blob: 0c0c882a44a1079130965460bffead02dfe86878 [file] [log] [blame]
/*
* Initialize machine setup information and I/O.
*
* After running setup() unit tests may query how many cpus they have
* (nr_cpus), how much memory they have (PHYSICAL_END - PHYSICAL_START),
* may use dynamic memory allocation (malloc, etc.), printf, and exit.
* Finally, argc and argv are also ready to be passed to main().
*
* Copyright (C) 2016, Red Hat Inc, Andrew Jones <drjones@redhat.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2.
*/
#include <libcflat.h>
#include <libfdt/libfdt.h>
#include <devicetree.h>
#include <alloc.h>
#include <asm/setup.h>
#include <asm/page.h>
extern unsigned long stacktop;
extern void io_init(void);
extern void setup_args(const char *args);
u32 cpus[NR_CPUS] = { [0 ... NR_CPUS-1] = (~0U) };
int nr_cpus;
struct mem_region mem_regions[NR_MEM_REGIONS];
phys_addr_t __physical_start, __physical_end;
unsigned __icache_bytes, __dcache_bytes;
struct cpu_set_params {
unsigned icache_bytes;
unsigned dcache_bytes;
};
static void cpu_set(int fdtnode, u32 regval, void *info)
{
static bool read_common_info = false;
struct cpu_set_params *params = info;
int cpu = nr_cpus++;
if (cpu >= NR_CPUS) {
printf("Number cpus exceeds maximum supported (%d).\n",
NR_CPUS);
assert(0);
}
cpus[cpu] = regval;
if (!read_common_info) {
const struct fdt_property *prop;
u32 *data;
prop = fdt_get_property(dt_fdt(), fdtnode,
"i-cache-line-size", NULL);
assert(prop != NULL);
data = (u32 *)prop->data;
params->icache_bytes = fdt32_to_cpu(*data);
prop = fdt_get_property(dt_fdt(), fdtnode,
"d-cache-line-size", NULL);
assert(prop != NULL);
data = (u32 *)prop->data;
params->dcache_bytes = fdt32_to_cpu(*data);
read_common_info = true;
}
}
static void cpu_init(void)
{
struct cpu_set_params params;
int ret;
nr_cpus = 0;
ret = dt_for_each_cpu_node(cpu_set, &params);
assert(ret == 0);
__icache_bytes = params.icache_bytes;
__dcache_bytes = params.dcache_bytes;
}
static void mem_init(phys_addr_t freemem_start)
{
struct dt_pbus_reg regs[NR_MEM_REGIONS];
struct mem_region primary, mem = {
.start = (phys_addr_t)-1,
};
int nr_regs, i;
nr_regs = dt_get_memory_params(regs, NR_MEM_REGIONS);
assert(nr_regs > 0);
primary.end = 0;
for (i = 0; i < nr_regs; ++i) {
mem_regions[i].start = regs[i].addr;
mem_regions[i].end = regs[i].addr + regs[i].size;
/*
* pick the region we're in for our primary region
*/
if (freemem_start >= mem_regions[i].start
&& freemem_start < mem_regions[i].end) {
mem_regions[i].flags |= MR_F_PRIMARY;
primary = mem_regions[i];
}
/*
* set the lowest and highest addresses found,
* ignoring potential gaps
*/
if (mem_regions[i].start < mem.start)
mem.start = mem_regions[i].start;
if (mem_regions[i].end > mem.end)
mem.end = mem_regions[i].end;
}
assert(primary.end != 0);
// assert(!(mem.start & ~PHYS_MASK) && !((mem.end - 1) & ~PHYS_MASK));
__physical_start = mem.start; /* PHYSICAL_START */
__physical_end = mem.end; /* PHYSICAL_END */
phys_alloc_init(freemem_start, primary.end - freemem_start);
phys_alloc_set_minimum_alignment(__icache_bytes > __dcache_bytes
? __icache_bytes : __dcache_bytes);
}
void setup(const void *fdt)
{
const char *bootargs;
u32 fdt_size;
int ret;
/*
* Move the fdt to just above the stack. The free memory
* then starts just after the fdt.
*/
fdt_size = fdt_totalsize(fdt);
ret = fdt_move(fdt, &stacktop, fdt_size);
assert(ret == 0);
ret = dt_init(&stacktop);
assert(ret == 0);
cpu_init();
mem_init(PAGE_ALIGN((unsigned long)&stacktop + fdt_size));
io_init();
ret = dt_get_bootargs(&bootargs);
assert(ret == 0);
setup_args(bootargs);
}