| u32 inst_err; |
| u64 obs; |
| bool success; |
| struct vmx_state_area_test_data *data = &vmx_state_area_test_data; |
| |
| if (host) { |
| success = vmlaunch(); |
| obs = rdmsr(data->msr); |
| if (!success) { |
| inst_err = vmcs_read(VMX_INST_ERROR); |
| report(xerror == inst_err, "vmlaunch failed, " |
| "VMX Inst Error is %d (expected %d)", |
| inst_err, xerror); |
| } else { |
| report(!data->enabled || data->exp == obs, |
| "Host state is 0x%lx (expected 0x%lx)", |
| obs, data->exp); |
| report(success != xfail, "vmlaunch succeeded"); |
| } |
| } else { |
| test_guest_state("load GUEST_PERF_GLOBAL_CTRL", xfail, |
| GUEST_PERF_GLOBAL_CTRL, |
| "GUEST_PERF_GLOBAL_CTRL"); |
| } |
| } |
| |
| /* |
| * test_load_perf_global_ctrl is a generic function for testing the |
| * "load IA32_PERF_GLOBAL_CTRL" VM-{Entry,Exit} controls. This test function |
| * tests the provided ctrl_val when disabled and enabled. |
| * |
| * @nr: VMCS field number corresponding to the host/guest state field |
| * @name: Name of the above VMCS field for printing in test report |
| * @ctrl_nr: VMCS field number corresponding to the VM-{Entry,Exit} control |
| * @ctrl_val: Bit to set on the ctrl_field |
| */ |
| static void test_perf_global_ctrl(u32 nr, const char *name, u32 ctrl_nr, |
| const char *ctrl_name, u64 ctrl_val) |
| { |
| u64 ctrl_saved = vmcs_read(ctrl_nr); |
| u64 pgc_saved = vmcs_read(nr); |
| u64 i, val; |
| bool host = nr == HOST_PERF_GLOBAL_CTRL; |
| struct vmx_state_area_test_data *data = &vmx_state_area_test_data; |
| |
| data->msr = MSR_CORE_PERF_GLOBAL_CTRL; |
| msr_bmp_init(); |
| vmcs_write(ctrl_nr, ctrl_saved & ~ctrl_val); |
| data->enabled = false; |
| report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=0 on %s", |
| ctrl_name); |
| |
| for (i = 0; i < 64; i++) { |
| val = 1ull << i; |
| vmcs_write(nr, val); |
| report_prefix_pushf("%s = 0x%lx", name, val); |
| test_pgc_vmlaunch(0, VMX_VMCALL, false, host); |
| report_prefix_pop(); |
| } |
| report_prefix_pop(); |
| |
| vmcs_write(ctrl_nr, ctrl_saved | ctrl_val); |
| data->enabled = true; |
| report_prefix_pushf("\"load IA32_PERF_GLOBAL_CTRL\"=1 on %s", |
| ctrl_name); |
| for (i = 0; i < 64; i++) { |
| val = 1ull << i; |
| data->exp = val; |
| vmcs_write(nr, val); |
| report_prefix_pushf("%s = 0x%lx", name, val); |
| if (valid_pgc(val)) { |
| test_pgc_vmlaunch(0, VMX_VMCALL, false, host); |
| } else { |
| if (host) |
| test_pgc_vmlaunch( |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD, |
| 0, |
| true, |
| host); |
| else |
| test_pgc_vmlaunch( |
| 0, |
| VMX_ENTRY_FAILURE | VMX_FAIL_STATE, |
| true, |
| host); |
| } |
| report_prefix_pop(); |
| } |
| |
| data->enabled = false; |
| report_prefix_pop(); |
| vmcs_write(ctrl_nr, ctrl_saved); |
| vmcs_write(nr, pgc_saved); |
| } |
| |
| static void test_load_host_perf_global_ctrl(void) |
| { |
| if (!this_cpu_has_perf_global_ctrl()) { |
| report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); |
| return; |
| } |
| |
| if (!(ctrl_exit_rev.clr & EXI_LOAD_PERF)) { |
| report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" exit control not supported", __func__); |
| return; |
| } |
| |
| test_perf_global_ctrl(HOST_PERF_GLOBAL_CTRL, "HOST_PERF_GLOBAL_CTRL", |
| EXI_CONTROLS, "EXI_CONTROLS", EXI_LOAD_PERF); |
| } |
| |
| |
| static void test_load_guest_perf_global_ctrl(void) |
| { |
| if (!this_cpu_has_perf_global_ctrl()) { |
| report_skip("%s : \"IA32_PERF_GLOBAL_CTRL\" MSR not supported", __func__); |
| return; |
| } |
| |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_PERF)) { |
| report_skip("%s : \"Load IA32_PERF_GLOBAL_CTRL\" entry control not supported", __func__); |
| return; |
| } |
| |
| test_perf_global_ctrl(GUEST_PERF_GLOBAL_CTRL, "GUEST_PERF_GLOBAL_CTRL", |
| ENT_CONTROLS, "ENT_CONTROLS", ENT_LOAD_PERF); |
| } |
| |
| |
| /* |
| * test_vmcs_field - test a value for the given VMCS field |
| * @field: VMCS field |
| * @field_name: string name of VMCS field |
| * @bit_start: starting bit |
| * @bit_end: ending bit |
| * @val: value that the bit range must or must not contain |
| * @valid_val: whether value given in 'val' must be valid or not |
| * @error: expected VMCS error when vmentry fails for an invalid value |
| */ |
| static void test_vmcs_field(u64 field, const char *field_name, u32 bit_start, |
| u32 bit_end, u64 val, bool valid_val, u32 error) |
| { |
| u64 field_saved = vmcs_read(field); |
| u32 i; |
| u64 tmp; |
| u32 bit_on; |
| u64 mask = ~0ull; |
| |
| mask = (mask >> bit_end) << bit_end; |
| mask = mask | ((1 << bit_start) - 1); |
| tmp = (field_saved & mask) | (val << bit_start); |
| |
| vmcs_write(field, tmp); |
| report_prefix_pushf("%s %lx", field_name, tmp); |
| if (valid_val) |
| test_vmx_vmlaunch(0); |
| else |
| test_vmx_vmlaunch(error); |
| report_prefix_pop(); |
| |
| for (i = bit_start; i <= bit_end; i = i + 2) { |
| bit_on = ((1ull < i) & (val << bit_start)) ? 0 : 1; |
| if (bit_on) |
| tmp = field_saved | (1ull << i); |
| else |
| tmp = field_saved & ~(1ull << i); |
| vmcs_write(field, tmp); |
| report_prefix_pushf("%s %lx", field_name, tmp); |
| if (valid_val) |
| test_vmx_vmlaunch(error); |
| else |
| test_vmx_vmlaunch(0); |
| report_prefix_pop(); |
| } |
| |
| vmcs_write(field, field_saved); |
| } |
| |
| static void test_canonical(u64 field, const char * field_name, bool host) |
| { |
| u64 addr_saved = vmcs_read(field); |
| |
| /* |
| * Use the existing value if possible. Writing a random canonical |
| * value is not an option as doing so would corrupt the field being |
| * tested and likely hose the test. |
| */ |
| if (is_canonical(addr_saved)) { |
| if (host) { |
| report_prefix_pushf("%s %lx", field_name, addr_saved); |
| test_vmx_vmlaunch(0); |
| report_prefix_pop(); |
| } else { |
| test_guest_state("Test canonical address", false, |
| addr_saved, field_name); |
| } |
| } |
| |
| vmcs_write(field, NONCANONICAL); |
| |
| if (host) { |
| report_prefix_pushf("%s %llx", field_name, NONCANONICAL); |
| test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| report_prefix_pop(); |
| } else { |
| test_guest_state("Test non-canonical address", true, |
| NONCANONICAL, field_name); |
| } |
| |
| vmcs_write(field, addr_saved); |
| } |
| |
| #define TEST_RPL_TI_FLAGS(reg, name) \ |
| test_vmcs_field(reg, name, 0, 2, 0x0, true, \ |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| |
| #define TEST_CS_TR_FLAGS(reg, name) \ |
| test_vmcs_field(reg, name, 3, 15, 0x0000, false, \ |
| VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| |
| /* |
| * 1. In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the |
| * RPL (bits 1:0) and the TI flag (bit 2) must be 0. |
| * 2. The selector fields for CS and TR cannot be 0000H. |
| * 3. The selector field for SS cannot be 0000H if the "host address-space |
| * size" VM-exit control is 0. |
| * 4. On processors that support Intel 64 architecture, the base-address |
| * fields for FS, GS and TR must contain canonical addresses. |
| */ |
| static void test_host_segment_regs(void) |
| { |
| u16 selector_saved; |
| |
| /* |
| * Test RPL and TI flags |
| */ |
| TEST_RPL_TI_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); |
| TEST_RPL_TI_FLAGS(HOST_SEL_SS, "HOST_SEL_SS"); |
| TEST_RPL_TI_FLAGS(HOST_SEL_DS, "HOST_SEL_DS"); |
| TEST_RPL_TI_FLAGS(HOST_SEL_ES, "HOST_SEL_ES"); |
| TEST_RPL_TI_FLAGS(HOST_SEL_FS, "HOST_SEL_FS"); |
| TEST_RPL_TI_FLAGS(HOST_SEL_GS, "HOST_SEL_GS"); |
| TEST_RPL_TI_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); |
| |
| /* |
| * Test that CS and TR fields can not be 0x0000 |
| */ |
| TEST_CS_TR_FLAGS(HOST_SEL_CS, "HOST_SEL_CS"); |
| TEST_CS_TR_FLAGS(HOST_SEL_TR, "HOST_SEL_TR"); |
| |
| /* |
| * SS field can not be 0x0000 if "host address-space size" VM-exit |
| * control is 0 |
| */ |
| selector_saved = vmcs_read(HOST_SEL_SS); |
| vmcs_write(HOST_SEL_SS, 0); |
| report_prefix_pushf("HOST_SEL_SS 0"); |
| if (vmcs_read(EXI_CONTROLS) & EXI_HOST_64) { |
| test_vmx_vmlaunch(0); |
| } else { |
| test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| } |
| report_prefix_pop(); |
| |
| vmcs_write(HOST_SEL_SS, selector_saved); |
| |
| /* |
| * Base address for FS, GS and TR must be canonical |
| */ |
| test_canonical(HOST_BASE_FS, "HOST_BASE_FS", true); |
| test_canonical(HOST_BASE_GS, "HOST_BASE_GS", true); |
| test_canonical(HOST_BASE_TR, "HOST_BASE_TR", true); |
| } |
| |
| /* |
| * On processors that support Intel 64 architecture, the base-address |
| * fields for GDTR and IDTR must contain canonical addresses. |
| */ |
| static void test_host_desc_tables(void) |
| { |
| test_canonical(HOST_BASE_GDTR, "HOST_BASE_GDTR", true); |
| test_canonical(HOST_BASE_IDTR, "HOST_BASE_IDTR", true); |
| } |
| |
| /* |
| * If the "host address-space size" VM-exit control is 0, the following must |
| * hold: |
| * - The "IA-32e mode guest" VM-entry control is 0. |
| * - Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0. |
| * - Bits 63:32 in the RIP field are 0. |
| * |
| * If the "host address-space size" VM-exit control is 1, the following must |
| * hold: |
| * - Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1. |
| * - The RIP field contains a canonical address. |
| * |
| */ |
| static void test_host_addr_size(void) |
| { |
| u64 cr4_saved = vmcs_read(HOST_CR4); |
| u64 rip_saved = vmcs_read(HOST_RIP); |
| u64 entry_ctrl_saved = vmcs_read(ENT_CONTROLS); |
| |
| assert(vmcs_read(EXI_CONTROLS) & EXI_HOST_64); |
| assert(cr4_saved & X86_CR4_PAE); |
| |
| vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); |
| report_prefix_pushf("\"IA-32e mode guest\" enabled"); |
| test_vmx_vmlaunch(0); |
| report_prefix_pop(); |
| |
| if (this_cpu_has(X86_FEATURE_PCID)) { |
| vmcs_write(HOST_CR4, cr4_saved | X86_CR4_PCIDE); |
| report_prefix_pushf("\"CR4.PCIDE\" set"); |
| test_vmx_vmlaunch(0); |
| report_prefix_pop(); |
| } |
| |
| vmcs_write(HOST_CR4, cr4_saved & ~X86_CR4_PAE); |
| report_prefix_pushf("\"CR4.PAE\" unset"); |
| test_vmx_vmlaunch(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| vmcs_write(HOST_CR4, cr4_saved); |
| report_prefix_pop(); |
| |
| vmcs_write(HOST_RIP, NONCANONICAL); |
| report_prefix_pushf("HOST_RIP %llx", NONCANONICAL); |
| test_vmx_vmlaunch_must_fail(VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); |
| report_prefix_pop(); |
| |
| vmcs_write(ENT_CONTROLS, entry_ctrl_saved | ENT_GUEST_64); |
| vmcs_write(HOST_RIP, rip_saved); |
| vmcs_write(HOST_CR4, cr4_saved); |
| |
| /* |
| * Restore host's active CR4 and RIP values by triggering a VM-Exit. |
| * The original CR4 and RIP values in the VMCS are restored between |
| * testcases as needed, but don't guarantee a VM-Exit and so the active |
| * CR4 and RIP may still hold a test value. Running with the test CR4 |
| * and RIP values at some point is unavoidable, and the active values |
| * are unlikely to affect VM-Enter, so the above doesn't force a VM-exit |
| * between testcases. Note, if VM-Enter is surrounded by CALL+RET then |
| * the active RIP will already be restored, but that's also not |
| * guaranteed, and CR4 needs to be restored regardless. |
| */ |
| report_prefix_pushf("restore host state"); |
| test_vmx_vmlaunch(0); |
| report_prefix_pop(); |
| } |
| |
| /* |
| * Check that the virtual CPU checks the VMX Host State Area as |
| * documented in the Intel SDM. |
| */ |
| static void vmx_host_state_area_test(void) |
| { |
| /* |
| * Bit 1 of the guest's RFLAGS must be 1, or VM-entry will |
| * fail due to invalid guest state, should we make it that |
| * far. |
| */ |
| vmcs_write(GUEST_RFLAGS, 0); |
| |
| test_host_ctl_regs(); |
| |
| test_canonical(HOST_SYSENTER_ESP, "HOST_SYSENTER_ESP", true); |
| test_canonical(HOST_SYSENTER_EIP, "HOST_SYSENTER_EIP", true); |
| |
| test_host_efer(); |
| test_load_host_pat(); |
| test_host_segment_regs(); |
| test_host_desc_tables(); |
| test_host_addr_size(); |
| test_load_host_perf_global_ctrl(); |
| } |
| |
| /* |
| * If the "load debug controls" VM-entry control is 1, bits 63:32 in |
| * the DR7 field must be 0. |
| * |
| * [Intel SDM] |
| */ |
| static void test_guest_dr7(void) |
| { |
| u32 ent_saved = vmcs_read(ENT_CONTROLS); |
| u64 dr7_saved = vmcs_read(GUEST_DR7); |
| u64 val; |
| int i; |
| |
| if (ctrl_enter_rev.set & ENT_LOAD_DBGCTLS) { |
| vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); |
| for (i = 0; i < 64; i++) { |
| val = 1ull << i; |
| vmcs_write(GUEST_DR7, val); |
| test_guest_state("ENT_LOAD_DBGCTLS disabled", false, |
| val, "GUEST_DR7"); |
| } |
| } |
| if (ctrl_enter_rev.clr & ENT_LOAD_DBGCTLS) { |
| vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_DBGCTLS); |
| for (i = 0; i < 64; i++) { |
| val = 1ull << i; |
| vmcs_write(GUEST_DR7, val); |
| test_guest_state("ENT_LOAD_DBGCTLS enabled", i >= 32, |
| val, "GUEST_DR7"); |
| } |
| } |
| vmcs_write(GUEST_DR7, dr7_saved); |
| vmcs_write(ENT_CONTROLS, ent_saved); |
| } |
| |
| /* |
| * If the "load IA32_PAT" VM-entry control is 1, the value of the field |
| * for the IA32_PAT MSR must be one that could be written by WRMSR |
| * without fault at CPL 0. Specifically, each of the 8 bytes in the |
| * field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP), |
| * 6 (WB), or 7 (UC-). |
| * |
| * [Intel SDM] |
| */ |
| static void test_load_guest_pat(void) |
| { |
| /* |
| * "load IA32_PAT" VM-entry control |
| */ |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_PAT)) { |
| report_skip("%s : \"Load-IA32-PAT\" entry control not supported", __func__); |
| return; |
| } |
| |
| test_pat(GUEST_PAT, "GUEST_PAT", ENT_CONTROLS, ENT_LOAD_PAT); |
| } |
| |
| #define MSR_IA32_BNDCFGS_RSVD_MASK 0x00000ffc |
| |
| /* |
| * If the "load IA32_BNDCFGS" VM-entry control is 1, the following |
| * checks are performed on the field for the IA32_BNDCFGS MSR: |
| * |
| * - Bits reserved in the IA32_BNDCFGS MSR must be 0. |
| * - The linear address in bits 63:12 must be canonical. |
| * |
| * [Intel SDM] |
| */ |
| static void test_load_guest_bndcfgs(void) |
| { |
| u64 bndcfgs_saved = vmcs_read(GUEST_BNDCFGS); |
| u64 bndcfgs; |
| |
| if (!(ctrl_enter_rev.clr & ENT_LOAD_BNDCFGS)) { |
| report_skip("%s : \"Load-IA32-BNDCFGS\" entry control not supported", __func__); |
| return; |
| } |
| |
| vmcs_clear_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); |
| |
| vmcs_write(GUEST_BNDCFGS, NONCANONICAL); |
| test_guest_state("ENT_LOAD_BNDCFGS disabled", false, |
| GUEST_BNDCFGS, "GUEST_BNDCFGS"); |
| bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; |
| vmcs_write(GUEST_BNDCFGS, bndcfgs); |
| test_guest_state("ENT_LOAD_BNDCFGS disabled", false, |
| GUEST_BNDCFGS, "GUEST_BNDCFGS"); |
| |
| vmcs_set_bits(ENT_CONTROLS, ENT_LOAD_BNDCFGS); |
| |
| vmcs_write(GUEST_BNDCFGS, NONCANONICAL); |
| test_guest_state("ENT_LOAD_BNDCFGS enabled", true, |
| GUEST_BNDCFGS, "GUEST_BNDCFGS"); |
| bndcfgs = bndcfgs_saved | MSR_IA32_BNDCFGS_RSVD_MASK; |
| vmcs_write(GUEST_BNDCFGS, bndcfgs); |
| test_guest_state("ENT_LOAD_BNDCFGS enabled", true, |
| GUEST_BNDCFGS, "GUEST_BNDCFGS"); |
| |
| vmcs_write(GUEST_BNDCFGS, bndcfgs_saved); |
| } |
| |
| #define GUEST_SEG_UNUSABLE_MASK (1u << 16) |
| #define GUEST_SEG_SEL_TI_MASK (1u << 2) |
| |
| |
| #define TEST_SEGMENT_SEL(test, xfail, sel, val) \ |
| do { \ |
| vmcs_write(sel, val); \ |
| test_guest_state(test " segment", xfail, val, xstr(sel)); \ |
| } while (0) |
| |
| #define TEST_INVALID_SEG_SEL(sel, val) \ |
| TEST_SEGMENT_SEL("Invalid: " xstr(val), true, sel, val); |
| |
| #define TEST_VALID_SEG_SEL(sel, val) \ |
| TEST_SEGMENT_SEL("Valid: " xstr(val), false, sel, val); |
| |
| /* |
| * The following checks are done on the Selector field of the Guest Segment |
| * Registers: |
| * - TR. The TI flag (bit 2) must be 0. |
| * - LDTR. If LDTR is usable, the TI flag (bit 2) must be 0. |
| * - SS. If the guest will not be virtual-8086 and the "unrestricted |
| * guest" VM-execution control is 0, the RPL (bits 1:0) must equal |
| * the RPL of the selector field for CS. |
| * |
| * [Intel SDM] |
| */ |
| static void test_guest_segment_sel_fields(void) |
| { |
| u16 sel_saved; |
| u32 ar_saved; |
| u32 cpu_ctrl0_saved; |
| u32 cpu_ctrl1_saved; |
| u16 cs_rpl_bits; |
| |
| /* |
| * Test for GUEST_SEL_TR |
| */ |
| sel_saved = vmcs_read(GUEST_SEL_TR); |
| TEST_INVALID_SEG_SEL(GUEST_SEL_TR, sel_saved | GUEST_SEG_SEL_TI_MASK); |
| vmcs_write(GUEST_SEL_TR, sel_saved); |
| |
| /* |
| * Test for GUEST_SEL_LDTR |
| */ |
| sel_saved = vmcs_read(GUEST_SEL_LDTR); |
| ar_saved = vmcs_read(GUEST_AR_LDTR); |
| /* LDTR is set unusable */ |
| vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); |
| TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); |
| /* LDTR is set usable */ |
| vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| TEST_INVALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved | GUEST_SEG_SEL_TI_MASK); |
| |
| TEST_VALID_SEG_SEL(GUEST_SEL_LDTR, sel_saved & ~GUEST_SEG_SEL_TI_MASK); |
| |
| vmcs_write(GUEST_AR_LDTR, ar_saved); |
| vmcs_write(GUEST_SEL_LDTR, sel_saved); |
| |
| /* |
| * Test for GUEST_SEL_SS |
| */ |
| cpu_ctrl0_saved = vmcs_read(CPU_EXEC_CTRL0); |
| cpu_ctrl1_saved = vmcs_read(CPU_EXEC_CTRL1); |
| ar_saved = vmcs_read(GUEST_AR_SS); |
| /* Turn off "unrestricted guest" vm-execution control */ |
| vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved & ~CPU_URG); |
| cs_rpl_bits = vmcs_read(GUEST_SEL_CS) & 0x3; |
| sel_saved = vmcs_read(GUEST_SEL_SS); |
| TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); |
| TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); |
| /* Make SS usable if it's unusable or vice-versa */ |
| if (ar_saved & GUEST_SEG_UNUSABLE_MASK) |
| vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| else |
| vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_INVALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); |
| TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); |
| |
| /* Need a valid EPTP as the passing case fully enters the guest. */ |
| if (enable_unrestricted_guest(true)) |
| goto skip_ss_tests; |
| |
| TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); |
| TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); |
| |
| /* Make SS usable if it's unusable or vice-versa */ |
| if (vmcs_read(GUEST_AR_SS) & GUEST_SEG_UNUSABLE_MASK) |
| vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| else |
| vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (~cs_rpl_bits & 0x3))); |
| TEST_VALID_SEG_SEL(GUEST_SEL_SS, ((sel_saved & ~0x3) | (cs_rpl_bits & 0x3))); |
| skip_ss_tests: |
| |
| vmcs_write(GUEST_AR_SS, ar_saved); |
| vmcs_write(GUEST_SEL_SS, sel_saved); |
| vmcs_write(CPU_EXEC_CTRL0, cpu_ctrl0_saved); |
| vmcs_write(CPU_EXEC_CTRL1, cpu_ctrl1_saved); |
| } |
| |
| #define TEST_SEGMENT_BASE_ADDR_UPPER_BITS(xfail, seg_base) \ |
| do { \ |
| addr_saved = vmcs_read(seg_base); \ |
| for (i = 32; i < 63; i = i + 4) { \ |
| addr = addr_saved | 1ull << i; \ |
| vmcs_write(seg_base, addr); \ |
| test_guest_state("seg.BASE[63:32] != 0, usable = " xstr(xfail), \ |
| xfail, addr, xstr(seg_base)); \ |
| } \ |
| vmcs_write(seg_base, addr_saved); \ |
| } while (0) |
| |
| #define TEST_SEGMENT_BASE_ADDR_CANONICAL(xfail, seg_base) \ |
| do { \ |
| addr_saved = vmcs_read(seg_base); \ |
| vmcs_write(seg_base, NONCANONICAL); \ |
| test_guest_state("seg.BASE non-canonical, usable = " xstr(xfail), \ |
| xfail, NONCANONICAL, xstr(seg_base)); \ |
| vmcs_write(seg_base, addr_saved); \ |
| } while (0) |
| |
| /* |
| * The following checks are done on the Base Address field of the Guest |
| * Segment Registers on processors that support Intel 64 architecture: |
| * - TR, FS, GS : The address must be canonical. |
| * - LDTR : If LDTR is usable, the address must be canonical. |
| * - CS : Bits 63:32 of the address must be zero. |
| * - SS, DS, ES : If the register is usable, bits 63:32 of the address |
| * must be zero. |
| * |
| * [Intel SDM] |
| */ |
| static void test_guest_segment_base_addr_fields(void) |
| { |
| u64 addr_saved; |
| u64 addr; |
| u32 ar_saved; |
| int i; |
| |
| /* |
| * The address of TR, FS, GS and LDTR must be canonical. |
| */ |
| TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_TR); |
| TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_FS); |
| TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_GS); |
| ar_saved = vmcs_read(GUEST_AR_LDTR); |
| /* Make LDTR unusable */ |
| vmcs_write(GUEST_AR_LDTR, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_CANONICAL(false, GUEST_BASE_LDTR); |
| /* Make LDTR usable */ |
| vmcs_write(GUEST_AR_LDTR, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_CANONICAL(true, GUEST_BASE_LDTR); |
| |
| vmcs_write(GUEST_AR_LDTR, ar_saved); |
| |
| /* |
| * Bits 63:32 in CS, SS, DS and ES base address must be zero |
| */ |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_CS); |
| ar_saved = vmcs_read(GUEST_AR_SS); |
| /* Make SS unusable */ |
| vmcs_write(GUEST_AR_SS, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_SS); |
| /* Make SS usable */ |
| vmcs_write(GUEST_AR_SS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_SS); |
| vmcs_write(GUEST_AR_SS, ar_saved); |
| |
| ar_saved = vmcs_read(GUEST_AR_DS); |
| /* Make DS unusable */ |
| vmcs_write(GUEST_AR_DS, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_DS); |
| /* Make DS usable */ |
| vmcs_write(GUEST_AR_DS, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_DS); |
| vmcs_write(GUEST_AR_DS, ar_saved); |
| |
| ar_saved = vmcs_read(GUEST_AR_ES); |
| /* Make ES unusable */ |
| vmcs_write(GUEST_AR_ES, ar_saved | GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(false, GUEST_BASE_ES); |
| /* Make ES usable */ |
| vmcs_write(GUEST_AR_ES, ar_saved & ~GUEST_SEG_UNUSABLE_MASK); |
| TEST_SEGMENT_BASE_ADDR_UPPER_BITS(true, GUEST_BASE_ES); |
| vmcs_write(GUEST_AR_ES, ar_saved); |
| } |
| |
| /* |
| * Check that the virtual CPU checks the VMX Guest State Area as |
| * documented in the Intel SDM. |
| */ |
| static void vmx_guest_state_area_test(void) |
| { |
| vmx_set_test_stage(1); |
| test_set_guest(guest_state_test_main); |
| |
| /* |
| * The IA32_SYSENTER_ESP field and the IA32_SYSENTER_EIP field |
| * must each contain a canonical address. |
| */ |
| test_canonical(GUEST_SYSENTER_ESP, "GUEST_SYSENTER_ESP", false); |
| test_canonical(GUEST_SYSENTER_EIP, "GUEST_SYSENTER_EIP", false); |
| |
| test_guest_dr7(); |
| test_load_guest_pat(); |
| test_guest_efer(); |
| test_load_guest_perf_global_ctrl(); |
| test_load_guest_bndcfgs(); |
| |
| test_guest_segment_sel_fields(); |
| test_guest_segment_base_addr_fields(); |
| |
| test_canonical(GUEST_BASE_GDTR, "GUEST_BASE_GDTR", false); |
| test_canonical(GUEST_BASE_IDTR, "GUEST_BASE_IDTR", false); |
| |
| u32 guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_GDTR); |
| int i; |
| for (i = 16; i <= 31; i++) { |
| u32 tmp = guest_desc_limit_saved | (1ull << i); |
| vmcs_write(GUEST_LIMIT_GDTR, tmp); |
| test_guest_state("GDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_GDTR"); |
| } |
| vmcs_write(GUEST_LIMIT_GDTR, guest_desc_limit_saved); |
| |
| guest_desc_limit_saved = vmcs_read(GUEST_LIMIT_IDTR); |
| for (i = 16; i <= 31; i++) { |
| u32 tmp = guest_desc_limit_saved | (1ull << i); |
| vmcs_write(GUEST_LIMIT_IDTR, tmp); |
| test_guest_state("IDT.limit > 0xffff", true, tmp, "GUEST_LIMIT_IDTR"); |
| } |
| vmcs_write(GUEST_LIMIT_IDTR, guest_desc_limit_saved); |
| |
| /* |
| * Let the guest finish execution |
| */ |
| vmx_set_test_stage(2); |
| enter_guest(); |
| } |
| |
| extern void unrestricted_guest_main(void); |
| asm (".code32\n" |
| "unrestricted_guest_main:\n" |
| "vmcall\n" |
| "nop\n" |
| "mov $1, %edi\n" |
| "call hypercall\n" |
| ".code64\n"); |
| |
| static void setup_unrestricted_guest(void) |
| { |
| vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) & ~(X86_CR0_PG)); |
| vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) & ~ENT_GUEST_64); |
| vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) & ~EFER_LMA); |
| vmcs_write(GUEST_RIP, virt_to_phys(unrestricted_guest_main)); |
| } |
| |
| static void unsetup_unrestricted_guest(void) |
| { |
| vmcs_write(GUEST_CR0, vmcs_read(GUEST_CR0) | X86_CR0_PG); |
| vmcs_write(ENT_CONTROLS, vmcs_read(ENT_CONTROLS) | ENT_GUEST_64); |
| vmcs_write(GUEST_EFER, vmcs_read(GUEST_EFER) | EFER_LMA); |
| vmcs_write(GUEST_RIP, (u64) phys_to_virt(vmcs_read(GUEST_RIP))); |
| vmcs_write(GUEST_RSP, (u64) phys_to_virt(vmcs_read(GUEST_RSP))); |
| } |
| |
| /* |
| * If "unrestricted guest" secondary VM-execution control is set, guests |
| * can run in unpaged protected mode. |
| */ |
| static void vmentry_unrestricted_guest_test(void) |
| { |
| if (enable_unrestricted_guest(true)) { |
| report_skip("%s: \"Unrestricted guest\" exec control not supported", __func__); |
| return; |
| } |
| |
| test_set_guest(unrestricted_guest_main); |
| setup_unrestricted_guest(); |
| test_guest_state("Unrestricted guest test", false, CPU_URG, "CPU_URG"); |
| |
| /* |
| * Let the guest finish execution as a regular guest |
| */ |
| unsetup_unrestricted_guest(); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) & ~CPU_URG); |
| enter_guest(); |
| } |
| |
| static bool valid_vmcs_for_vmentry(void) |
| { |
| struct vmcs *current_vmcs = NULL; |
| |
| if (vmcs_save(¤t_vmcs)) |
| return false; |
| |
| return current_vmcs && !current_vmcs->hdr.shadow_vmcs; |
| } |
| |
| static void try_vmentry_in_movss_shadow(void) |
| { |
| u32 vm_inst_err; |
| u32 flags; |
| bool early_failure = false; |
| u32 expected_flags = X86_EFLAGS_FIXED; |
| bool valid_vmcs = valid_vmcs_for_vmentry(); |
| |
| expected_flags |= valid_vmcs ? X86_EFLAGS_ZF : X86_EFLAGS_CF; |
| |
| /* |
| * Indirectly set VM_INST_ERR to 12 ("VMREAD/VMWRITE from/to |
| * unsupported VMCS component"). |
| */ |
| vmcs_write(~0u, 0); |
| |
| __asm__ __volatile__ ("mov %[host_rsp], %%edx;" |
| "vmwrite %%rsp, %%rdx;" |
| "mov 0f, %%rax;" |
| "mov %[host_rip], %%edx;" |
| "vmwrite %%rax, %%rdx;" |
| "mov $-1, %%ah;" |
| "sahf;" |
| "mov %%ss, %%ax;" |
| "mov %%ax, %%ss;" |
| "vmlaunch;" |
| "mov $1, %[early_failure];" |
| "0: lahf;" |
| "movzbl %%ah, %[flags]" |
| : [early_failure] "+r" (early_failure), |
| [flags] "=&a" (flags) |
| : [host_rsp] "i" (HOST_RSP), |
| [host_rip] "i" (HOST_RIP) |
| : "rdx", "cc", "memory"); |
| vm_inst_err = vmcs_read(VMX_INST_ERROR); |
| |
| report(early_failure, "Early VM-entry failure"); |
| report(flags == expected_flags, "RFLAGS[8:0] is %x (actual %x)", |
| expected_flags, flags); |
| if (valid_vmcs) |
| report(vm_inst_err == VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, |
| "VM-instruction error is %d (actual %d)", |
| VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS, vm_inst_err); |
| } |
| |
| static void vmentry_movss_shadow_test(void) |
| { |
| struct vmcs *orig_vmcs; |
| |
| TEST_ASSERT(!vmcs_save(&orig_vmcs)); |
| |
| /* |
| * Set the launched flag on the current VMCS to verify the correct |
| * error priority, below. |
| */ |
| test_set_guest(v2_null_test_guest); |
| enter_guest(); |
| |
| /* |
| * With bit 1 of the guest's RFLAGS clear, VM-entry should |
| * fail due to invalid guest state (if we make it that far). |
| */ |
| vmcs_write(GUEST_RFLAGS, 0); |
| |
| /* |
| * "VM entry with events blocked by MOV SS" takes precedence over |
| * "VMLAUNCH with non-clear VMCS." |
| */ |
| report_prefix_push("valid current-VMCS"); |
| try_vmentry_in_movss_shadow(); |
| report_prefix_pop(); |
| |
| /* |
| * VMfailInvalid takes precedence over "VM entry with events |
| * blocked by MOV SS." |
| */ |
| TEST_ASSERT(!vmcs_clear(orig_vmcs)); |
| report_prefix_push("no current-VMCS"); |
| try_vmentry_in_movss_shadow(); |
| report_prefix_pop(); |
| |
| TEST_ASSERT(!make_vmcs_current(orig_vmcs)); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); |
| } |
| |
| static void vmx_ldtr_test_guest(void) |
| { |
| u16 ldtr = sldt(); |
| |
| report(ldtr == NP_SEL, "Expected %x for L2 LDTR selector (got %x)", |
| NP_SEL, ldtr); |
| } |
| |
| /* |
| * Ensure that the L1 LDTR is set to 0 on VM-exit. |
| */ |
| static void vmx_ldtr_test(void) |
| { |
| const u8 ldt_ar = 0x82; /* Present LDT */ |
| u16 sel = FIRST_SPARE_SEL; |
| |
| /* Set up a non-zero L1 LDTR prior to VM-entry. */ |
| set_gdt_entry(sel, 0, 0, ldt_ar, 0); |
| lldt(sel); |
| |
| test_set_guest(vmx_ldtr_test_guest); |
| /* |
| * Set up a different LDTR for L2. The actual GDT contents are |
| * irrelevant, since we stuff the hidden descriptor state |
| * straight into the VMCS rather than reading it from the GDT. |
| */ |
| vmcs_write(GUEST_SEL_LDTR, NP_SEL); |
| vmcs_write(GUEST_AR_LDTR, ldt_ar); |
| enter_guest(); |
| |
| /* |
| * VM-exit should clear LDTR (and make it unusable, but we |
| * won't verify that here). |
| */ |
| sel = sldt(); |
| report(!sel, "Expected 0 for L1 LDTR selector (got %x)", sel); |
| } |
| |
| static void vmx_single_vmcall_guest(void) |
| { |
| vmcall(); |
| } |
| |
| static void vmx_cr_load_test(void) |
| { |
| unsigned long cr3, cr4, orig_cr3, orig_cr4; |
| u32 ctrls[2] = {0}; |
| pgd_t *pml5; |
| |
| orig_cr4 = read_cr4(); |
| orig_cr3 = read_cr3(); |
| |
| if (!this_cpu_has(X86_FEATURE_PCID)) { |
| report_skip("%s : PCID not detected", __func__); |
| return; |
| } |
| if (!this_cpu_has(X86_FEATURE_MCE)) { |
| report_skip("%s : MCE not detected", __func__); |
| return; |
| } |
| |
| TEST_ASSERT(!(orig_cr3 & X86_CR3_PCID_MASK)); |
| |
| /* Enable PCID for L1. */ |
| cr4 = orig_cr4 | X86_CR4_PCIDE; |
| cr3 = orig_cr3 | 0x1; |
| TEST_ASSERT(!write_cr4_safe(cr4)); |
| write_cr3(cr3); |
| |
| test_set_guest(vmx_single_vmcall_guest); |
| vmcs_write(HOST_CR4, cr4); |
| vmcs_write(HOST_CR3, cr3); |
| enter_guest(); |
| |
| /* |
| * No exception is expected. |
| * |
| * NB. KVM loads the last guest write to CR4 into CR4 read |
| * shadow. In order to trigger an exit to KVM, we can toggle a |
| * bit that is owned by KVM. We use CR4.MCE, which shall |
| * have no side effect because normally no guest MCE (e.g., as the |
| * result of bad memory) would happen during this test. |
| */ |
| TEST_ASSERT(!write_cr4_safe(cr4 ^ X86_CR4_MCE)); |
| |
| /* Cleanup L1 state. */ |
| write_cr3(orig_cr3); |
| TEST_ASSERT(!write_cr4_safe(orig_cr4)); |
| |
| if (!this_cpu_has(X86_FEATURE_LA57)) |
| goto done; |
| |
| /* |
| * Allocate a full page for PML5 to guarantee alignment, though only |
| * the first entry needs to be filled (the test's virtual addresses |
| * most definitely do not have any of bits 56:48 set). |
| */ |
| pml5 = alloc_page(); |
| *pml5 = orig_cr3 | PT_PRESENT_MASK | PT_WRITABLE_MASK; |
| |
| /* |
| * Transition to/from 5-level paging in the host via VM-Exit. CR4.LA57 |
| * can't be toggled while long is active via MOV CR4, but there are no |
| * such restrictions on VM-Exit. |
| */ |
| lol_5level: |
| vmcs_write(HOST_CR4, orig_cr4 | X86_CR4_LA57); |
| vmcs_write(HOST_CR3, virt_to_phys(pml5)); |
| enter_guest(); |
| |
| /* |
| * VMREAD with a memory operand to verify KVM detects the LA57 change, |
| * e.g. uses the correct guest root level in gva_to_gpa(). |
| */ |
| TEST_ASSERT(vmcs_readm(HOST_CR3) == virt_to_phys(pml5)); |
| TEST_ASSERT(vmcs_readm(HOST_CR4) == (orig_cr4 | X86_CR4_LA57)); |
| |
| vmcs_write(HOST_CR4, orig_cr4); |
| vmcs_write(HOST_CR3, orig_cr3); |
| enter_guest(); |
| |
| TEST_ASSERT(vmcs_readm(HOST_CR3) == orig_cr3); |
| TEST_ASSERT(vmcs_readm(HOST_CR4) == orig_cr4); |
| |
| /* |
| * And now do the same LA57 shenanigans with EPT enabled. KVM uses |
| * two separate MMUs when L1 uses TDP, whereas the above shadow paging |
| * version shares an MMU between L1 and L2. |
| * |
| * If the saved execution controls are non-zero then the EPT version |
| * has already run. In that case, restore the old controls. If EPT |
| * setup fails, e.g. EPT isn't supported, fall through and finish up. |
| */ |
| if (ctrls[0]) { |
| vmcs_write(CPU_EXEC_CTRL0, ctrls[0]); |
| vmcs_write(CPU_EXEC_CTRL1, ctrls[1]); |
| } else if (!setup_ept(false)) { |
| ctrls[0] = vmcs_read(CPU_EXEC_CTRL0); |
| ctrls[1] = vmcs_read(CPU_EXEC_CTRL1); |
| goto lol_5level; |
| } |
| |
| free_page(pml5); |
| |
| done: |
| skip_exit_vmcall(); |
| enter_guest(); |
| } |
| |
| static void vmx_cr4_osxsave_test_guest(void) |
| { |
| write_cr4(read_cr4() & ~X86_CR4_OSXSAVE); |
| } |
| |
| /* |
| * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE |
| * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different |
| * value than in L1. |
| */ |
| static void vmx_cr4_osxsave_test(void) |
| { |
| if (!this_cpu_has(X86_FEATURE_XSAVE)) { |
| report_skip("%s : XSAVE not detected", __func__); |
| return; |
| } |
| |
| if (!(read_cr4() & X86_CR4_OSXSAVE)) { |
| unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE; |
| |
| write_cr4(cr4); |
| vmcs_write(GUEST_CR4, cr4); |
| vmcs_write(HOST_CR4, cr4); |
| } |
| |
| TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); |
| |
| test_set_guest(vmx_cr4_osxsave_test_guest); |
| enter_guest(); |
| |
| TEST_ASSERT(this_cpu_has(X86_FEATURE_OSXSAVE)); |
| } |
| |
| /* |
| * FNOP with both CR0.TS and CR0.EM clear should not generate #NM, and the L2 |
| * guest should exit normally. |
| */ |
| static void vmx_no_nm_test(void) |
| { |
| test_set_guest(fnop); |
| vmcs_write(GUEST_CR0, read_cr0() & ~(X86_CR0_TS | X86_CR0_EM)); |
| enter_guest(); |
| } |
| |
| bool vmx_pending_event_ipi_fired; |
| static void vmx_pending_event_ipi_isr(isr_regs_t *regs) |
| { |
| vmx_pending_event_ipi_fired = true; |
| eoi(); |
| } |
| |
| bool vmx_pending_event_guest_run; |
| static void vmx_pending_event_guest(void) |
| { |
| vmcall(); |
| vmx_pending_event_guest_run = true; |
| } |
| |
| static void vmx_pending_event_test_core(bool guest_hlt) |
| { |
| int ipi_vector = 0xf1; |
| |
| vmx_pending_event_ipi_fired = false; |
| handle_irq(ipi_vector, vmx_pending_event_ipi_isr); |
| |
| vmx_pending_event_guest_run = false; |
| test_set_guest(vmx_pending_event_guest); |
| |
| vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| if (guest_hlt) |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| |
| cli(); |
| apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | |
| APIC_DM_FIXED | ipi_vector, |
| 0); |
| |
| enter_guest(); |
| |
| assert_exit_reason(VMX_EXTINT); |
| report(!vmx_pending_event_guest_run, |
| "Guest did not run before host received IPI"); |
| |
| sti_nop_cli(); |
| report(vmx_pending_event_ipi_fired, |
| "Got pending interrupt after IRQ enabled"); |
| |
| if (guest_hlt) |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| |
| enter_guest(); |
| report(vmx_pending_event_guest_run, |
| "Guest finished running when no interrupt"); |
| } |
| |
| static void vmx_pending_event_test(void) |
| { |
| vmx_pending_event_test_core(false); |
| } |
| |
| static void vmx_pending_event_hlt_test(void) |
| { |
| vmx_pending_event_test_core(true); |
| } |
| |
| static int vmx_window_test_db_count; |
| |
| static void vmx_window_test_db_handler(struct ex_regs *regs) |
| { |
| vmx_window_test_db_count++; |
| } |
| |
| static void vmx_nmi_window_test_guest(void) |
| { |
| handle_exception(DB_VECTOR, vmx_window_test_db_handler); |
| |
| asm volatile("vmcall\n\t" |
| "nop\n\t"); |
| |
| handle_exception(DB_VECTOR, NULL); |
| } |
| |
| static void verify_nmi_window_exit(u64 rip) |
| { |
| u32 exit_reason = vmcs_read(EXI_REASON); |
| |
| report(exit_reason == VMX_NMI_WINDOW, |
| "Exit reason (%d) is 'NMI window'", exit_reason); |
| report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", |
| vmcs_read(GUEST_RIP), rip); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| } |
| |
| static void vmx_nmi_window_test(void) |
| { |
| u64 nop_addr; |
| void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); |
| |
| if (!(ctrl_pin_rev.clr & PIN_VIRT_NMI)) { |
| report_skip("%s : \"Virtual NMIs\" exec control not supported", __func__); |
| return; |
| } |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_NMI_WINDOW)) { |
| report_skip("%s : \"NMI-window exiting\" exec control not supported", __func__); |
| return; |
| } |
| |
| vmx_window_test_db_count = 0; |
| |
| report_prefix_push("NMI-window"); |
| test_set_guest(vmx_nmi_window_test_guest); |
| vmcs_set_bits(PIN_CONTROLS, PIN_VIRT_NMI); |
| enter_guest(); |
| skip_exit_vmcall(); |
| nop_addr = vmcs_read(GUEST_RIP); |
| |
| /* |
| * Ask for "NMI-window exiting," and expect an immediate VM-exit. |
| * RIP will not advance. |
| */ |
| report_prefix_push("active, no blocking"); |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); |
| enter_guest(); |
| verify_nmi_window_exit(nop_addr); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "NMI-window exiting" in a MOV-SS shadow, and expect |
| * a VM-exit on the next instruction after the nop. (The nop |
| * is one byte.) |
| */ |
| report_prefix_push("active, blocking by MOV-SS"); |
| vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); |
| enter_guest(); |
| verify_nmi_window_exit(nop_addr + 1); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "NMI-window exiting" (with event injection), and |
| * expect a VM-exit after the event is injected. (RIP should |
| * be at the address specified in the IDT entry for #DB.) |
| */ |
| report_prefix_push("active, no blocking, injecting #DB"); |
| vmcs_write(ENT_INTR_INFO, |
| INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); |
| enter_guest(); |
| verify_nmi_window_exit((u64)db_fault_addr); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "NMI-window exiting" with NMI blocking, and expect |
| * a VM-exit after the next IRET (i.e. after the #DB handler |
| * returns). So, RIP should be back at one byte past the nop. |
| */ |
| report_prefix_push("active, blocking by NMI"); |
| vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_NMI); |
| enter_guest(); |
| verify_nmi_window_exit(nop_addr + 1); |
| report(vmx_window_test_db_count == 1, |
| "#DB handler executed once (actual %d times)", |
| vmx_window_test_db_count); |
| report_prefix_pop(); |
| |
| if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { |
| report_skip("CPU does not support activity state HLT."); |
| } else { |
| /* |
| * Ask for "NMI-window exiting" when entering activity |
| * state HLT, and expect an immediate VM-exit. RIP is |
| * still one byte past the nop. |
| */ |
| report_prefix_push("halted, no blocking"); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| enter_guest(); |
| verify_nmi_window_exit(nop_addr + 1); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "NMI-window exiting" when entering activity |
| * state HLT (with event injection), and expect a |
| * VM-exit after the event is injected. (RIP should be |
| * at the address specified in the IDT entry for #DB.) |
| */ |
| report_prefix_push("halted, no blocking, injecting #DB"); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| vmcs_write(ENT_INTR_INFO, |
| INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | |
| DB_VECTOR); |
| enter_guest(); |
| verify_nmi_window_exit((u64)db_fault_addr); |
| report_prefix_pop(); |
| } |
| |
| vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_NMI_WINDOW); |
| enter_guest(); |
| report_prefix_pop(); |
| } |
| |
| static void vmx_intr_window_test_guest(void) |
| { |
| handle_exception(DB_VECTOR, vmx_window_test_db_handler); |
| |
| /* |
| * The two consecutive STIs are to ensure that only the first |
| * one has a shadow. Note that NOP and STI are one byte |
| * instructions. |
| */ |
| asm volatile("vmcall\n\t" |
| "nop\n\t" |
| "sti\n\t" |
| "sti\n\t"); |
| |
| handle_exception(DB_VECTOR, NULL); |
| } |
| |
| static void verify_intr_window_exit(u64 rip) |
| { |
| u32 exit_reason = vmcs_read(EXI_REASON); |
| |
| report(exit_reason == VMX_INTR_WINDOW, |
| "Exit reason (%d) is 'interrupt window'", exit_reason); |
| report(vmcs_read(GUEST_RIP) == rip, "RIP (%#lx) is %#lx", |
| vmcs_read(GUEST_RIP), rip); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| } |
| |
| static void vmx_intr_window_test(void) |
| { |
| u64 vmcall_addr; |
| u64 nop_addr; |
| unsigned int orig_db_gate_type; |
| void *db_fault_addr = get_idt_addr(&boot_idt[DB_VECTOR]); |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_INTR_WINDOW)) { |
| report_skip("%s : \"Interrupt-window exiting\" exec control not supported", __func__); |
| return; |
| } |
| |
| /* |
| * Change the IDT entry for #DB from interrupt gate to trap gate, |
| * so that it won't clear RFLAGS.IF. We don't want interrupts to |
| * be disabled after vectoring a #DB. |
| */ |
| orig_db_gate_type = boot_idt[DB_VECTOR].type; |
| boot_idt[DB_VECTOR].type = 15; |
| |
| report_prefix_push("interrupt-window"); |
| test_set_guest(vmx_intr_window_test_guest); |
| enter_guest(); |
| assert_exit_reason(VMX_VMCALL); |
| vmcall_addr = vmcs_read(GUEST_RIP); |
| |
| /* |
| * Ask for "interrupt-window exiting" with RFLAGS.IF set and |
| * no blocking; expect an immediate VM-exit. Note that we have |
| * not advanced past the vmcall instruction yet, so RIP should |
| * point to the vmcall instruction. |
| */ |
| report_prefix_push("active, no blocking, RFLAGS.IF=1"); |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_IF); |
| enter_guest(); |
| verify_intr_window_exit(vmcall_addr); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "interrupt-window exiting" (with event injection) |
| * with RFLAGS.IF set and no blocking; expect a VM-exit after |
| * the event is injected. That is, RIP should should be at the |
| * address specified in the IDT entry for #DB. |
| */ |
| report_prefix_push("active, no blocking, RFLAGS.IF=1, injecting #DB"); |
| vmcs_write(ENT_INTR_INFO, |
| INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); |
| vmcall_addr = vmcs_read(GUEST_RIP); |
| enter_guest(); |
| verify_intr_window_exit((u64)db_fault_addr); |
| report_prefix_pop(); |
| |
| /* |
| * Let the L2 guest run through the IRET, back to the VMCALL. |
| * We have to clear the "interrupt-window exiting" |
| * VM-execution control, or it would just keep causing |
| * VM-exits. Then, advance past the VMCALL and set the |
| * "interrupt-window exiting" VM-execution control again. |
| */ |
| vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); |
| enter_guest(); |
| skip_exit_vmcall(); |
| nop_addr = vmcs_read(GUEST_RIP); |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); |
| |
| /* |
| * Ask for "interrupt-window exiting" in a MOV-SS shadow with |
| * RFLAGS.IF set, and expect a VM-exit on the next |
| * instruction. (NOP is one byte.) |
| */ |
| report_prefix_push("active, blocking by MOV-SS, RFLAGS.IF=1"); |
| vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); |
| enter_guest(); |
| verify_intr_window_exit(nop_addr + 1); |
| report_prefix_pop(); |
| |
| /* |
| * Back up to the NOP and ask for "interrupt-window exiting" |
| * in an STI shadow with RFLAGS.IF set, and expect a VM-exit |
| * on the next instruction. (NOP is one byte.) |
| */ |
| report_prefix_push("active, blocking by STI, RFLAGS.IF=1"); |
| vmcs_write(GUEST_RIP, nop_addr); |
| vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_STI); |
| enter_guest(); |
| verify_intr_window_exit(nop_addr + 1); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "interrupt-window exiting" with RFLAGS.IF clear, |
| * and expect a VM-exit on the instruction following the STI |
| * shadow. Only the first STI (which is one byte past the NOP) |
| * should have a shadow. The second STI (which is two bytes |
| * past the NOP) has no shadow. Therefore, the interrupt |
| * window opens at three bytes past the NOP. |
| */ |
| report_prefix_push("active, RFLAGS.IF = 0"); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); |
| enter_guest(); |
| verify_intr_window_exit(nop_addr + 3); |
| report_prefix_pop(); |
| |
| if (!(rdmsr(MSR_IA32_VMX_MISC) & (1 << 6))) { |
| report_skip("CPU does not support activity state HLT."); |
| } else { |
| /* |
| * Ask for "interrupt-window exiting" when entering |
| * activity state HLT, and expect an immediate |
| * VM-exit. RIP is still three bytes past the nop. |
| */ |
| report_prefix_push("halted, no blocking"); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| enter_guest(); |
| verify_intr_window_exit(nop_addr + 3); |
| report_prefix_pop(); |
| |
| /* |
| * Ask for "interrupt-window exiting" when entering |
| * activity state HLT (with event injection), and |
| * expect a VM-exit after the event is injected. That |
| * is, RIP should should be at the address specified |
| * in the IDT entry for #DB. |
| */ |
| report_prefix_push("halted, no blocking, injecting #DB"); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| vmcs_write(ENT_INTR_INFO, |
| INTR_INFO_VALID_MASK | INTR_TYPE_HARD_EXCEPTION | |
| DB_VECTOR); |
| enter_guest(); |
| verify_intr_window_exit((u64)db_fault_addr); |
| report_prefix_pop(); |
| } |
| |
| boot_idt[DB_VECTOR].type = orig_db_gate_type; |
| vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INTR_WINDOW); |
| enter_guest(); |
| report_prefix_pop(); |
| } |
| |
| #define GUEST_TSC_OFFSET (1u << 30) |
| |
| static u64 guest_tsc; |
| |
| static void vmx_store_tsc_test_guest(void) |
| { |
| guest_tsc = rdtsc(); |
| } |
| |
| /* |
| * This test ensures that when IA32_TSC is in the VM-exit MSR-store |
| * list, the value saved is not subject to the TSC offset that is |
| * applied to RDTSC/RDTSCP/RDMSR(IA32_TSC) in guest execution. |
| */ |
| static void vmx_store_tsc_test(void) |
| { |
| struct vmx_msr_entry msr_entry = { .index = MSR_IA32_TSC }; |
| u64 low, high; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) { |
| report_skip("%s : \"Use TSC offsetting\" exec control not supported", __func__); |
| return; |
| } |
| |
| test_set_guest(vmx_store_tsc_test_guest); |
| |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); |
| vmcs_write(EXI_MSR_ST_CNT, 1); |
| vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(&msr_entry)); |
| vmcs_write(TSC_OFFSET, GUEST_TSC_OFFSET); |
| |
| low = rdtsc(); |
| enter_guest(); |
| high = rdtsc(); |
| |
| report(low + GUEST_TSC_OFFSET <= guest_tsc && |
| guest_tsc <= high + GUEST_TSC_OFFSET, |
| "RDTSC value in the guest (%lu) is in range [%lu, %lu]", |
| guest_tsc, low + GUEST_TSC_OFFSET, high + GUEST_TSC_OFFSET); |
| report(low <= msr_entry.value && msr_entry.value <= high, |
| "IA32_TSC value saved in the VM-exit MSR-store list (%lu) is in range [%lu, %lu]", |
| msr_entry.value, low, high); |
| } |
| |
| static void vmx_preemption_timer_zero_test_db_handler(struct ex_regs *regs) |
| { |
| } |
| |
| static void vmx_preemption_timer_zero_test_guest(void) |
| { |
| while (vmx_get_test_stage() < 3) |
| vmcall(); |
| } |
| |
| static void vmx_preemption_timer_zero_activate_preemption_timer(void) |
| { |
| vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); |
| vmcs_write(PREEMPT_TIMER_VALUE, 0); |
| } |
| |
| static void vmx_preemption_timer_zero_advance_past_vmcall(void) |
| { |
| vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); |
| enter_guest(); |
| skip_exit_vmcall(); |
| } |
| |
| static void vmx_preemption_timer_zero_inject_db(bool intercept_db) |
| { |
| vmx_preemption_timer_zero_activate_preemption_timer(); |
| vmcs_write(ENT_INTR_INFO, INTR_INFO_VALID_MASK | |
| INTR_TYPE_HARD_EXCEPTION | DB_VECTOR); |
| vmcs_write(EXC_BITMAP, intercept_db ? 1 << DB_VECTOR : 0); |
| enter_guest(); |
| } |
| |
| static void vmx_preemption_timer_zero_set_pending_dbg(u32 exception_bitmap) |
| { |
| vmx_preemption_timer_zero_activate_preemption_timer(); |
| vmcs_write(GUEST_PENDING_DEBUG, PENDING_DBG_TRAP | DR6_TRAP1); |
| vmcs_write(EXC_BITMAP, exception_bitmap); |
| enter_guest(); |
| } |
| |
| static void vmx_preemption_timer_zero_expect_preempt_at_rip(u64 expected_rip) |
| { |
| u32 reason = (u32)vmcs_read(EXI_REASON); |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| |
| report(reason == VMX_PREEMPT && guest_rip == expected_rip, |
| "Exit reason is 0x%x (expected 0x%x) and guest RIP is %lx (0x%lx expected).", |
| reason, VMX_PREEMPT, guest_rip, expected_rip); |
| } |
| |
| /* |
| * This test ensures that when the VMX preemption timer is zero at |
| * VM-entry, a VM-exit occurs after any event injection and after any |
| * pending debug exceptions are raised, but before execution of any |
| * guest instructions. |
| */ |
| static void vmx_preemption_timer_zero_test(void) |
| { |
| u64 db_fault_address = (u64)get_idt_addr(&boot_idt[DB_VECTOR]); |
| handler old_db; |
| u32 reason; |
| |
| if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { |
| report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); |
| return; |
| } |
| |
| /* |
| * Install a custom #DB handler that doesn't abort. |
| */ |
| old_db = handle_exception(DB_VECTOR, |
| vmx_preemption_timer_zero_test_db_handler); |
| |
| test_set_guest(vmx_preemption_timer_zero_test_guest); |
| |
| /* |
| * VMX-preemption timer should fire after event injection. |
| */ |
| vmx_set_test_stage(0); |
| vmx_preemption_timer_zero_inject_db(0); |
| vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); |
| vmx_preemption_timer_zero_advance_past_vmcall(); |
| |
| /* |
| * VMX-preemption timer should fire after event injection. |
| * Exception bitmap is irrelevant, since you can't intercept |
| * an event that you injected. |
| */ |
| vmx_set_test_stage(1); |
| vmx_preemption_timer_zero_inject_db(true); |
| vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); |
| vmx_preemption_timer_zero_advance_past_vmcall(); |
| |
| /* |
| * VMX-preemption timer should fire after pending debug exceptions |
| * have delivered a #DB trap. |
| */ |
| vmx_set_test_stage(2); |
| vmx_preemption_timer_zero_set_pending_dbg(0); |
| vmx_preemption_timer_zero_expect_preempt_at_rip(db_fault_address); |
| vmx_preemption_timer_zero_advance_past_vmcall(); |
| |
| /* |
| * VMX-preemption timer would fire after pending debug exceptions |
| * have delivered a #DB trap, but in this case, the #DB trap is |
| * intercepted. |
| */ |
| vmx_set_test_stage(3); |
| vmx_preemption_timer_zero_set_pending_dbg(1 << DB_VECTOR); |
| reason = (u32)vmcs_read(EXI_REASON); |
| report(reason == VMX_EXC_NMI, "Exit reason is 0x%x (expected 0x%x)", |
| reason, VMX_EXC_NMI); |
| |
| vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); |
| enter_guest(); |
| |
| handle_exception(DB_VECTOR, old_db); |
| } |
| |
| static u64 vmx_preemption_timer_tf_test_prev_rip; |
| |
| static void vmx_preemption_timer_tf_test_db_handler(struct ex_regs *regs) |
| { |
| extern char vmx_preemption_timer_tf_test_endloop; |
| |
| if (vmx_get_test_stage() == 2) { |
| /* |
| * Stage 2 means that we're done, one way or another. |
| * Arrange for the iret to drop us out of the wbinvd |
| * loop and stop single-stepping. |
| */ |
| regs->rip = (u64)&vmx_preemption_timer_tf_test_endloop; |
| regs->rflags &= ~X86_EFLAGS_TF; |
| } else if (regs->rip == vmx_preemption_timer_tf_test_prev_rip) { |
| /* |
| * The RIP should alternate between the wbinvd and the |
| * jmp instruction in the code below. If we ever see |
| * the same instruction twice in a row, that means a |
| * single-step trap has been dropped. Let the |
| * hypervisor know about the failure by executing a |
| * VMCALL. |
| */ |
| vmcall(); |
| } |
| vmx_preemption_timer_tf_test_prev_rip = regs->rip; |
| } |
| |
| static void vmx_preemption_timer_tf_test_guest(void) |
| { |
| /* |
| * The hypervisor doesn't intercept WBINVD, so the loop below |
| * shouldn't be a problem--it's just two instructions |
| * executing in VMX non-root mode. However, when the |
| * hypervisor is running in a virtual environment, the parent |
| * hypervisor might intercept WBINVD and emulate it. If the |
| * parent hypervisor is broken, the single-step trap after the |
| * WBINVD might be lost. |
| */ |
| asm volatile("vmcall\n\t" |
| "0: wbinvd\n\t" |
| "1: jmp 0b\n\t" |
| "vmx_preemption_timer_tf_test_endloop:"); |
| } |
| |
| /* |
| * Ensure that the delivery of a "VMX-preemption timer expired" |
| * VM-exit doesn't disrupt single-stepping in the guest. Note that |
| * passing this test doesn't ensure correctness, because the test will |
| * only fail if the VMX-preemtion timer fires at the right time (or |
| * the wrong time, as it were). |
| */ |
| static void vmx_preemption_timer_tf_test(void) |
| { |
| handler old_db; |
| u32 reason; |
| int i; |
| |
| if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { |
| report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); |
| return; |
| } |
| |
| old_db = handle_exception(DB_VECTOR, |
| vmx_preemption_timer_tf_test_db_handler); |
| |
| test_set_guest(vmx_preemption_timer_tf_test_guest); |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| vmx_set_test_stage(1); |
| vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); |
| vmcs_write(PREEMPT_TIMER_VALUE, 50000); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); |
| |
| /* |
| * The only exit we should see is "VMX-preemption timer |
| * expired." If we get a VMCALL exit, that means the #DB |
| * handler has detected a missing single-step trap. It doesn't |
| * matter where the guest RIP is when the VMX-preemption timer |
| * expires (whether it's in the WBINVD loop or in the #DB |
| * handler)--a single-step trap should never be discarded. |
| */ |
| for (i = 0; i < 10000; i++) { |
| enter_guest(); |
| reason = (u32)vmcs_read(EXI_REASON); |
| if (reason == VMX_PREEMPT) |
| continue; |
| TEST_ASSERT(reason == VMX_VMCALL); |
| skip_exit_insn(); |
| break; |
| } |
| |
| report(reason == VMX_PREEMPT, "No single-step traps skipped"); |
| |
| vmx_set_test_stage(2); |
| vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); |
| enter_guest(); |
| |
| handle_exception(DB_VECTOR, old_db); |
| } |
| |
| #define VMX_PREEMPTION_TIMER_EXPIRY_CYCLES 1000000 |
| |
| static u64 vmx_preemption_timer_expiry_start; |
| static u64 vmx_preemption_timer_expiry_finish; |
| |
| static void vmx_preemption_timer_expiry_test_guest(void) |
| { |
| vmcall(); |
| vmx_preemption_timer_expiry_start = fenced_rdtsc(); |
| |
| while (vmx_get_test_stage() == 0) |
| vmx_preemption_timer_expiry_finish = fenced_rdtsc(); |
| } |
| |
| /* |
| * Test that the VMX-preemption timer is not excessively delayed. |
| * |
| * Per the SDM, volume 3, VM-entry starts the VMX-preemption timer |
| * with the unsigned value in the VMX-preemption timer-value field, |
| * and the VMX-preemption timer counts down by 1 every time bit X in |
| * the TSC changes due to a TSC increment (where X is |
| * IA32_VMX_MISC[4:0]). If the timer counts down to zero in any state |
| * other than the wait-for-SIPI state, the logical processor |
| * transitions to the C0 C-state and causes a VM-exit. |
| * |
| * The guest code above reads the starting TSC after VM-entry. At this |
| * point, the VMX-preemption timer has already been activated. Next, |
| * the guest code reads the current TSC in a loop, storing the value |
| * read to memory. |
| * |
| * If the RDTSC in the loop reads a value past the VMX-preemption |
| * timer deadline, then the VMX-preemption timer VM-exit must be |
| * delivered before the next instruction retires. Even if a higher |
| * priority SMI is delivered first, the VMX-preemption timer VM-exit |
| * must be delivered before the next instruction retires. Hence, a TSC |
| * value past the VMX-preemption timer deadline might be read, but it |
| * cannot be stored. If a TSC value past the deadline *is* stored, |
| * then the architectural specification has been violated. |
| */ |
| static void vmx_preemption_timer_expiry_test(void) |
| { |
| u32 preemption_timer_value; |
| union vmx_misc misc; |
| u64 tsc_deadline; |
| u32 reason; |
| |
| if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { |
| report_skip("%s : \"Activate VMX-preemption timer\" pin control not supported", __func__); |
| return; |
| } |
| |
| test_set_guest(vmx_preemption_timer_expiry_test_guest); |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| misc.val = rdmsr(MSR_IA32_VMX_MISC); |
| preemption_timer_value = |
| VMX_PREEMPTION_TIMER_EXPIRY_CYCLES >> misc.pt_bit; |
| |
| vmcs_set_bits(PIN_CONTROLS, PIN_PREEMPT); |
| vmcs_write(PREEMPT_TIMER_VALUE, preemption_timer_value); |
| vmx_set_test_stage(0); |
| |
| enter_guest(); |
| reason = (u32)vmcs_read(EXI_REASON); |
| TEST_ASSERT(reason == VMX_PREEMPT); |
| |
| tsc_deadline = ((vmx_preemption_timer_expiry_start >> misc.pt_bit) << |
| misc.pt_bit) + (preemption_timer_value << misc.pt_bit); |
| |
| report(vmx_preemption_timer_expiry_finish < tsc_deadline, |
| "Last stored guest TSC (%lu) < TSC deadline (%lu)", |
| vmx_preemption_timer_expiry_finish, tsc_deadline); |
| |
| vmcs_clear_bits(PIN_CONTROLS, PIN_PREEMPT); |
| vmx_set_test_stage(1); |
| enter_guest(); |
| } |
| |
| static void vmx_db_test_guest(void) |
| { |
| /* |
| * For a hardware generated single-step #DB. |
| */ |
| asm volatile("vmcall;" |
| "nop;" |
| ".Lpost_nop:"); |
| /* |
| * ...in a MOVSS shadow, with pending debug exceptions. |
| */ |
| asm volatile("vmcall;" |
| "nop;" |
| ".Lpost_movss_nop:"); |
| /* |
| * For an L0 synthesized single-step #DB. (L0 intercepts WBINVD and |
| * emulates it in software.) |
| */ |
| asm volatile("vmcall;" |
| "wbinvd;" |
| ".Lpost_wbinvd:"); |
| /* |
| * ...in a MOVSS shadow, with pending debug exceptions. |
| */ |
| asm volatile("vmcall;" |
| "wbinvd;" |
| ".Lpost_movss_wbinvd:"); |
| /* |
| * For a hardware generated single-step #DB in a transactional region. |
| */ |
| asm volatile("vmcall;" |
| ".Lxbegin: xbegin .Lskip_rtm;" |
| "xend;" |
| ".Lskip_rtm:"); |
| } |
| |
| /* |
| * Clear the pending debug exceptions and RFLAGS.TF and re-enter |
| * L2. No #DB is delivered and L2 continues to the next point of |
| * interest. |
| */ |
| static void dismiss_db(void) |
| { |
| vmcs_write(GUEST_PENDING_DEBUG, 0); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED); |
| enter_guest(); |
| } |
| |
| /* |
| * Check a variety of VMCS fields relevant to an intercepted #DB exception. |
| * Then throw away the #DB exception and resume L2. |
| */ |
| static void check_db_exit(bool xfail_qual, bool xfail_dr6, bool xfail_pdbg, |
| void *expected_rip, u64 expected_exit_qual, |
| u64 expected_dr6) |
| { |
| u32 reason = vmcs_read(EXI_REASON); |
| u32 intr_info = vmcs_read(EXI_INTR_INFO); |
| u64 exit_qual = vmcs_read(EXI_QUALIFICATION); |
| u64 guest_rip = vmcs_read(GUEST_RIP); |
| u64 guest_pending_dbg = vmcs_read(GUEST_PENDING_DEBUG); |
| u64 dr6 = read_dr6(); |
| const u32 expected_intr_info = INTR_INFO_VALID_MASK | |
| INTR_TYPE_HARD_EXCEPTION | DB_VECTOR; |
| |
| report(reason == VMX_EXC_NMI && intr_info == expected_intr_info, |
| "Expected #DB VM-exit"); |
| report((u64)expected_rip == guest_rip, "Expected RIP %p (actual %lx)", |
| expected_rip, guest_rip); |
| report_xfail(xfail_pdbg, 0 == guest_pending_dbg, |
| "Expected pending debug exceptions 0 (actual %lx)", |
| guest_pending_dbg); |
| report_xfail(xfail_qual, expected_exit_qual == exit_qual, |
| "Expected exit qualification %lx (actual %lx)", |
| expected_exit_qual, exit_qual); |
| report_xfail(xfail_dr6, expected_dr6 == dr6, |
| "Expected DR6 %lx (actual %lx)", expected_dr6, dr6); |
| dismiss_db(); |
| } |
| |
| /* |
| * Assuming the guest has just exited on a VMCALL instruction, skip |
| * over the vmcall, and set the guest's RFLAGS.TF in the VMCS. If |
| * pending debug exceptions are non-zero, set the VMCS up as if the |
| * previous instruction was a MOVSS that generated the indicated |
| * pending debug exceptions. Then enter L2. |
| */ |
| static void single_step_guest(const char *test_name, u64 starting_dr6, |
| u64 pending_debug_exceptions) |
| { |
| printf("\n%s\n", test_name); |
| skip_exit_vmcall(); |
| write_dr6(starting_dr6); |
| vmcs_write(GUEST_RFLAGS, X86_EFLAGS_FIXED | X86_EFLAGS_TF); |
| if (pending_debug_exceptions) { |
| vmcs_write(GUEST_PENDING_DEBUG, pending_debug_exceptions); |
| vmcs_write(GUEST_INTR_STATE, GUEST_INTR_STATE_MOVSS); |
| } |
| enter_guest(); |
| } |
| |
| /* |
| * When L1 intercepts #DB, verify that a single-step trap clears |
| * pending debug exceptions, populates the exit qualification field |
| * properly, and that DR6 is not prematurely clobbered. In a |
| * (simulated) MOVSS shadow, make sure that the pending debug |
| * exception bits are properly accumulated into the exit qualification |
| * field. |
| */ |
| static void vmx_db_test(void) |
| { |
| /* |
| * We are going to set a few arbitrary bits in DR6 to verify that |
| * (a) DR6 is not modified by an intercepted #DB, and |
| * (b) stale bits in DR6 (DR6.BD, in particular) don't leak into |
| * the exit qualification field for a subsequent #DB exception. |
| */ |
| const u64 starting_dr6 = DR6_ACTIVE_LOW | DR6_BS | DR6_TRAP3 | DR6_TRAP1; |
| extern char post_nop asm(".Lpost_nop"); |
| extern char post_movss_nop asm(".Lpost_movss_nop"); |
| extern char post_wbinvd asm(".Lpost_wbinvd"); |
| extern char post_movss_wbinvd asm(".Lpost_movss_wbinvd"); |
| extern char xbegin asm(".Lxbegin"); |
| extern char skip_rtm asm(".Lskip_rtm"); |
| |
| /* |
| * L1 wants to intercept #DB exceptions encountered in L2. |
| */ |
| vmcs_write(EXC_BITMAP, BIT(DB_VECTOR)); |
| |
| /* |
| * Start L2 and run it up to the first point of interest. |
| */ |
| test_set_guest(vmx_db_test_guest); |
| enter_guest(); |
| |
| /* |
| * Hardware-delivered #DB trap for single-step sets the |
| * standard that L0 has to follow for emulated instructions. |
| */ |
| single_step_guest("Hardware delivered single-step", starting_dr6, 0); |
| check_db_exit(false, false, false, &post_nop, DR6_BS, starting_dr6); |
| |
| /* |
| * Hardware-delivered #DB trap for single-step in MOVSS shadow |
| * also sets the standard that L0 has to follow for emulated |
| * instructions. Here, we establish the VMCS pending debug |
| * exceptions to indicate that the simulated MOVSS triggered a |
| * data breakpoint as well as the single-step trap. |
| */ |
| single_step_guest("Hardware delivered single-step in MOVSS shadow", |
| starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); |
| check_db_exit(false, false, false, &post_movss_nop, DR6_BS | DR6_TRAP0, |
| starting_dr6); |
| |
| /* |
| * L0 synthesized #DB trap for single-step is buggy, because |
| * kvm (a) clobbers DR6 too early, and (b) tries its best to |
| * reconstitute the exit qualification from the prematurely |
| * modified DR6, but fails miserably. |
| */ |
| single_step_guest("Software synthesized single-step", starting_dr6, 0); |
| check_db_exit(false, false, false, &post_wbinvd, DR6_BS, starting_dr6); |
| |
| /* |
| * L0 synthesized #DB trap for single-step in MOVSS shadow is |
| * even worse, because L0 also leaves the pending debug |
| * exceptions in the VMCS instead of accumulating them into |
| * the exit qualification field for the #DB exception. |
| */ |
| single_step_guest("Software synthesized single-step in MOVSS shadow", |
| starting_dr6, DR6_BS | PENDING_DBG_TRAP | DR6_TRAP0); |
| check_db_exit(true, false, true, &post_movss_wbinvd, DR6_BS | DR6_TRAP0, |
| starting_dr6); |
| |
| /* |
| * Optional RTM test for hardware that supports RTM, to |
| * demonstrate that the current volume 3 of the SDM |
| * (325384-067US), table 27-1 is incorrect. Bit 16 of the exit |
| * qualification for debug exceptions is not reserved. It is |
| * set to 1 if a debug exception (#DB) or a breakpoint |
| * exception (#BP) occurs inside an RTM region while advanced |
| * debugging of RTM transactional regions is enabled. |
| */ |
| if (this_cpu_has(X86_FEATURE_RTM)) { |
| vmcs_write(ENT_CONTROLS, |
| vmcs_read(ENT_CONTROLS) | ENT_LOAD_DBGCTLS); |
| /* |
| * Set DR7.RTM[bit 11] and IA32_DEBUGCTL.RTM[bit 15] |
| * in the guest to enable advanced debugging of RTM |
| * transactional regions. |
| */ |
| vmcs_write(GUEST_DR7, BIT(11)); |
| vmcs_write(GUEST_DEBUGCTL, BIT(15)); |
| single_step_guest("Hardware delivered single-step in " |
| "transactional region", starting_dr6, 0); |
| check_db_exit(false, false, false, &xbegin, BIT(16), |
| starting_dr6); |
| } else { |
| vmcs_write(GUEST_RIP, (u64)&skip_rtm); |
| enter_guest(); |
| } |
| } |
| |
| static void enable_vid(void) |
| { |
| void *virtual_apic_page; |
| |
| assert(cpu_has_apicv()); |
| |
| disable_intercept_for_x2apic_msrs(); |
| |
| virtual_apic_page = alloc_page(); |
| vmcs_write(APIC_VIRT_ADDR, (u64)virtual_apic_page); |
| |
| vmcs_set_bits(PIN_CONTROLS, PIN_EXTINT); |
| |
| vmcs_write(EOI_EXIT_BITMAP0, 0x0); |
| vmcs_write(EOI_EXIT_BITMAP1, 0x0); |
| vmcs_write(EOI_EXIT_BITMAP2, 0x0); |
| vmcs_write(EOI_EXIT_BITMAP3, 0x0); |
| |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY | CPU_TPR_SHADOW); |
| vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VINTD | CPU_VIRT_X2APIC); |
| } |
| |
| static void trigger_ioapic_scan_thread(void *data) |
| { |
| /* Wait until other CPU entered L2 */ |
| while (vmx_get_test_stage() != 1) |
| ; |
| |
| /* Trigger ioapic scan */ |
| ioapic_set_redir(0xf, 0x79, TRIGGER_LEVEL); |
| vmx_set_test_stage(2); |
| } |
| |
| static void irq_79_handler_guest(isr_regs_t *regs) |
| { |
| eoi(); |
| |
| /* L1 expects vmexit on VMX_VMCALL and not VMX_EOI_INDUCED */ |
| vmcall(); |
| } |
| |
| /* |
| * Constant for num of busy-loop iterations after which |
| * a timer interrupt should have happened in host |
| */ |
| #define TIMER_INTERRUPT_DELAY 100000000 |
| |
| static void vmx_eoi_bitmap_ioapic_scan_test_guest(void) |
| { |
| handle_irq(0x79, irq_79_handler_guest); |
| sti(); |
| |
| /* Signal to L1 CPU to trigger ioapic scan */ |
| vmx_set_test_stage(1); |
| /* Wait until L1 CPU to trigger ioapic scan */ |
| while (vmx_get_test_stage() != 2) |
| ; |
| |
| /* |
| * Wait for L0 timer interrupt to be raised while we run in L2 |
| * such that L0 will process the IOAPIC scan request before |
| * resuming L2 |
| */ |
| delay(TIMER_INTERRUPT_DELAY); |
| |
| asm volatile ("int $0x79"); |
| } |
| |
| static void vmx_eoi_bitmap_ioapic_scan_test(void) |
| { |
| if (!cpu_has_apicv() || (cpu_count() < 2)) { |
| report_skip("%s : Not all required APICv bits supported or CPU count < 2", __func__); |
| return; |
| } |
| |
| enable_vid(); |
| |
| on_cpu_async(1, trigger_ioapic_scan_thread, NULL); |
| test_set_guest(vmx_eoi_bitmap_ioapic_scan_test_guest); |
| |
| /* |
| * Launch L2. |
| * We expect the exit reason to be VMX_VMCALL (and not EOI INDUCED). |
| * In case the reason isn't VMX_VMCALL, the assertion inside |
| * skip_exit_vmcall() will fail. |
| */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| /* Let L2 finish */ |
| enter_guest(); |
| report_pass(__func__); |
| } |
| |
| #define HLT_WITH_RVI_VECTOR (0xf1) |
| |
| bool vmx_hlt_with_rvi_guest_isr_fired; |
| static void vmx_hlt_with_rvi_guest_isr(isr_regs_t *regs) |
| { |
| vmx_hlt_with_rvi_guest_isr_fired = true; |
| eoi(); |
| } |
| |
| static void vmx_hlt_with_rvi_guest(void) |
| { |
| handle_irq(HLT_WITH_RVI_VECTOR, vmx_hlt_with_rvi_guest_isr); |
| |
| sti_nop(); |
| asm volatile ("nop"); |
| |
| vmcall(); |
| } |
| |
| static void vmx_hlt_with_rvi_test(void) |
| { |
| if (!cpu_has_apicv()) { |
| report_skip("%s : Not all required APICv bits supported", __func__); |
| return; |
| } |
| |
| enable_vid(); |
| |
| vmx_hlt_with_rvi_guest_isr_fired = false; |
| test_set_guest(vmx_hlt_with_rvi_guest); |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| |
| vmcs_write(GUEST_ACTV_STATE, ACTV_HLT); |
| vmcs_write(GUEST_INT_STATUS, HLT_WITH_RVI_VECTOR); |
| enter_guest(); |
| |
| report(vmx_hlt_with_rvi_guest_isr_fired, "Interrupt raised in guest"); |
| } |
| |
| static void set_irq_line_thread(void *data) |
| { |
| /* Wait until other CPU entered L2 */ |
| while (vmx_get_test_stage() != 1) |
| ; |
| |
| /* Set irq-line 0xf to raise vector 0x78 for vCPU 0 */ |
| ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); |
| vmx_set_test_stage(2); |
| } |
| |
| static bool irq_78_handler_vmcall_before_eoi; |
| static void irq_78_handler_guest(isr_regs_t *regs) |
| { |
| set_irq_line(0xf, 0); |
| if (irq_78_handler_vmcall_before_eoi) |
| vmcall(); |
| eoi(); |
| vmcall(); |
| } |
| |
| static void vmx_apic_passthrough_guest(void) |
| { |
| handle_irq(0x78, irq_78_handler_guest); |
| sti(); |
| |
| /* If requested, wait for other CPU to trigger ioapic scan */ |
| if (vmx_get_test_stage() < 1) { |
| vmx_set_test_stage(1); |
| while (vmx_get_test_stage() != 2) |
| ; |
| } |
| |
| set_irq_line(0xf, 1); |
| } |
| |
| static void vmx_apic_passthrough(bool set_irq_line_from_thread) |
| { |
| if (set_irq_line_from_thread && (cpu_count() < 2)) { |
| report_skip("%s : CPU count < 2", __func__); |
| return; |
| } |
| |
| /* Test device is required for generating IRQs */ |
| if (!test_device_enabled()) { |
| report_skip("%s : No test device enabled", __func__); |
| return; |
| } |
| u64 cpu_ctrl_0 = CPU_SECONDARY; |
| u64 cpu_ctrl_1 = 0; |
| |
| disable_intercept_for_x2apic_msrs(); |
| |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); |
| |
| if (set_irq_line_from_thread) { |
| irq_78_handler_vmcall_before_eoi = false; |
| on_cpu_async(1, set_irq_line_thread, NULL); |
| } else { |
| irq_78_handler_vmcall_before_eoi = true; |
| ioapic_set_redir(0xf, 0x78, TRIGGER_LEVEL); |
| vmx_set_test_stage(2); |
| } |
| test_set_guest(vmx_apic_passthrough_guest); |
| |
| if (irq_78_handler_vmcall_before_eoi) { |
| /* Before EOI remote_irr should still be set */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| TEST_ASSERT_EQ_MSG(1, (int)ioapic_read_redir(0xf).remote_irr, |
| "IOAPIC pass-through: remote_irr=1 before EOI"); |
| } |
| |
| /* After EOI remote_irr should be cleared */ |
| enter_guest(); |
| skip_exit_vmcall(); |
| TEST_ASSERT_EQ_MSG(0, (int)ioapic_read_redir(0xf).remote_irr, |
| "IOAPIC pass-through: remote_irr=0 after EOI"); |
| |
| /* Let L2 finish */ |
| enter_guest(); |
| report_pass(__func__); |
| } |
| |
| static void vmx_apic_passthrough_test(void) |
| { |
| vmx_apic_passthrough(false); |
| } |
| |
| static void vmx_apic_passthrough_thread_test(void) |
| { |
| vmx_apic_passthrough(true); |
| } |
| |
| static void vmx_apic_passthrough_tpr_threshold_guest(void) |
| { |
| cli(); |
| apic_set_tpr(0); |
| } |
| |
| static bool vmx_apic_passthrough_tpr_threshold_ipi_isr_fired; |
| static void vmx_apic_passthrough_tpr_threshold_ipi_isr(isr_regs_t *regs) |
| { |
| vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = true; |
| eoi(); |
| } |
| |
| static void vmx_apic_passthrough_tpr_threshold_test(void) |
| { |
| int ipi_vector = 0xe1; |
| |
| disable_intercept_for_x2apic_msrs(); |
| vmcs_clear_bits(PIN_CONTROLS, PIN_EXTINT); |
| |
| /* Raise L0 TPR-threshold by queueing vector in LAPIC IRR */ |
| cli(); |
| apic_set_tpr((ipi_vector >> 4) + 1); |
| apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | |
| APIC_DM_FIXED | ipi_vector, |
| 0); |
| |
| test_set_guest(vmx_apic_passthrough_tpr_threshold_guest); |
| enter_guest(); |
| |
| report(apic_get_tpr() == 0, "TPR was zero by guest"); |
| |
| /* Clean pending self-IPI */ |
| vmx_apic_passthrough_tpr_threshold_ipi_isr_fired = false; |
| handle_irq(ipi_vector, vmx_apic_passthrough_tpr_threshold_ipi_isr); |
| sti_nop(); |
| report(vmx_apic_passthrough_tpr_threshold_ipi_isr_fired, "self-IPI fired"); |
| |
| report_pass(__func__); |
| } |
| |
| static u64 init_signal_test_exit_reason; |
| static bool init_signal_test_thread_continued; |
| |
| static void init_signal_test_thread(void *data) |
| { |
| struct vmcs *test_vmcs = data; |
| |
| /* Enter VMX operation (i.e. exec VMXON) */ |
| u64 *ap_vmxon_region = alloc_page(); |
| enable_vmx(); |
| init_vmx(ap_vmxon_region); |
| TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); |
| |
| /* Signal CPU have entered VMX operation */ |
| vmx_set_test_stage(1); |
| |
| /* Wait for BSP CPU to send INIT signal */ |
| while (vmx_get_test_stage() != 2) |
| ; |
| |
| /* |
| * Signal that we continue as usual as INIT signal |
| * should be blocked while CPU is in VMX operation |
| */ |
| vmx_set_test_stage(3); |
| |
| /* Wait for signal to enter VMX non-root mode */ |
| while (vmx_get_test_stage() != 4) |
| ; |
| |
| /* Enter VMX non-root mode */ |
| test_set_guest(v2_null_test_guest); |
| make_vmcs_current(test_vmcs); |
| enter_guest(); |
| /* Save exit reason for BSP CPU to compare to expected result */ |
| init_signal_test_exit_reason = vmcs_read(EXI_REASON); |
| /* VMCLEAR test-vmcs so it could be loaded by BSP CPU */ |
| vmcs_clear(test_vmcs); |
| launched = false; |
| /* Signal that CPU exited to VMX root mode */ |
| vmx_set_test_stage(5); |
| |
| /* Wait for BSP CPU to signal to exit VMX operation */ |
| while (vmx_get_test_stage() != 6) |
| ; |
| |
| /* Exit VMX operation (i.e. exec VMXOFF) */ |
| vmx_off(); |
| |
| /* |
| * Signal to BSP CPU that we continue as usual as INIT signal |
| * should have been consumed by VMX_INIT exit from guest |
| */ |
| vmx_set_test_stage(7); |
| |
| /* Wait for BSP CPU to signal to enter VMX operation */ |
| while (vmx_get_test_stage() != 8) |
| ; |
| /* Enter VMX operation (i.e. exec VMXON) */ |
| TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); |
| /* Signal to BSP we are in VMX operation */ |
| vmx_set_test_stage(9); |
| |
| /* Wait for BSP CPU to send INIT signal */ |
| while (vmx_get_test_stage() != 10) |
| ; |
| |
| /* Exit VMX operation (i.e. exec VMXOFF) */ |
| vmx_off(); |
| |
| /* |
| * Exiting VMX operation should result in latched |
| * INIT signal being processed. Therefore, we should |
| * never reach the below code. Thus, signal to BSP |
| * CPU if we have reached here so it is able to |
| * report an issue if it happens. |
| */ |
| init_signal_test_thread_continued = true; |
| } |
| |
| #define INIT_SIGNAL_TEST_DELAY 100000000ULL |
| |
| static void vmx_init_signal_test(void) |
| { |
| struct vmcs *test_vmcs; |
| |
| if (cpu_count() < 2) { |
| report_skip("%s : CPU count < 2", __func__); |
| return; |
| } |
| |
| /* VMCLEAR test-vmcs so it could be loaded by other CPU */ |
| vmcs_save(&test_vmcs); |
| vmcs_clear(test_vmcs); |
| |
| vmx_set_test_stage(0); |
| on_cpu_async(1, init_signal_test_thread, test_vmcs); |
| |
| /* Wait for other CPU to enter VMX operation */ |
| while (vmx_get_test_stage() != 1) |
| ; |
| |
| /* Send INIT signal to other CPU */ |
| apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, |
| id_map[1]); |
| /* Signal other CPU we have sent INIT signal */ |
| vmx_set_test_stage(2); |
| |
| /* |
| * Wait reasonable amount of time for INIT signal to |
| * be received on other CPU and verify that other CPU |
| * have proceed as usual to next test stage as INIT |
| * signal should be blocked while other CPU in |
| * VMX operation |
| */ |
| delay(INIT_SIGNAL_TEST_DELAY); |
| report(vmx_get_test_stage() == 3, |
| "INIT signal blocked when CPU in VMX operation"); |
| /* No point to continue if we failed at this point */ |
| if (vmx_get_test_stage() != 3) |
| return; |
| |
| /* Signal other CPU to enter VMX non-root mode */ |
| init_signal_test_exit_reason = -1ull; |
| vmx_set_test_stage(4); |
| /* |
| * Wait reasonable amount of time for other CPU |
| * to exit to VMX root mode |
| */ |
| delay(INIT_SIGNAL_TEST_DELAY); |
| if (vmx_get_test_stage() != 5) { |
| report_fail("Pending INIT signal didn't result in VMX exit"); |
| return; |
| } |
| report(init_signal_test_exit_reason == VMX_INIT, |
| "INIT signal during VMX non-root mode result in exit-reason %s (%lu)", |
| exit_reason_description(init_signal_test_exit_reason), |
| init_signal_test_exit_reason); |
| |
| /* Run guest to completion */ |
| make_vmcs_current(test_vmcs); |
| enter_guest(); |
| |
| /* Signal other CPU to exit VMX operation */ |
| init_signal_test_thread_continued = false; |
| vmx_set_test_stage(6); |
| |
| /* Wait reasonable amount of time for other CPU to exit VMX operation */ |
| delay(INIT_SIGNAL_TEST_DELAY); |
| report(vmx_get_test_stage() == 7, |
| "INIT signal consumed on VMX_INIT exit"); |
| /* No point to continue if we failed at this point */ |
| if (vmx_get_test_stage() != 7) |
| return; |
| |
| /* Signal other CPU to enter VMX operation */ |
| vmx_set_test_stage(8); |
| /* Wait for other CPU to enter VMX operation */ |
| while (vmx_get_test_stage() != 9) |
| ; |
| |
| /* Send INIT signal to other CPU */ |
| apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, |
| id_map[1]); |
| /* Signal other CPU we have sent INIT signal */ |
| vmx_set_test_stage(10); |
| |
| /* |
| * Wait reasonable amount of time for other CPU |
| * to exit VMX operation and process INIT signal |
| */ |
| delay(INIT_SIGNAL_TEST_DELAY); |
| report(!init_signal_test_thread_continued, |
| "INIT signal processed after exit VMX operation"); |
| |
| /* |
| * TODO: Send SIPI to other CPU to sipi_entry (See x86/cstart64.S) |
| * to re-init it to kvm-unit-tests standard environment. |
| * Somehow (?) verify that SIPI was indeed received. |
| */ |
| } |
| |
| #define SIPI_SIGNAL_TEST_DELAY 100000000ULL |
| |
| static void vmx_sipi_test_guest(void) |
| { |
| if (apic_id() == 0) { |
| /* wait AP enter guest with activity=WAIT_SIPI */ |
| while (vmx_get_test_stage() != 1) |
| ; |
| delay(SIPI_SIGNAL_TEST_DELAY); |
| |
| /* First SIPI signal */ |
| apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); |
| report_pass("BSP(L2): Send first SIPI to cpu[%d]", id_map[1]); |
| |
| /* wait AP enter guest */ |
| while (vmx_get_test_stage() != 2) |
| ; |
| delay(SIPI_SIGNAL_TEST_DELAY); |
| |
| /* Second SIPI signal should be ignored since AP is not in WAIT_SIPI state */ |
| apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP | APIC_INT_ASSERT, id_map[1]); |
| report_pass("BSP(L2): Send second SIPI to cpu[%d]", id_map[1]); |
| |
| /* Delay a while to check whether second SIPI would cause VMExit */ |
| delay(SIPI_SIGNAL_TEST_DELAY); |
| |
| /* Test is done, notify AP to exit test */ |
| vmx_set_test_stage(3); |
| |
| /* wait AP exit non-root mode */ |
| while (vmx_get_test_stage() != 5) |
| ; |
| } else { |
| /* wait BSP notify test is done */ |
| while (vmx_get_test_stage() != 3) |
| ; |
| |
| /* AP exit guest */ |
| vmx_set_test_stage(4); |
| } |
| } |
| |
| static void sipi_test_ap_thread(void *data) |
| { |
| struct vmcs *ap_vmcs; |
| u64 *ap_vmxon_region; |
| void *ap_stack, *ap_syscall_stack; |
| u64 cpu_ctrl_0 = CPU_SECONDARY; |
| u64 cpu_ctrl_1 = 0; |
| |
| /* Enter VMX operation (i.e. exec VMXON) */ |
| ap_vmxon_region = alloc_page(); |
| enable_vmx(); |
| init_vmx(ap_vmxon_region); |
| TEST_ASSERT(!__vmxon_safe(ap_vmxon_region)); |
| init_vmcs(&ap_vmcs); |
| make_vmcs_current(ap_vmcs); |
| |
| /* Set stack for AP */ |
| ap_stack = alloc_page(); |
| ap_syscall_stack = alloc_page(); |
| vmcs_write(GUEST_RSP, (u64)(ap_stack + PAGE_SIZE - 1)); |
| vmcs_write(GUEST_SYSENTER_ESP, (u64)(ap_syscall_stack + PAGE_SIZE - 1)); |
| |
| /* passthrough lapic to L2 */ |
| disable_intercept_for_x2apic_msrs(); |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); |
| |
| /* Set guest activity state to wait-for-SIPI state */ |
| vmcs_write(GUEST_ACTV_STATE, ACTV_WAIT_SIPI); |
| |
| vmx_set_test_stage(1); |
| |
| /* AP enter guest */ |
| enter_guest(); |
| |
| if (vmcs_read(EXI_REASON) == VMX_SIPI) { |
| report_pass("AP: Handle SIPI VMExit"); |
| vmcs_write(GUEST_ACTV_STATE, ACTV_ACTIVE); |
| vmx_set_test_stage(2); |
| } else { |
| report_fail("AP: Unexpected VMExit, reason=%ld", vmcs_read(EXI_REASON)); |
| vmx_off(); |
| return; |
| } |
| |
| /* AP enter guest */ |
| enter_guest(); |
| |
| report(vmcs_read(EXI_REASON) != VMX_SIPI, |
| "AP: should no SIPI VMExit since activity is not in WAIT_SIPI state"); |
| |
| /* notify BSP that AP is already exit from non-root mode */ |
| vmx_set_test_stage(5); |
| |
| /* Leave VMX operation */ |
| vmx_off(); |
| } |
| |
| static void vmx_sipi_signal_test(void) |
| { |
| if (!(rdmsr(MSR_IA32_VMX_MISC) & MSR_IA32_VMX_MISC_ACTIVITY_WAIT_SIPI)) { |
| report_skip("%s : \"ACTIVITY_WAIT_SIPI state\" not supported", __func__); |
| return; |
| } |
| |
| if (cpu_count() < 2) { |
| report_skip("%s : CPU count < 2", __func__); |
| return; |
| } |
| |
| u64 cpu_ctrl_0 = CPU_SECONDARY; |
| u64 cpu_ctrl_1 = 0; |
| |
| /* passthrough lapic to L2 */ |
| disable_intercept_for_x2apic_msrs(); |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) & ~PIN_EXTINT); |
| vmcs_write(CPU_EXEC_CTRL0, vmcs_read(CPU_EXEC_CTRL0) | cpu_ctrl_0); |
| vmcs_write(CPU_EXEC_CTRL1, vmcs_read(CPU_EXEC_CTRL1) | cpu_ctrl_1); |
| |
| test_set_guest(vmx_sipi_test_guest); |
| |
| /* update CR3 on AP */ |
| on_cpu(1, update_cr3, (void *)read_cr3()); |
| |
| /* start AP */ |
| on_cpu_async(1, sipi_test_ap_thread, NULL); |
| |
| vmx_set_test_stage(0); |
| |
| /* BSP enter guest */ |
| enter_guest(); |
| } |
| |
| |
| enum vmcs_access { |
| ACCESS_VMREAD, |
| ACCESS_VMWRITE, |
| ACCESS_NONE, |
| }; |
| |
| struct vmcs_shadow_test_common { |
| enum vmcs_access op; |
| enum Reason reason; |
| u64 field; |
| u64 value; |
| u64 flags; |
| u64 time; |
| } l1_l2_common; |
| |
| static inline u64 vmread_flags(u64 field, u64 *val) |
| { |
| u64 flags; |
| |
| asm volatile ("vmread %2, %1; pushf; pop %0" |
| : "=r" (flags), "=rm" (*val) : "r" (field) : "cc"); |
| return flags & X86_EFLAGS_ALU; |
| } |
| |
| static inline u64 vmwrite_flags(u64 field, u64 val) |
| { |
| u64 flags; |
| |
| asm volatile ("vmwrite %1, %2; pushf; pop %0" |
| : "=r"(flags) : "rm" (val), "r" (field) : "cc"); |
| return flags & X86_EFLAGS_ALU; |
| } |
| |
| static void vmx_vmcs_shadow_test_guest(void) |
| { |
| struct vmcs_shadow_test_common *c = &l1_l2_common; |
| u64 start; |
| |
| while (c->op != ACCESS_NONE) { |
| start = rdtsc(); |
| switch (c->op) { |
| default: |
| c->flags = -1ull; |
| break; |
| case ACCESS_VMREAD: |
| c->flags = vmread_flags(c->field, &c->value); |
| break; |
| case ACCESS_VMWRITE: |
| c->flags = vmwrite_flags(c->field, 0); |
| break; |
| } |
| c->time = rdtsc() - start; |
| vmcall(); |
| } |
| } |
| |
| static u64 vmread_from_shadow(u64 field) |
| { |
| struct vmcs *primary; |
| struct vmcs *shadow; |
| u64 value; |
| |
| TEST_ASSERT(!vmcs_save(&primary)); |
| shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); |
| TEST_ASSERT(!make_vmcs_current(shadow)); |
| value = vmcs_read(field); |
| TEST_ASSERT(!make_vmcs_current(primary)); |
| return value; |
| } |
| |
| static u64 vmwrite_to_shadow(u64 field, u64 value) |
| { |
| struct vmcs *primary; |
| struct vmcs *shadow; |
| |
| TEST_ASSERT(!vmcs_save(&primary)); |
| shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); |
| TEST_ASSERT(!make_vmcs_current(shadow)); |
| vmcs_write(field, value); |
| value = vmcs_read(field); |
| TEST_ASSERT(!make_vmcs_current(primary)); |
| return value; |
| } |
| |
| static void vmcs_shadow_test_access(u8 *bitmap[2], enum vmcs_access access) |
| { |
| struct vmcs_shadow_test_common *c = &l1_l2_common; |
| |
| c->op = access; |
| vmcs_write(VMX_INST_ERROR, 0); |
| enter_guest(); |
| c->reason = vmcs_read(EXI_REASON) & 0xffff; |
| if (c->reason != VMX_VMCALL) { |
| skip_exit_insn(); |
| enter_guest(); |
| } |
| skip_exit_vmcall(); |
| } |
| |
| static void vmcs_shadow_test_field(u8 *bitmap[2], u64 field) |
| { |
| struct vmcs_shadow_test_common *c = &l1_l2_common; |
| struct vmcs *shadow; |
| u64 value; |
| uintptr_t flags[2]; |
| bool good_shadow; |
| u32 vmx_inst_error; |
| |
| report_prefix_pushf("field %lx", field); |
| c->field = field; |
| |
| shadow = (struct vmcs *)vmcs_read(VMCS_LINK_PTR); |
| if (shadow != (struct vmcs *)-1ull) { |
| flags[ACCESS_VMREAD] = vmread_flags(field, &value); |
| flags[ACCESS_VMWRITE] = vmwrite_flags(field, value); |
| good_shadow = !flags[ACCESS_VMREAD] && !flags[ACCESS_VMWRITE]; |
| } else { |
| /* |
| * When VMCS link pointer is -1ull, VMWRITE/VMREAD on |
| * shadowed-fields should fail with setting RFLAGS.CF. |
| */ |
| flags[ACCESS_VMREAD] = X86_EFLAGS_CF; |
| flags[ACCESS_VMWRITE] = X86_EFLAGS_CF; |
| good_shadow = false; |
| } |
| |
| /* Intercept both VMREAD and VMWRITE. */ |
| report_prefix_push("no VMREAD/VMWRITE permission"); |
| /* VMWRITE/VMREAD done on reserved-bit should always intercept */ |
| if (!(field >> VMCS_FIELD_RESERVED_SHIFT)) { |
| set_bit(field, bitmap[ACCESS_VMREAD]); |
| set_bit(field, bitmap[ACCESS_VMWRITE]); |
| } |
| vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); |
| report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); |
| vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); |
| report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); |
| report_prefix_pop(); |
| |
| if (field >> VMCS_FIELD_RESERVED_SHIFT) |
| goto out; |
| |
| /* Permit shadowed VMREAD. */ |
| report_prefix_push("VMREAD permission only"); |
| clear_bit(field, bitmap[ACCESS_VMREAD]); |
| set_bit(field, bitmap[ACCESS_VMWRITE]); |
| if (good_shadow) |
| value = vmwrite_to_shadow(field, MAGIC_VAL_1 + field); |
| vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); |
| report(c->reason == VMX_VMWRITE, "not shadowed for VMWRITE"); |
| vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); |
| vmx_inst_error = vmcs_read(VMX_INST_ERROR); |
| report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", |
| c->time); |
| report(c->flags == flags[ACCESS_VMREAD], |
| "ALU flags after VMREAD (%lx) are as expected (%lx)", |
| c->flags, flags[ACCESS_VMREAD]); |
| if (good_shadow) |
| report(c->value == value, |
| "value read from shadow (%lx) is as expected (%lx)", |
| c->value, value); |
| else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) |
| report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, |
| "VMX_INST_ERROR (%d) is as expected (%d)", |
| vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| report_prefix_pop(); |
| |
| /* Permit shadowed VMWRITE. */ |
| report_prefix_push("VMWRITE permission only"); |
| set_bit(field, bitmap[ACCESS_VMREAD]); |
| clear_bit(field, bitmap[ACCESS_VMWRITE]); |
| if (good_shadow) |
| vmwrite_to_shadow(field, MAGIC_VAL_1 + field); |
| vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); |
| vmx_inst_error = vmcs_read(VMX_INST_ERROR); |
| report(c->reason == VMX_VMCALL, |
| "shadowed for VMWRITE (in %ld cycles)", |
| c->time); |
| report(c->flags == flags[ACCESS_VMREAD], |
| "ALU flags after VMWRITE (%lx) are as expected (%lx)", |
| c->flags, flags[ACCESS_VMREAD]); |
| if (good_shadow) { |
| value = vmread_from_shadow(field); |
| report(value == 0, |
| "shadow VMCS value (%lx) is as expected (%lx)", value, |
| 0ul); |
| } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { |
| report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, |
| "VMX_INST_ERROR (%d) is as expected (%d)", |
| vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| } |
| vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); |
| report(c->reason == VMX_VMREAD, "not shadowed for VMREAD"); |
| report_prefix_pop(); |
| |
| /* Permit shadowed VMREAD and VMWRITE. */ |
| report_prefix_push("VMREAD and VMWRITE permission"); |
| clear_bit(field, bitmap[ACCESS_VMREAD]); |
| clear_bit(field, bitmap[ACCESS_VMWRITE]); |
| if (good_shadow) |
| vmwrite_to_shadow(field, MAGIC_VAL_1 + field); |
| vmcs_shadow_test_access(bitmap, ACCESS_VMWRITE); |
| vmx_inst_error = vmcs_read(VMX_INST_ERROR); |
| report(c->reason == VMX_VMCALL, |
| "shadowed for VMWRITE (in %ld cycles)", |
| c->time); |
| report(c->flags == flags[ACCESS_VMREAD], |
| "ALU flags after VMWRITE (%lx) are as expected (%lx)", |
| c->flags, flags[ACCESS_VMREAD]); |
| if (good_shadow) { |
| value = vmread_from_shadow(field); |
| report(value == 0, |
| "shadow VMCS value (%lx) is as expected (%lx)", value, |
| 0ul); |
| } else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMWRITE]) { |
| report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, |
| "VMX_INST_ERROR (%d) is as expected (%d)", |
| vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| } |
| vmcs_shadow_test_access(bitmap, ACCESS_VMREAD); |
| vmx_inst_error = vmcs_read(VMX_INST_ERROR); |
| report(c->reason == VMX_VMCALL, "shadowed for VMREAD (in %ld cycles)", |
| c->time); |
| report(c->flags == flags[ACCESS_VMREAD], |
| "ALU flags after VMREAD (%lx) are as expected (%lx)", |
| c->flags, flags[ACCESS_VMREAD]); |
| if (good_shadow) |
| report(c->value == 0, |
| "value read from shadow (%lx) is as expected (%lx)", |
| c->value, 0ul); |
| else if (shadow != (struct vmcs *)-1ull && flags[ACCESS_VMREAD]) |
| report(vmx_inst_error == VMXERR_UNSUPPORTED_VMCS_COMPONENT, |
| "VMX_INST_ERROR (%d) is as expected (%d)", |
| vmx_inst_error, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| report_prefix_pop(); |
| |
| out: |
| report_prefix_pop(); |
| } |
| |
| static void vmx_vmcs_shadow_test_body(u8 *bitmap[2]) |
| { |
| unsigned base; |
| unsigned index; |
| unsigned bit; |
| unsigned highest_index = rdmsr(MSR_IA32_VMX_VMCS_ENUM); |
| |
| /* Run test on all possible valid VMCS fields */ |
| for (base = 0; |
| base < (1 << VMCS_FIELD_RESERVED_SHIFT); |
| base += (1 << VMCS_FIELD_TYPE_SHIFT)) |
| for (index = 0; index <= highest_index; index++) |
| vmcs_shadow_test_field(bitmap, base + index); |
| |
| /* |
| * Run tests on some invalid VMCS fields |
| * (Have reserved bit set). |
| */ |
| for (bit = VMCS_FIELD_RESERVED_SHIFT; bit < VMCS_FIELD_BIT_SIZE; bit++) |
| vmcs_shadow_test_field(bitmap, (1ull << bit)); |
| } |
| |
| static void vmx_vmcs_shadow_test(void) |
| { |
| u8 *bitmap[2]; |
| struct vmcs *shadow; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_SECONDARY)) { |
| report_skip("%s : \"Activate secondary controls\" not supported", __func__); |
| return; |
| } |
| |
| if (!(ctrl_cpu_rev[1].clr & CPU_SHADOW_VMCS)) { |
| report_skip("%s : \"VMCS shadowing\" not supported", __func__); |
| return; |
| } |
| |
| if (!(rdmsr(MSR_IA32_VMX_MISC) & |
| MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) { |
| report_skip("%s : VMWRITE can't modify VM-exit information fields.", __func__); |
| return; |
| } |
| |
| test_set_guest(vmx_vmcs_shadow_test_guest); |
| |
| bitmap[ACCESS_VMREAD] = alloc_page(); |
| bitmap[ACCESS_VMWRITE] = alloc_page(); |
| |
| vmcs_write(VMREAD_BITMAP, virt_to_phys(bitmap[ACCESS_VMREAD])); |
| vmcs_write(VMWRITE_BITMAP, virt_to_phys(bitmap[ACCESS_VMWRITE])); |
| |
| shadow = alloc_page(); |
| shadow->hdr.revision_id = basic.revision; |
| shadow->hdr.shadow_vmcs = 1; |
| TEST_ASSERT(!vmcs_clear(shadow)); |
| |
| vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_RDTSC); |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); |
| vmcs_set_bits(CPU_EXEC_CTRL1, CPU_SHADOW_VMCS); |
| |
| vmcs_write(VMCS_LINK_PTR, virt_to_phys(shadow)); |
| report_prefix_push("valid link pointer"); |
| vmx_vmcs_shadow_test_body(bitmap); |
| report_prefix_pop(); |
| |
| vmcs_write(VMCS_LINK_PTR, -1ull); |
| report_prefix_push("invalid link pointer"); |
| vmx_vmcs_shadow_test_body(bitmap); |
| report_prefix_pop(); |
| |
| l1_l2_common.op = ACCESS_NONE; |
| enter_guest(); |
| } |
| |
| /* |
| * This test monitors the difference between a guest RDTSC instruction |
| * and the IA32_TIME_STAMP_COUNTER MSR value stored in the VMCS12 |
| * VM-exit MSR-store list when taking a VM-exit on the instruction |
| * following RDTSC. |
| */ |
| #define RDTSC_DIFF_ITERS 100000 |
| #define RDTSC_DIFF_FAILS 100 |
| #define HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD 750 |
| |
| /* |
| * Set 'use TSC offsetting' and set the guest offset to the |
| * inverse of the host's current TSC value, so that the guest starts running |
| * with an effective TSC value of 0. |
| */ |
| static void reset_guest_tsc_to_zero(void) |
| { |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_USE_TSC_OFFSET); |
| vmcs_write(TSC_OFFSET, -rdtsc()); |
| } |
| |
| static void rdtsc_vmexit_diff_test_guest(void) |
| { |
| int i; |
| |
| for (i = 0; i < RDTSC_DIFF_ITERS; i++) |
| /* Ensure rdtsc is the last instruction before the vmcall. */ |
| asm volatile("rdtsc; vmcall" : : : "eax", "edx"); |
| } |
| |
| /* |
| * This function only considers the "use TSC offsetting" VM-execution |
| * control. It does not handle "use TSC scaling" (because the latter |
| * isn't available to the host today.) |
| */ |
| static unsigned long long host_time_to_guest_time(unsigned long long t) |
| { |
| TEST_ASSERT(!(ctrl_cpu_rev[0].clr & CPU_SECONDARY) || |
| !(vmcs_read(CPU_EXEC_CTRL1) & CPU_USE_TSC_SCALING)); |
| |
| if (vmcs_read(CPU_EXEC_CTRL0) & CPU_USE_TSC_OFFSET) |
| t += vmcs_read(TSC_OFFSET); |
| |
| return t; |
| } |
| |
| static unsigned long long rdtsc_vmexit_diff_test_iteration(void) |
| { |
| unsigned long long guest_tsc, host_to_guest_tsc; |
| |
| enter_guest(); |
| skip_exit_vmcall(); |
| guest_tsc = (u32) regs.rax + (regs.rdx << 32); |
| host_to_guest_tsc = host_time_to_guest_time(exit_msr_store[0].value); |
| |
| return host_to_guest_tsc - guest_tsc; |
| } |
| |
| static void rdtsc_vmexit_diff_test(void) |
| { |
| unsigned long long delta; |
| int fail = 0; |
| int i; |
| |
| if (!(ctrl_cpu_rev[0].clr & CPU_USE_TSC_OFFSET)) |
| test_skip("CPU doesn't support the 'use TSC offsetting' processor-based VM-execution control.\n"); |
| |
| test_set_guest(rdtsc_vmexit_diff_test_guest); |
| |
| reset_guest_tsc_to_zero(); |
| |
| /* |
| * Set up the VMCS12 VM-exit MSR-store list to store just one |
| * MSR: IA32_TIME_STAMP_COUNTER. Note that the value stored is |
| * in the host time domain (i.e., it is not adjusted according |
| * to the TSC multiplier and TSC offset fields in the VMCS12, |
| * as a guest RDTSC would be.) |
| */ |
| exit_msr_store = alloc_page(); |
| exit_msr_store[0].index = MSR_IA32_TSC; |
| vmcs_write(EXI_MSR_ST_CNT, 1); |
| vmcs_write(EXIT_MSR_ST_ADDR, virt_to_phys(exit_msr_store)); |
| |
| for (i = 0; i < RDTSC_DIFF_ITERS && fail < RDTSC_DIFF_FAILS; i++) { |
| delta = rdtsc_vmexit_diff_test_iteration(); |
| if (delta >= HOST_CAPTURED_GUEST_TSC_DIFF_THRESHOLD) |
| fail++; |
| } |
| |
| enter_guest(); |
| |
| report(fail < RDTSC_DIFF_FAILS, |
| "RDTSC to VM-exit delta too high in %d of %d iterations, last = %llu", |
| fail, i, delta); |
| } |
| |
| static int invalid_msr_init(struct vmcs *vmcs) |
| { |
| if (!(ctrl_pin_rev.clr & PIN_PREEMPT)) { |
| printf("\tPreemption timer is not supported\n"); |
| return VMX_TEST_EXIT; |
| } |
| vmcs_write(PIN_CONTROLS, vmcs_read(PIN_CONTROLS) | PIN_PREEMPT); |
| preempt_val = 10000000; |
| vmcs_write(PREEMPT_TIMER_VALUE, preempt_val); |
| preempt_scale = rdmsr(MSR_IA32_VMX_MISC) & 0x1F; |
| |
| if (!(ctrl_exit_rev.clr & EXI_SAVE_PREEMPT)) |
| printf("\tSave preemption value is not supported\n"); |
| |
| vmcs_write(ENT_MSR_LD_CNT, 1); |
| vmcs_write(ENTER_MSR_LD_ADDR, (u64)0x13370000); |
| |
| return VMX_TEST_START; |
| } |
| |
| |
| static void invalid_msr_main(void) |
| { |
| report_fail("Invalid MSR load"); |
| } |
| |
| static int invalid_msr_exit_handler(union exit_reason exit_reason) |
| { |
| report_fail("Invalid MSR load"); |
| print_vmexit_info(exit_reason); |
| return VMX_TEST_EXIT; |
| } |
| |
| static int invalid_msr_entry_failure(struct vmentry_result *result) |
| { |
| report(result->exit_reason.failed_vmentry && |
| result->exit_reason.basic == VMX_FAIL_MSR, "Invalid MSR load"); |
| return VMX_TEST_VMEXIT; |
| } |
| |
| /* |
| * The max number of MSRs in an atomic switch MSR list is: |
| * (111B + 1) * 512 = 4096 |
| * |
| * Each list entry consumes: |
| * 4-byte MSR index + 4 bytes reserved + 8-byte data = 16 bytes |
| * |
| * Allocate 128 kB to cover max_msr_list_size (i.e., 64 kB) and then some. |
| */ |
| static const u32 msr_list_page_order = 5; |
| |
| static void atomic_switch_msr_limit_test_guest(void) |
| { |
| vmcall(); |
| } |
| |
| static void populate_msr_list(struct vmx_msr_entry *msr_list, |
| size_t byte_capacity, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| msr_list[i].index = MSR_IA32_TSC; |
| msr_list[i].reserved = 0; |
| msr_list[i].value = 0x1234567890abcdef; |
| } |
| |
| memset(msr_list + count, 0xff, |
| byte_capacity - count * sizeof(*msr_list)); |
| } |
| |
| static int max_msr_list_size(void) |
| { |
| u32 vmx_misc = rdmsr(MSR_IA32_VMX_MISC); |
| u32 factor = ((vmx_misc & GENMASK(27, 25)) >> 25) + 1; |
| |
| return factor * 512; |
| } |
| |
| static void atomic_switch_msrs_test(int count) |
| { |
| struct vmx_msr_entry *vm_enter_load; |
| struct vmx_msr_entry *vm_exit_load; |
| struct vmx_msr_entry *vm_exit_store; |
| int max_allowed = max_msr_list_size(); |
| int byte_capacity = 1ul << (msr_list_page_order + PAGE_SHIFT); |
| /* Exceeding the max MSR list size at exit triggers KVM to abort. */ |
| int exit_count = count > max_allowed ? max_allowed : count; |
| int cleanup_count = count > max_allowed ? 2 : 1; |
| int i; |
| |
| /* |
| * Check for the IA32_TSC MSR, |
| * available with the "TSC flag" and used to populate the MSR lists. |
| */ |
| if (!(cpuid(1).d & (1 << 4))) { |
| report_skip("%s : \"Time Stamp Counter\" not supported", __func__); |
| return; |
| } |
| |
| /* Set L2 guest. */ |
| test_set_guest(atomic_switch_msr_limit_test_guest); |
| |
| /* Setup atomic MSR switch lists. */ |
| vm_enter_load = alloc_pages(msr_list_page_order); |
| vm_exit_load = alloc_pages(msr_list_page_order); |
| vm_exit_store = alloc_pages(msr_list_page_order); |
| |
| vmcs_write(ENTER_MSR_LD_ADDR, (u64)vm_enter_load); |
| vmcs_write(EXIT_MSR_LD_ADDR, (u64)vm_exit_load); |
| vmcs_write(EXIT_MSR_ST_ADDR, (u64)vm_exit_store); |
| |
| /* |
| * VM-Enter should succeed up to the max number of MSRs per list, and |
| * should not consume junk beyond the last entry. |
| */ |
| populate_msr_list(vm_enter_load, byte_capacity, count); |
| populate_msr_list(vm_exit_load, byte_capacity, exit_count); |
| populate_msr_list(vm_exit_store, byte_capacity, exit_count); |
| |
| vmcs_write(ENT_MSR_LD_CNT, count); |
| vmcs_write(EXI_MSR_LD_CNT, exit_count); |
| vmcs_write(EXI_MSR_ST_CNT, exit_count); |
| |
| if (count <= max_allowed) { |
| enter_guest(); |
| assert_exit_reason(VMX_VMCALL); |
| skip_exit_vmcall(); |
| } else { |
| u32 exit_qual; |
| |
| test_guest_state("Invalid MSR Load Count", true, count, |
| "ENT_MSR_LD_CNT"); |
| |
| exit_qual = vmcs_read(EXI_QUALIFICATION); |
| report(exit_qual == max_allowed + 1, "exit_qual, %u, is %u.", |
| exit_qual, max_allowed + 1); |
| } |
| |
| /* Cleanup. */ |
| vmcs_write(ENT_MSR_LD_CNT, 0); |
| vmcs_write(EXI_MSR_LD_CNT, 0); |
| vmcs_write(EXI_MSR_ST_CNT, 0); |
| for (i = 0; i < cleanup_count; i++) { |
| enter_guest(); |
| skip_exit_vmcall(); |
| } |
| free_pages_by_order(vm_enter_load, msr_list_page_order); |
| free_pages_by_order(vm_exit_load, msr_list_page_order); |
| free_pages_by_order(vm_exit_store, msr_list_page_order); |
| } |
| |
| static void atomic_switch_max_msrs_test(void) |
| { |
| atomic_switch_msrs_test(max_msr_list_size()); |
| } |
| |
| static void atomic_switch_overflow_msrs_test(void) |
| { |
| if (test_device_enabled()) |
| atomic_switch_msrs_test(max_msr_list_size() + 1); |
| else |
| test_skip("Test is only supported on KVM"); |
| } |
| |
| static void vmx_pf_exception_test_guest(void) |
| { |
| ac_test_run(PT_LEVEL_PML4, false); |
| } |
| |
| static void vmx_pf_exception_forced_emulation_test_guest(void) |
| { |
| ac_test_run(PT_LEVEL_PML4, true); |
| } |
| |
| typedef void (*invalidate_tlb_t)(void *data); |
| typedef void (*pf_exception_test_guest_t)(void); |
| |
| |
| static void __vmx_pf_exception_test(invalidate_tlb_t inv_fn, void *data, |
| pf_exception_test_guest_t guest_fn) |
| { |
| u64 efer; |
| struct cpuid cpuid; |
| |
| test_set_guest(guest_fn); |
| |
| /* Intercept INVLPG when to perform TLB invalidation from L1 (this). */ |
| if (inv_fn) |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_INVLPG); |
| else |
| vmcs_clear_bits(CPU_EXEC_CTRL0, CPU_INVLPG); |
| |
| enter_guest(); |
| |
| while (vmcs_read(EXI_REASON) != VMX_VMCALL) { |
| switch (vmcs_read(EXI_REASON)) { |
| case VMX_RDMSR: |
| assert(regs.rcx == MSR_EFER); |
| efer = vmcs_read(GUEST_EFER); |
| regs.rdx = efer >> 32; |
| regs.rax = efer & 0xffffffff; |
| break; |
| case VMX_WRMSR: |
| assert(regs.rcx == MSR_EFER); |
| efer = regs.rdx << 32 | (regs.rax & 0xffffffff); |
| vmcs_write(GUEST_EFER, efer); |
| break; |
| case VMX_CPUID: |
| cpuid = (struct cpuid) {0, 0, 0, 0}; |
| cpuid = raw_cpuid(regs.rax, regs.rcx); |
| regs.rax = cpuid.a; |
| regs.rbx = cpuid.b; |
| regs.rcx = cpuid.c; |
| regs.rdx = cpuid.d; |
| break; |
| case VMX_INVLPG: |
| inv_fn(data); |
| break; |
| default: |
| assert_msg(false, |
| "Unexpected exit to L1, exit_reason: %s (0x%lx)", |
| exit_reason_description(vmcs_read(EXI_REASON)), |
| vmcs_read(EXI_REASON)); |
| } |
| skip_exit_insn(); |
| enter_guest(); |
| } |
| |
| assert_exit_reason(VMX_VMCALL); |
| } |
| |
| static void vmx_pf_exception_test(void) |
| { |
| __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_test_guest); |
| } |
| |
| static void vmx_pf_exception_forced_emulation_test(void) |
| { |
| __vmx_pf_exception_test(NULL, NULL, vmx_pf_exception_forced_emulation_test_guest); |
| } |
| |
| static void invalidate_tlb_no_vpid(void *data) |
| { |
| /* If VPID is disabled, the TLB is flushed on VM-Enter and VM-Exit. */ |
| } |
| |
| static void vmx_pf_no_vpid_test(void) |
| { |
| if (is_vpid_supported()) |
| vmcs_clear_bits(CPU_EXEC_CTRL1, CPU_VPID); |
| |
| __vmx_pf_exception_test(invalidate_tlb_no_vpid, NULL, |
| vmx_pf_exception_test_guest); |
| } |
| |
| static void invalidate_tlb_invvpid_addr(void *data) |
| { |
| invvpid(INVVPID_ALL, *(u16 *)data, vmcs_read(EXI_QUALIFICATION)); |
| } |
| |
| static void invalidate_tlb_new_vpid(void *data) |
| { |
| u16 *vpid = data; |
| |
| /* |
| * Bump VPID to effectively flush L2's TLB from L0's perspective. |
| * Invalidate all VPIDs when the VPID wraps to zero as hardware/KVM is |
| * architecturally allowed to keep TLB entries indefinitely. |
| */ |
| ++(*vpid); |
| if (*vpid == 0) { |
| ++(*vpid); |
| invvpid(INVVPID_ALL, 0, 0); |
| } |
| vmcs_write(VPID, *vpid); |
| } |
| |
| static void __vmx_pf_vpid_test(invalidate_tlb_t inv_fn, u16 vpid) |
| { |
| if (!is_vpid_supported()) |
| test_skip("VPID unsupported"); |
| |
| if (!is_invvpid_supported()) |
| test_skip("INVVPID unsupported"); |
| |
| vmcs_set_bits(CPU_EXEC_CTRL0, CPU_SECONDARY); |
| vmcs_set_bits(CPU_EXEC_CTRL1, CPU_VPID); |
| vmcs_write(VPID, vpid); |
| |
| __vmx_pf_exception_test(inv_fn, &vpid, vmx_pf_exception_test_guest); |
| } |
| |
| static void vmx_pf_invvpid_test(void) |
| { |
| if (!is_invvpid_type_supported(INVVPID_ADDR)) |
| test_skip("INVVPID ADDR unsupported"); |
| |
| __vmx_pf_vpid_test(invalidate_tlb_invvpid_addr, 0xaaaa); |
| } |
| |
| static void vmx_pf_vpid_test(void) |
| { |
| /* Need INVVPID(ALL) to flush VPIDs upon wrap/reuse. */ |
| if (!is_invvpid_type_supported(INVVPID_ALL)) |
| test_skip("INVVPID ALL unsupported"); |
| |
| __vmx_pf_vpid_test(invalidate_tlb_new_vpid, 1); |
| } |
| |
| static void vmx_l2_ac_test(void) |
| { |
| bool hit_ac = false; |
| |
| write_cr0(read_cr0() | X86_CR0_AM); |
| write_rflags(read_rflags() | X86_EFLAGS_AC); |
| |
| run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac); |
| report(hit_ac, "Usermode #AC handled in L2"); |
| vmcall(); |
| } |
| |
| struct vmx_exception_test { |
| u8 vector; |
| void (*guest_code)(void); |
| }; |
| |
| struct vmx_exception_test vmx_exception_tests[] = { |
| { GP_VECTOR, generate_non_canonical_gp }, |
| { UD_VECTOR, generate_ud }, |
| { DE_VECTOR, generate_de }, |
| { DB_VECTOR, generate_single_step_db }, |
| { BP_VECTOR, generate_bp }, |
| { AC_VECTOR, vmx_l2_ac_test }, |
| { OF_VECTOR, generate_of }, |
| { NM_VECTOR, generate_cr0_ts_nm }, |
| { NM_VECTOR, generate_cr0_em_nm }, |
| }; |
| |
| static u8 vmx_exception_test_vector; |
| |
| static void vmx_exception_handler(struct ex_regs *regs) |
| { |
| report(regs->vector == vmx_exception_test_vector, |
| "Handling %s in L2's exception handler", |
| exception_mnemonic(vmx_exception_test_vector)); |
| vmcall(); |
| } |
| |
| static void handle_exception_in_l2(u8 vector) |
| { |
| handler old_handler = handle_exception(vector, vmx_exception_handler); |
| |
| vmx_exception_test_vector = vector; |
| |
| enter_guest(); |
| report(vmcs_read(EXI_REASON) == VMX_VMCALL, |
| "%s handled by L2", exception_mnemonic(vector)); |
| |
| handle_exception(vector, old_handler); |
| } |
| |
| static void handle_exception_in_l1(u32 vector) |
| { |
| u32 old_eb = vmcs_read(EXC_BITMAP); |
| u32 intr_type; |
| u32 intr_info; |
| |
| vmcs_write(EXC_BITMAP, old_eb | (1u << vector)); |
| |
| enter_guest(); |
| |
| if (vector == BP_VECTOR || vector == OF_VECTOR) |
| intr_type = VMX_INTR_TYPE_SOFT_EXCEPTION; |
| else |
| intr_type = VMX_INTR_TYPE_HARD_EXCEPTION; |
| |
| intr_info = vmcs_read(EXI_INTR_INFO); |
| report((vmcs_read(EXI_REASON) == VMX_EXC_NMI) && |
| (intr_info & INTR_INFO_VALID_MASK) && |
| (intr_info & INTR_INFO_VECTOR_MASK) == vector && |
| ((intr_info & INTR_INFO_INTR_TYPE_MASK) >> INTR_INFO_INTR_TYPE_SHIFT) == intr_type, |
| "%s correctly routed to L1", exception_mnemonic(vector)); |
| |
| vmcs_write(EXC_BITMAP, old_eb); |
| } |
| |
| static void vmx_exception_test(void) |
| { |
| struct vmx_exception_test *t; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vmx_exception_tests); i++) { |
| t = &vmx_exception_tests[i]; |
| |
| /* |
| * Override the guest code before each run even though it's the |
| * same code, the VMCS guest state needs to be reinitialized. |
| */ |
| test_override_guest(t->guest_code); |
| handle_exception_in_l2(t->vector); |
| |
| test_override_guest(t->guest_code); |
| handle_exception_in_l1(t->vector); |
| } |
| |
| test_set_guest_finished(); |
| } |
| |
| #define TEST(name) { #name, .v2 = name } |
| |
| /* name/init/guest_main/exit_handler/syscall_handler/guest_regs */ |
| struct vmx_test vmx_tests[] = { |
| { "null", NULL, basic_guest_main, basic_exit_handler, NULL, {0} }, |
| { "vmenter", NULL, vmenter_main, vmenter_exit_handler, NULL, {0} }, |
| { "preemption timer", preemption_timer_init, preemption_timer_main, |
| preemption_timer_exit_handler, NULL, {0} }, |
| { "control field PAT", test_ctrl_pat_init, test_ctrl_pat_main, |
| test_ctrl_pat_exit_handler, NULL, {0} }, |
| { "control field EFER", test_ctrl_efer_init, test_ctrl_efer_main, |
| test_ctrl_efer_exit_handler, NULL, {0} }, |
| { "CR shadowing", NULL, cr_shadowing_main, |
| cr_shadowing_exit_handler, NULL, {0} }, |
| { "I/O bitmap", iobmp_init, iobmp_main, iobmp_exit_handler, |
| NULL, {0} }, |
| { "instruction intercept", insn_intercept_init, insn_intercept_main, |
| insn_intercept_exit_handler, NULL, {0} }, |
| { "EPT A/D disabled", ept_init, ept_main, ept_exit_handler, NULL, {0} }, |
| { "EPT A/D enabled", eptad_init, eptad_main, eptad_exit_handler, NULL, {0} }, |
| { "PML", pml_init, pml_main, pml_exit_handler, NULL, {0} }, |
| { "interrupt", interrupt_init, interrupt_main, |
| interrupt_exit_handler, NULL, {0} }, |
| { "nmi_hlt", nmi_hlt_init, nmi_hlt_main, |
| nmi_hlt_exit_handler, NULL, {0} }, |
| { "debug controls", dbgctls_init, dbgctls_main, dbgctls_exit_handler, |
| NULL, {0} }, |
| { "MSR switch", msr_switch_init, msr_switch_main, |
| msr_switch_exit_handler, NULL, {0}, msr_switch_entry_failure }, |
| { "vmmcall", vmmcall_init, vmmcall_main, vmmcall_exit_handler, NULL, {0} }, |
| { "disable RDTSCP", disable_rdtscp_init, disable_rdtscp_main, |
| disable_rdtscp_exit_handler, NULL, {0} }, |
| { "exit_monitor_from_l2_test", NULL, exit_monitor_from_l2_main, |
| exit_monitor_from_l2_handler, NULL, {0} }, |
| { "invalid_msr", invalid_msr_init, invalid_msr_main, |
| invalid_msr_exit_handler, NULL, {0}, invalid_msr_entry_failure}, |
| /* Basic V2 tests. */ |
| TEST(v2_null_test), |
| TEST(v2_multiple_entries_test), |
| TEST(fixture_test_case1), |
| TEST(fixture_test_case2), |
| /* Opcode tests. */ |
| TEST(invvpid_test), |
| /* VM-entry tests */ |
| TEST(vmx_controls_test), |
| TEST(vmx_host_state_area_test), |
| TEST(vmx_guest_state_area_test), |
| TEST(vmentry_movss_shadow_test), |
| TEST(vmentry_unrestricted_guest_test), |
| /* APICv tests */ |
| TEST(vmx_eoi_bitmap_ioapic_scan_test), |
| TEST(vmx_hlt_with_rvi_test), |
| TEST(apic_reg_virt_test), |
| TEST(virt_x2apic_mode_test), |
| /* APIC pass-through tests */ |
| TEST(vmx_apic_passthrough_test), |
| TEST(vmx_apic_passthrough_thread_test), |
| TEST(vmx_apic_passthrough_tpr_threshold_test), |
| TEST(vmx_init_signal_test), |
| TEST(vmx_sipi_signal_test), |
| /* VMCS Shadowing tests */ |
| TEST(vmx_vmcs_shadow_test), |
| /* Regression tests */ |
| TEST(vmx_ldtr_test), |
| TEST(vmx_cr_load_test), |
| TEST(vmx_cr4_osxsave_test), |
| TEST(vmx_no_nm_test), |
| TEST(vmx_db_test), |
| TEST(vmx_nmi_window_test), |
| TEST(vmx_intr_window_test), |
| TEST(vmx_pending_event_test), |
| TEST(vmx_pending_event_hlt_test), |
| TEST(vmx_store_tsc_test), |
| TEST(vmx_preemption_timer_zero_test), |
| TEST(vmx_preemption_timer_tf_test), |
| TEST(vmx_preemption_timer_expiry_test), |
| /* EPT access tests. */ |
| TEST(ept_access_test_not_present), |
| TEST(ept_access_test_read_only), |
| TEST(ept_access_test_write_only), |
| TEST(ept_access_test_read_write), |
| TEST(ept_access_test_execute_only), |
| TEST(ept_access_test_read_execute), |
| TEST(ept_access_test_write_execute), |
| TEST(ept_access_test_read_write_execute), |
| TEST(ept_access_test_reserved_bits), |
| TEST(ept_access_test_ignored_bits), |
| TEST(ept_access_test_paddr_not_present_ad_disabled), |
| TEST(ept_access_test_paddr_not_present_ad_enabled), |
| TEST(ept_access_test_paddr_read_only_ad_disabled), |
| TEST(ept_access_test_paddr_read_only_ad_enabled), |
| TEST(ept_access_test_paddr_read_write), |
| TEST(ept_access_test_paddr_read_write_execute), |
| TEST(ept_access_test_paddr_read_execute_ad_disabled), |
| TEST(ept_access_test_paddr_read_execute_ad_enabled), |
| TEST(ept_access_test_paddr_not_present_page_fault), |
| TEST(ept_access_test_force_2m_page), |
| /* Atomic MSR switch tests. */ |
| TEST(atomic_switch_max_msrs_test), |
| TEST(atomic_switch_overflow_msrs_test), |
| TEST(rdtsc_vmexit_diff_test), |
| TEST(vmx_mtf_test), |
| TEST(vmx_mtf_pdpte_test), |
| TEST(vmx_pf_exception_test), |
| TEST(vmx_pf_exception_forced_emulation_test), |
| TEST(vmx_pf_no_vpid_test), |
| TEST(vmx_pf_invvpid_test), |
| TEST(vmx_pf_vpid_test), |
| TEST(vmx_exception_test), |
| { NULL, NULL, NULL, NULL, NULL, {0} }, |
| }; |