blob: 8641989b385541c97adb175a863e62f5ceb33927 [file] [log] [blame]
#include "kvm/kvm.h"
#include <asm/image.h>
#include <linux/byteorder.h>
#include <linux/cpumask.h>
#include <linux/sizes.h>
#include <kvm/util.h>
int vcpu_affinity_parser(const struct option *opt, const char *arg, int unset)
{
struct kvm *kvm = opt->ptr;
const char *cpulist = arg;
cpumask_t *cpumask;
int cpu, ret;
kvm->cfg.arch.vcpu_affinity = cpulist;
cpumask = calloc(1, cpumask_size());
if (!cpumask)
die_perror("calloc");
ret = cpulist_parse(cpulist, cpumask);
if (ret) {
free(cpumask);
return ret;
}
kvm->arch.vcpu_affinity_cpuset = CPU_ALLOC(NR_CPUS);
if (!kvm->arch.vcpu_affinity_cpuset)
die_perror("CPU_ALLOC");
CPU_ZERO_S(CPU_ALLOC_SIZE(NR_CPUS), kvm->arch.vcpu_affinity_cpuset);
for_each_cpu(cpu, cpumask)
CPU_SET(cpu, kvm->arch.vcpu_affinity_cpuset);
return 0;
}
void kvm__arch_validate_cfg(struct kvm *kvm)
{
if (kvm->cfg.ram_addr < ARM_MEMORY_AREA) {
die("RAM address is below the I/O region ending at %luGB",
ARM_MEMORY_AREA >> 30);
}
if (kvm->cfg.arch.aarch32_guest &&
kvm->cfg.ram_addr + kvm->cfg.ram_size > SZ_4G) {
die("RAM extends above 4GB");
}
}
u64 kvm__arch_default_ram_address(void)
{
return ARM_MEMORY_AREA;
}
/*
* Return the TEXT_OFFSET value that the guest kernel expects. Note
* that pre-3.17 kernels expose this value using the native endianness
* instead of Little-Endian. BE kernels of this vintage may fail to
* boot. See Documentation/arm64/booting.rst in your local kernel tree.
*/
unsigned long long kvm__arch_get_kern_offset(struct kvm *kvm, int fd)
{
struct arm64_image_header header;
off_t cur_offset;
ssize_t size;
const char *debug_str;
/* the 32bit kernel offset is a well known value */
if (kvm->cfg.arch.aarch32_guest)
return 0x8000;
cur_offset = lseek(fd, 0, SEEK_CUR);
if (cur_offset == (off_t)-1 ||
lseek(fd, 0, SEEK_SET) == (off_t)-1) {
debug_str = "Failed to seek in kernel image file";
goto default_offset;
}
size = xread(fd, &header, sizeof(header));
if (size < 0 || (size_t)size < sizeof(header))
die("Failed to read kernel image header");
lseek(fd, cur_offset, SEEK_SET);
if (memcmp(&header.magic, ARM64_IMAGE_MAGIC, sizeof(header.magic))) {
debug_str = "Kernel image magic not matching";
goto default_offset;
}
if (le64_to_cpu(header.image_size))
return le64_to_cpu(header.text_offset);
debug_str = "Image size is 0";
default_offset:
pr_debug("%s, assuming TEXT_OFFSET to be 0x80000", debug_str);
return 0x80000;
}
int kvm__arch_get_ipa_limit(struct kvm *kvm)
{
int ret;
ret = ioctl(kvm->sys_fd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
if (ret <= 0)
ret = 0;
return ret;
}
int kvm__get_vm_type(struct kvm *kvm)
{
unsigned int ipa_bits, max_ipa_bits;
unsigned long max_ipa;
/* If we're running on an old kernel, use 0 as the VM type */
max_ipa_bits = kvm__arch_get_ipa_limit(kvm);
if (!max_ipa_bits)
return 0;
/* Otherwise, compute the minimal required IPA size */
max_ipa = kvm->cfg.ram_addr + kvm->cfg.ram_size - 1;
ipa_bits = max(32, fls_long(max_ipa));
pr_debug("max_ipa %lx ipa_bits %d max_ipa_bits %d",
max_ipa, ipa_bits, max_ipa_bits);
if (ipa_bits > max_ipa_bits)
die("Memory too large for this system (needs %d bits, %d available)", ipa_bits, max_ipa_bits);
return KVM_VM_TYPE_ARM_IPA_SIZE(ipa_bits) | (1U << 31);
}
void kvm__arch_enable_mte(struct kvm *kvm)
{
struct kvm_enable_cap cap = {
.cap = KVM_CAP_ARM_MTE,
};
if (kvm->cfg.arch.aarch32_guest) {
pr_debug("MTE is incompatible with AArch32");
return;
}
if (kvm->cfg.arch.mte_disabled) {
pr_debug("MTE disabled by user");
return;
}
if (!kvm__supports_extension(kvm, KVM_CAP_ARM_MTE)) {
pr_debug("MTE capability not available");
return;
}
if (ioctl(kvm->vm_fd, KVM_ENABLE_CAP, &cap))
die_perror("KVM_ENABLE_CAP(KVM_CAP_ARM_MTE)");
pr_debug("MTE capability enabled");
}