blob: 1d756e0ebbe36f36867f91afa74f8aab73e25f42 [file] [log] [blame]
#include "kvm/kvm.h"
#include "kvm/boot-protocol.h"
#include "kvm/cpufeature.h"
#include "kvm/read-write.h"
#include "kvm/interrupt.h"
#include "kvm/mptable.h"
#include "kvm/util.h"
#include <linux/kvm.h>
#include <asm/bootparam.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <stdbool.h>
#include <assert.h>
#include <limits.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <time.h>
#define DEFINE_KVM_EXIT_REASON(reason) [reason] = #reason
const char *kvm_exit_reasons[] = {
DEFINE_KVM_EXIT_REASON(KVM_EXIT_UNKNOWN),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_EXCEPTION),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_IO),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_HYPERCALL),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_DEBUG),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_HLT),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_MMIO),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_IRQ_WINDOW_OPEN),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_SHUTDOWN),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_FAIL_ENTRY),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_INTR),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_SET_TPR),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_TPR_ACCESS),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_S390_SIEIC),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_S390_RESET),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_DCR),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_NMI),
DEFINE_KVM_EXIT_REASON(KVM_EXIT_INTERNAL_ERROR),
};
#define DEFINE_KVM_EXT(ext) \
.name = #ext, \
.code = ext
struct {
const char *name;
int code;
} kvm_req_ext[] = {
{ DEFINE_KVM_EXT(KVM_CAP_COALESCED_MMIO) },
{ DEFINE_KVM_EXT(KVM_CAP_SET_TSS_ADDR) },
{ DEFINE_KVM_EXT(KVM_CAP_PIT2) },
{ DEFINE_KVM_EXT(KVM_CAP_USER_MEMORY) },
{ DEFINE_KVM_EXT(KVM_CAP_IRQ_ROUTING) },
{ DEFINE_KVM_EXT(KVM_CAP_IRQCHIP) },
{ DEFINE_KVM_EXT(KVM_CAP_HLT) },
{ DEFINE_KVM_EXT(KVM_CAP_IRQ_INJECT_STATUS) },
{ DEFINE_KVM_EXT(KVM_CAP_EXT_CPUID) },
};
static bool kvm__supports_extension(struct kvm *kvm, unsigned int extension)
{
int ret;
ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, extension);
if (ret < 0)
return false;
return ret;
}
static int kvm__check_extensions(struct kvm *kvm)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(kvm_req_ext); i++) {
if (!kvm__supports_extension(kvm, kvm_req_ext[i].code)) {
pr_error("Unsuppored KVM extension detected: %s",
kvm_req_ext[i].name);
return (int)-i;
}
}
return 0;
}
static struct kvm *kvm__new(void)
{
struct kvm *kvm = calloc(1, sizeof *kvm);
if (!kvm)
die("out of memory");
return kvm;
}
void kvm__delete(struct kvm *kvm)
{
kvm__stop_timer(kvm);
munmap(kvm->ram_start, kvm->ram_size);
free(kvm);
}
static bool kvm__cpu_supports_vm(void)
{
struct cpuid_regs regs;
u32 eax_base;
int feature;
regs = (struct cpuid_regs) {
.eax = 0x00,
};
host_cpuid(&regs);
switch (regs.ebx) {
case CPUID_VENDOR_INTEL_1:
eax_base = 0x00;
feature = KVM__X86_FEATURE_VMX;
break;
case CPUID_VENDOR_AMD_1:
eax_base = 0x80000000;
feature = KVM__X86_FEATURE_SVM;
break;
default:
return false;
}
regs = (struct cpuid_regs) {
.eax = eax_base,
};
host_cpuid(&regs);
if (regs.eax < eax_base + 0x01)
return false;
regs = (struct cpuid_regs) {
.eax = eax_base + 0x01
};
host_cpuid(&regs);
return regs.ecx & (1 << feature);
}
static void kvm_register_mem_slot(struct kvm *kvm, u32 slot, u64 guest_phys, u64 size, void *userspace_addr)
{
struct kvm_userspace_memory_region mem;
int ret;
mem = (struct kvm_userspace_memory_region) {
.slot = slot,
.guest_phys_addr = guest_phys,
.memory_size = size,
.userspace_addr = (unsigned long)userspace_addr,
};
ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem);
if (ret < 0)
die_perror("KVM_SET_USER_MEMORY_REGION ioctl");
}
/*
* Allocating RAM size bigger than 4GB requires us to leave a gap
* in the RAM which is used for PCI MMIO, hotplug, and unconfigured
* devices (see documentation of e820_setup_gap() for details).
*
* If we're required to initialize RAM bigger than 4GB, we will create
* a gap between 0xe0000000 and 0x100000000 in the guest virtual mem space.
*/
void kvm__init_ram(struct kvm *kvm)
{
u64 phys_start, phys_size;
void *host_mem;
if (kvm->ram_size < KVM_32BIT_GAP_START) {
/* Use a single block of RAM for 32bit RAM */
phys_start = 0;
phys_size = kvm->ram_size;
host_mem = kvm->ram_start;
kvm_register_mem_slot(kvm, 0, phys_start, phys_size, host_mem);
} else {
/* First RAM range from zero to the PCI gap: */
phys_start = 0;
phys_size = KVM_32BIT_GAP_START;
host_mem = kvm->ram_start;
kvm_register_mem_slot(kvm, 0, phys_start, phys_size, host_mem);
/* Second RAM range from 4GB to the end of RAM: */
phys_start = 0x100000000ULL;
phys_size = kvm->ram_size - phys_size;
host_mem = kvm->ram_start + phys_start;
kvm_register_mem_slot(kvm, 1, phys_start, phys_size, host_mem);
}
}
int kvm__max_cpus(struct kvm *kvm)
{
int ret;
ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, KVM_CAP_NR_VCPUS);
if (ret < 0)
die_perror("KVM_CAP_NR_VCPUS");
return ret;
}
struct kvm *kvm__init(const char *kvm_dev, unsigned long ram_size)
{
struct kvm_pit_config pit_config = { .flags = 0, };
struct kvm *kvm;
int ret;
if (!kvm__cpu_supports_vm())
die("Your CPU does not support hardware virtualization");
kvm = kvm__new();
kvm->sys_fd = open(kvm_dev, O_RDWR);
if (kvm->sys_fd < 0) {
if (errno == ENOENT)
die("'%s' not found. Please make sure your kernel has CONFIG_KVM enabled and that the KVM modules are loaded.", kvm_dev);
if (errno == ENODEV)
die("'%s' KVM driver not available.\n # (If the KVM module is loaded then 'dmesg' may offer further clues about the failure.)", kvm_dev);
fprintf(stderr, " Fatal, could not open %s: ", kvm_dev);
perror(NULL);
exit(1);
}
ret = ioctl(kvm->sys_fd, KVM_GET_API_VERSION, 0);
if (ret != KVM_API_VERSION)
die_perror("KVM_API_VERSION ioctl");
kvm->vm_fd = ioctl(kvm->sys_fd, KVM_CREATE_VM, 0);
if (kvm->vm_fd < 0)
die_perror("KVM_CREATE_VM ioctl");
if (kvm__check_extensions(kvm))
die("A required KVM extention is not supported by OS");
ret = ioctl(kvm->vm_fd, KVM_SET_TSS_ADDR, 0xfffbd000);
if (ret < 0)
die_perror("KVM_SET_TSS_ADDR ioctl");
ret = ioctl(kvm->vm_fd, KVM_CREATE_PIT2, &pit_config);
if (ret < 0)
die_perror("KVM_CREATE_PIT2 ioctl");
kvm->ram_size = ram_size;
if (kvm->ram_size < KVM_32BIT_GAP_START) {
kvm->ram_start = mmap(NULL, ram_size, PROT_RW, MAP_ANON_NORESERVE, -1, 0);
} else {
kvm->ram_start = mmap(NULL, ram_size + KVM_32BIT_GAP_SIZE, PROT_RW, MAP_ANON_NORESERVE, -1, 0);
if (kvm->ram_start != MAP_FAILED) {
/*
* We mprotect the gap (see kvm__init_ram() for details) PROT_NONE so that
* if we accidently write to it, we will know.
*/
mprotect(kvm->ram_start + KVM_32BIT_GAP_START, KVM_32BIT_GAP_SIZE, PROT_NONE);
}
}
if (kvm->ram_start == MAP_FAILED)
die("out of memory");
ret = ioctl(kvm->vm_fd, KVM_CREATE_IRQCHIP);
if (ret < 0)
die_perror("KVM_CREATE_IRQCHIP ioctl");
return kvm;
}
#define BOOT_LOADER_SELECTOR 0x1000
#define BOOT_LOADER_IP 0x0000
#define BOOT_LOADER_SP 0x8000
#define BOOT_CMDLINE_OFFSET 0x20000
#define BOOT_PROTOCOL_REQUIRED 0x206
#define LOAD_HIGH 0x01
static int load_flat_binary(struct kvm *kvm, int fd)
{
void *p;
int nr;
if (lseek(fd, 0, SEEK_SET) < 0)
die_perror("lseek");
p = guest_real_to_host(kvm, BOOT_LOADER_SELECTOR, BOOT_LOADER_IP);
while ((nr = read(fd, p, 65536)) > 0)
p += nr;
kvm->boot_selector = BOOT_LOADER_SELECTOR;
kvm->boot_ip = BOOT_LOADER_IP;
kvm->boot_sp = BOOT_LOADER_SP;
return true;
}
static const char *BZIMAGE_MAGIC = "HdrS";
static bool load_bzimage(struct kvm *kvm, int fd_kernel,
int fd_initrd, const char *kernel_cmdline, u16 vidmode)
{
struct boot_params *kern_boot;
unsigned long setup_sects;
struct boot_params boot;
size_t cmdline_size;
ssize_t setup_size;
void *p;
int nr;
/*
* See Documentation/x86/boot.txt for details no bzImage on-disk and
* memory layout.
*/
if (lseek(fd_kernel, 0, SEEK_SET) < 0)
die_perror("lseek");
if (read(fd_kernel, &boot, sizeof(boot)) != sizeof(boot))
return false;
if (memcmp(&boot.hdr.header, BZIMAGE_MAGIC, strlen(BZIMAGE_MAGIC)))
return false;
if (boot.hdr.version < BOOT_PROTOCOL_REQUIRED)
die("Too old kernel");
if (lseek(fd_kernel, 0, SEEK_SET) < 0)
die_perror("lseek");
if (!boot.hdr.setup_sects)
boot.hdr.setup_sects = BZ_DEFAULT_SETUP_SECTS;
setup_sects = boot.hdr.setup_sects + 1;
setup_size = setup_sects << 9;
p = guest_real_to_host(kvm, BOOT_LOADER_SELECTOR, BOOT_LOADER_IP);
/* copy setup.bin to mem*/
if (read(fd_kernel, p, setup_size) != setup_size)
die_perror("read");
/* copy vmlinux.bin to BZ_KERNEL_START*/
p = guest_flat_to_host(kvm, BZ_KERNEL_START);
while ((nr = read(fd_kernel, p, 65536)) > 0)
p += nr;
p = guest_flat_to_host(kvm, BOOT_CMDLINE_OFFSET);
if (kernel_cmdline) {
cmdline_size = strlen(kernel_cmdline) + 1;
if (cmdline_size > boot.hdr.cmdline_size)
cmdline_size = boot.hdr.cmdline_size;
memset(p, 0, boot.hdr.cmdline_size);
memcpy(p, kernel_cmdline, cmdline_size - 1);
}
kern_boot = guest_real_to_host(kvm, BOOT_LOADER_SELECTOR, 0x00);
kern_boot->hdr.cmd_line_ptr = BOOT_CMDLINE_OFFSET;
kern_boot->hdr.type_of_loader = 0xff;
kern_boot->hdr.heap_end_ptr = 0xfe00;
kern_boot->hdr.loadflags |= CAN_USE_HEAP;
kern_boot->hdr.vid_mode = vidmode;
/*
* Read initrd image into guest memory
*/
if (fd_initrd >= 0) {
struct stat initrd_stat;
unsigned long addr;
if (fstat(fd_initrd, &initrd_stat))
die_perror("fstat");
addr = boot.hdr.initrd_addr_max & ~0xfffff;
for (;;) {
if (addr < BZ_KERNEL_START)
die("Not enough memory for initrd");
else if (addr < (kvm->ram_size - initrd_stat.st_size))
break;
addr -= 0x100000;
}
p = guest_flat_to_host(kvm, addr);
nr = read(fd_initrd, p, initrd_stat.st_size);
if (nr != initrd_stat.st_size)
die("Failed to read initrd");
kern_boot->hdr.ramdisk_image = addr;
kern_boot->hdr.ramdisk_size = initrd_stat.st_size;
}
kvm->boot_selector = BOOT_LOADER_SELECTOR;
/*
* The real-mode setup code starts at offset 0x200 of a bzImage. See
* Documentation/x86/boot.txt for details.
*/
kvm->boot_ip = BOOT_LOADER_IP + 0x200;
kvm->boot_sp = BOOT_LOADER_SP;
return true;
}
/* RFC 1952 */
#define GZIP_ID1 0x1f
#define GZIP_ID2 0x8b
static bool initrd_check(int fd)
{
unsigned char id[2];
if (read_in_full(fd, id, ARRAY_SIZE(id)) < 0)
return false;
if (lseek(fd, 0, SEEK_SET) < 0)
die_perror("lseek");
return id[0] == GZIP_ID1 && id[1] == GZIP_ID2;
}
bool kvm__load_kernel(struct kvm *kvm, const char *kernel_filename,
const char *initrd_filename, const char *kernel_cmdline, u16 vidmode)
{
bool ret;
int fd_kernel = -1, fd_initrd = -1;
fd_kernel = open(kernel_filename, O_RDONLY);
if (fd_kernel < 0)
die("Unable to open kernel %s", kernel_filename);
if (initrd_filename) {
fd_initrd = open(initrd_filename, O_RDONLY);
if (fd_initrd < 0)
die("Unable to open initrd %s", initrd_filename);
if (!initrd_check(fd_initrd))
die("%s is not an initrd", initrd_filename);
}
ret = load_bzimage(kvm, fd_kernel, fd_initrd, kernel_cmdline, vidmode);
if (initrd_filename)
close(fd_initrd);
if (ret)
goto found_kernel;
pr_warning("%s is not a bzImage. Trying to load it as a flat binary...", kernel_filename);
ret = load_flat_binary(kvm, fd_kernel);
if (ret)
goto found_kernel;
close(fd_kernel);
die("%s is not a valid bzImage or flat binary", kernel_filename);
found_kernel:
close(fd_kernel);
return ret;
}
/**
* kvm__setup_bios - inject BIOS into guest system memory
* @kvm - guest system descriptor
*
* This function is a main routine where we poke guest memory
* and install BIOS there.
*/
void kvm__setup_bios(struct kvm *kvm)
{
/* standart minimal configuration */
setup_bios(kvm);
/* FIXME: SMP, ACPI and friends here */
/* MP table */
mptable_setup(kvm, kvm->nrcpus);
}
#define TIMER_INTERVAL_NS 1000000 /* 1 msec */
/*
* This function sets up a timer that's used to inject interrupts from the
* userspace hypervisor into the guest at periodical intervals. Please note
* that clock interrupt, for example, is not handled here.
*/
void kvm__start_timer(struct kvm *kvm)
{
struct itimerspec its;
struct sigevent sev;
memset(&sev, 0, sizeof(struct sigevent));
sev.sigev_value.sival_int = 0;
sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIGALRM;
if (timer_create(CLOCK_REALTIME, &sev, &kvm->timerid) < 0)
die("timer_create()");
its.it_value.tv_sec = TIMER_INTERVAL_NS / 1000000000;
its.it_value.tv_nsec = TIMER_INTERVAL_NS % 1000000000;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;
if (timer_settime(kvm->timerid, 0, &its, NULL) < 0)
die("timer_settime()");
}
void kvm__stop_timer(struct kvm *kvm)
{
if (kvm->timerid)
if (timer_delete(kvm->timerid) < 0)
die("timer_delete()");
kvm->timerid = 0;
}
void kvm__irq_line(struct kvm *kvm, int irq, int level)
{
struct kvm_irq_level irq_level;
irq_level = (struct kvm_irq_level) {
{
.irq = irq,
},
.level = level,
};
if (ioctl(kvm->vm_fd, KVM_IRQ_LINE, &irq_level) < 0)
die_perror("KVM_IRQ_LINE failed");
}
void kvm__dump_mem(struct kvm *kvm, unsigned long addr, unsigned long size)
{
unsigned char *p;
unsigned long n;
size &= ~7; /* mod 8 */
if (!size)
return;
p = guest_flat_to_host(kvm, addr);
for (n = 0; n < size; n += 8) {
if (!host_ptr_in_ram(kvm, p + n))
break;
printf(" 0x%08lx: %02x %02x %02x %02x %02x %02x %02x %02x\n",
addr + n, p[n + 0], p[n + 1], p[n + 2], p[n + 3],
p[n + 4], p[n + 5], p[n + 6], p[n + 7]);
}
}