| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020-2023 Intel Corporation |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/highmem.h> |
| |
| #include "ivpu_drv.h" |
| #include "ivpu_hw.h" |
| #include "ivpu_mmu.h" |
| #include "ivpu_mmu_context.h" |
| |
| #define IVPU_MMU_PGD_INDEX_MASK GENMASK(47, 39) |
| #define IVPU_MMU_PUD_INDEX_MASK GENMASK(38, 30) |
| #define IVPU_MMU_PMD_INDEX_MASK GENMASK(29, 21) |
| #define IVPU_MMU_PTE_INDEX_MASK GENMASK(20, 12) |
| #define IVPU_MMU_ENTRY_FLAGS_MASK (BIT(52) | GENMASK(11, 0)) |
| #define IVPU_MMU_ENTRY_FLAG_CONT BIT(52) |
| #define IVPU_MMU_ENTRY_FLAG_NG BIT(11) |
| #define IVPU_MMU_ENTRY_FLAG_AF BIT(10) |
| #define IVPU_MMU_ENTRY_FLAG_USER BIT(6) |
| #define IVPU_MMU_ENTRY_FLAG_LLC_COHERENT BIT(2) |
| #define IVPU_MMU_ENTRY_FLAG_TYPE_PAGE BIT(1) |
| #define IVPU_MMU_ENTRY_FLAG_VALID BIT(0) |
| |
| #define IVPU_MMU_PAGE_SIZE SZ_4K |
| #define IVPU_MMU_CONT_PAGES_SIZE (IVPU_MMU_PAGE_SIZE * 16) |
| #define IVPU_MMU_PTE_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PAGE_SIZE) |
| #define IVPU_MMU_PMD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PTE_MAP_SIZE) |
| #define IVPU_MMU_PUD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PMD_MAP_SIZE) |
| #define IVPU_MMU_PGD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PUD_MAP_SIZE) |
| #define IVPU_MMU_PGTABLE_SIZE (IVPU_MMU_PGTABLE_ENTRIES * sizeof(u64)) |
| |
| #define IVPU_MMU_DUMMY_ADDRESS 0xdeadb000 |
| #define IVPU_MMU_ENTRY_VALID (IVPU_MMU_ENTRY_FLAG_TYPE_PAGE | IVPU_MMU_ENTRY_FLAG_VALID) |
| #define IVPU_MMU_ENTRY_INVALID (IVPU_MMU_DUMMY_ADDRESS & ~IVPU_MMU_ENTRY_FLAGS_MASK) |
| #define IVPU_MMU_ENTRY_MAPPED (IVPU_MMU_ENTRY_FLAG_AF | IVPU_MMU_ENTRY_FLAG_USER | \ |
| IVPU_MMU_ENTRY_FLAG_NG | IVPU_MMU_ENTRY_VALID) |
| |
| static int ivpu_mmu_pgtable_init(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable) |
| { |
| dma_addr_t pgd_dma; |
| |
| pgtable->pgd_dma_ptr = dma_alloc_coherent(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pgd_dma, |
| GFP_KERNEL); |
| if (!pgtable->pgd_dma_ptr) |
| return -ENOMEM; |
| |
| pgtable->pgd_dma = pgd_dma; |
| |
| return 0; |
| } |
| |
| static void ivpu_mmu_pgtable_free(struct ivpu_device *vdev, u64 *cpu_addr, dma_addr_t dma_addr) |
| { |
| if (cpu_addr) |
| dma_free_coherent(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, cpu_addr, |
| dma_addr & ~IVPU_MMU_ENTRY_FLAGS_MASK); |
| } |
| |
| static void ivpu_mmu_pgtables_free(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable) |
| { |
| int pgd_idx, pud_idx, pmd_idx; |
| dma_addr_t pud_dma, pmd_dma, pte_dma; |
| u64 *pud_dma_ptr, *pmd_dma_ptr, *pte_dma_ptr; |
| |
| for (pgd_idx = 0; pgd_idx < IVPU_MMU_PGTABLE_ENTRIES; ++pgd_idx) { |
| pud_dma_ptr = pgtable->pud_ptrs[pgd_idx]; |
| pud_dma = pgtable->pgd_dma_ptr[pgd_idx]; |
| |
| if (!pud_dma_ptr) |
| continue; |
| |
| for (pud_idx = 0; pud_idx < IVPU_MMU_PGTABLE_ENTRIES; ++pud_idx) { |
| pmd_dma_ptr = pgtable->pmd_ptrs[pgd_idx][pud_idx]; |
| pmd_dma = pgtable->pud_ptrs[pgd_idx][pud_idx]; |
| |
| if (!pmd_dma_ptr) |
| continue; |
| |
| for (pmd_idx = 0; pmd_idx < IVPU_MMU_PGTABLE_ENTRIES; ++pmd_idx) { |
| pte_dma_ptr = pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx]; |
| pte_dma = pgtable->pmd_ptrs[pgd_idx][pud_idx][pmd_idx]; |
| |
| ivpu_mmu_pgtable_free(vdev, pte_dma_ptr, pte_dma); |
| } |
| |
| kfree(pgtable->pte_ptrs[pgd_idx][pud_idx]); |
| ivpu_mmu_pgtable_free(vdev, pmd_dma_ptr, pmd_dma); |
| } |
| |
| kfree(pgtable->pmd_ptrs[pgd_idx]); |
| kfree(pgtable->pte_ptrs[pgd_idx]); |
| ivpu_mmu_pgtable_free(vdev, pud_dma_ptr, pud_dma); |
| } |
| |
| ivpu_mmu_pgtable_free(vdev, pgtable->pgd_dma_ptr, pgtable->pgd_dma); |
| } |
| |
| static u64* |
| ivpu_mmu_ensure_pud(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable, int pgd_idx) |
| { |
| u64 *pud_dma_ptr = pgtable->pud_ptrs[pgd_idx]; |
| dma_addr_t pud_dma; |
| |
| if (pud_dma_ptr) |
| return pud_dma_ptr; |
| |
| pud_dma_ptr = dma_alloc_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pud_dma, GFP_KERNEL); |
| if (!pud_dma_ptr) |
| return NULL; |
| |
| drm_WARN_ON(&vdev->drm, pgtable->pmd_ptrs[pgd_idx]); |
| pgtable->pmd_ptrs[pgd_idx] = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL); |
| if (!pgtable->pmd_ptrs[pgd_idx]) |
| goto err_free_pud_dma_ptr; |
| |
| drm_WARN_ON(&vdev->drm, pgtable->pte_ptrs[pgd_idx]); |
| pgtable->pte_ptrs[pgd_idx] = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL); |
| if (!pgtable->pte_ptrs[pgd_idx]) |
| goto err_free_pmd_ptrs; |
| |
| pgtable->pud_ptrs[pgd_idx] = pud_dma_ptr; |
| pgtable->pgd_dma_ptr[pgd_idx] = pud_dma | IVPU_MMU_ENTRY_VALID; |
| |
| return pud_dma_ptr; |
| |
| err_free_pmd_ptrs: |
| kfree(pgtable->pmd_ptrs[pgd_idx]); |
| |
| err_free_pud_dma_ptr: |
| ivpu_mmu_pgtable_free(vdev, pud_dma_ptr, pud_dma); |
| return NULL; |
| } |
| |
| static u64* |
| ivpu_mmu_ensure_pmd(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable, int pgd_idx, |
| int pud_idx) |
| { |
| u64 *pmd_dma_ptr = pgtable->pmd_ptrs[pgd_idx][pud_idx]; |
| dma_addr_t pmd_dma; |
| |
| if (pmd_dma_ptr) |
| return pmd_dma_ptr; |
| |
| pmd_dma_ptr = dma_alloc_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pmd_dma, GFP_KERNEL); |
| if (!pmd_dma_ptr) |
| return NULL; |
| |
| drm_WARN_ON(&vdev->drm, pgtable->pte_ptrs[pgd_idx][pud_idx]); |
| pgtable->pte_ptrs[pgd_idx][pud_idx] = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL); |
| if (!pgtable->pte_ptrs[pgd_idx][pud_idx]) |
| goto err_free_pmd_dma_ptr; |
| |
| pgtable->pmd_ptrs[pgd_idx][pud_idx] = pmd_dma_ptr; |
| pgtable->pud_ptrs[pgd_idx][pud_idx] = pmd_dma | IVPU_MMU_ENTRY_VALID; |
| |
| return pmd_dma_ptr; |
| |
| err_free_pmd_dma_ptr: |
| ivpu_mmu_pgtable_free(vdev, pmd_dma_ptr, pmd_dma); |
| return NULL; |
| } |
| |
| static u64* |
| ivpu_mmu_ensure_pte(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable, |
| int pgd_idx, int pud_idx, int pmd_idx) |
| { |
| u64 *pte_dma_ptr = pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx]; |
| dma_addr_t pte_dma; |
| |
| if (pte_dma_ptr) |
| return pte_dma_ptr; |
| |
| pte_dma_ptr = dma_alloc_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pte_dma, GFP_KERNEL); |
| if (!pte_dma_ptr) |
| return NULL; |
| |
| pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx] = pte_dma_ptr; |
| pgtable->pmd_ptrs[pgd_idx][pud_idx][pmd_idx] = pte_dma | IVPU_MMU_ENTRY_VALID; |
| |
| return pte_dma_ptr; |
| } |
| |
| static int |
| ivpu_mmu_context_map_page(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, |
| u64 vpu_addr, dma_addr_t dma_addr, u64 prot) |
| { |
| u64 *pte; |
| int pgd_idx = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr); |
| int pud_idx = FIELD_GET(IVPU_MMU_PUD_INDEX_MASK, vpu_addr); |
| int pmd_idx = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr); |
| int pte_idx = FIELD_GET(IVPU_MMU_PTE_INDEX_MASK, vpu_addr); |
| |
| /* Allocate PUD - second level page table if needed */ |
| if (!ivpu_mmu_ensure_pud(vdev, &ctx->pgtable, pgd_idx)) |
| return -ENOMEM; |
| |
| /* Allocate PMD - third level page table if needed */ |
| if (!ivpu_mmu_ensure_pmd(vdev, &ctx->pgtable, pgd_idx, pud_idx)) |
| return -ENOMEM; |
| |
| /* Allocate PTE - fourth level page table if needed */ |
| pte = ivpu_mmu_ensure_pte(vdev, &ctx->pgtable, pgd_idx, pud_idx, pmd_idx); |
| if (!pte) |
| return -ENOMEM; |
| |
| /* Update PTE */ |
| pte[pte_idx] = dma_addr | prot; |
| |
| return 0; |
| } |
| |
| static int |
| ivpu_mmu_context_map_cont_64k(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u64 vpu_addr, |
| dma_addr_t dma_addr, u64 prot) |
| { |
| size_t size = IVPU_MMU_CONT_PAGES_SIZE; |
| |
| drm_WARN_ON(&vdev->drm, !IS_ALIGNED(vpu_addr, size)); |
| drm_WARN_ON(&vdev->drm, !IS_ALIGNED(dma_addr, size)); |
| |
| prot |= IVPU_MMU_ENTRY_FLAG_CONT; |
| |
| while (size) { |
| int ret = ivpu_mmu_context_map_page(vdev, ctx, vpu_addr, dma_addr, prot); |
| |
| if (ret) |
| return ret; |
| |
| size -= IVPU_MMU_PAGE_SIZE; |
| vpu_addr += IVPU_MMU_PAGE_SIZE; |
| dma_addr += IVPU_MMU_PAGE_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| static void ivpu_mmu_context_unmap_page(struct ivpu_mmu_context *ctx, u64 vpu_addr) |
| { |
| int pgd_idx = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr); |
| int pud_idx = FIELD_GET(IVPU_MMU_PUD_INDEX_MASK, vpu_addr); |
| int pmd_idx = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr); |
| int pte_idx = FIELD_GET(IVPU_MMU_PTE_INDEX_MASK, vpu_addr); |
| |
| /* Update PTE with dummy physical address and clear flags */ |
| ctx->pgtable.pte_ptrs[pgd_idx][pud_idx][pmd_idx][pte_idx] = IVPU_MMU_ENTRY_INVALID; |
| } |
| |
| static void |
| ivpu_mmu_context_flush_page_tables(struct ivpu_mmu_context *ctx, u64 vpu_addr, size_t size) |
| { |
| struct ivpu_mmu_pgtable *pgtable = &ctx->pgtable; |
| u64 end_addr = vpu_addr + size; |
| |
| /* Align to PMD entry (2 MB) */ |
| vpu_addr &= ~(IVPU_MMU_PTE_MAP_SIZE - 1); |
| |
| while (vpu_addr < end_addr) { |
| int pgd_idx = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr); |
| u64 pud_end = (pgd_idx + 1) * (u64)IVPU_MMU_PUD_MAP_SIZE; |
| |
| while (vpu_addr < end_addr && vpu_addr < pud_end) { |
| int pud_idx = FIELD_GET(IVPU_MMU_PUD_INDEX_MASK, vpu_addr); |
| u64 pmd_end = (pud_idx + 1) * (u64)IVPU_MMU_PMD_MAP_SIZE; |
| |
| while (vpu_addr < end_addr && vpu_addr < pmd_end) { |
| int pmd_idx = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr); |
| |
| clflush_cache_range(pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx], |
| IVPU_MMU_PGTABLE_SIZE); |
| vpu_addr += IVPU_MMU_PTE_MAP_SIZE; |
| } |
| clflush_cache_range(pgtable->pmd_ptrs[pgd_idx][pud_idx], |
| IVPU_MMU_PGTABLE_SIZE); |
| } |
| clflush_cache_range(pgtable->pud_ptrs[pgd_idx], IVPU_MMU_PGTABLE_SIZE); |
| } |
| clflush_cache_range(pgtable->pgd_dma_ptr, IVPU_MMU_PGTABLE_SIZE); |
| } |
| |
| static int |
| ivpu_mmu_context_map_pages(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, |
| u64 vpu_addr, dma_addr_t dma_addr, size_t size, u64 prot) |
| { |
| int map_size; |
| int ret; |
| |
| while (size) { |
| if (!ivpu_disable_mmu_cont_pages && size >= IVPU_MMU_CONT_PAGES_SIZE && |
| IS_ALIGNED(vpu_addr | dma_addr, IVPU_MMU_CONT_PAGES_SIZE)) { |
| ret = ivpu_mmu_context_map_cont_64k(vdev, ctx, vpu_addr, dma_addr, prot); |
| map_size = IVPU_MMU_CONT_PAGES_SIZE; |
| } else { |
| ret = ivpu_mmu_context_map_page(vdev, ctx, vpu_addr, dma_addr, prot); |
| map_size = IVPU_MMU_PAGE_SIZE; |
| } |
| |
| if (ret) |
| return ret; |
| |
| vpu_addr += map_size; |
| dma_addr += map_size; |
| size -= map_size; |
| } |
| |
| return 0; |
| } |
| |
| static void ivpu_mmu_context_unmap_pages(struct ivpu_mmu_context *ctx, u64 vpu_addr, size_t size) |
| { |
| while (size) { |
| ivpu_mmu_context_unmap_page(ctx, vpu_addr); |
| vpu_addr += IVPU_MMU_PAGE_SIZE; |
| size -= IVPU_MMU_PAGE_SIZE; |
| } |
| } |
| |
| int |
| ivpu_mmu_context_map_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, |
| u64 vpu_addr, struct sg_table *sgt, bool llc_coherent) |
| { |
| struct scatterlist *sg; |
| int ret; |
| u64 prot; |
| u64 i; |
| |
| if (!IS_ALIGNED(vpu_addr, IVPU_MMU_PAGE_SIZE)) |
| return -EINVAL; |
| /* |
| * VPU is only 32 bit, but DMA engine is 38 bit |
| * Ranges < 2 GB are reserved for VPU internal registers |
| * Limit range to 8 GB |
| */ |
| if (vpu_addr < SZ_2G || vpu_addr > SZ_8G) |
| return -EINVAL; |
| |
| prot = IVPU_MMU_ENTRY_MAPPED; |
| if (llc_coherent) |
| prot |= IVPU_MMU_ENTRY_FLAG_LLC_COHERENT; |
| |
| mutex_lock(&ctx->lock); |
| |
| for_each_sgtable_dma_sg(sgt, sg, i) { |
| dma_addr_t dma_addr = sg_dma_address(sg) - sg->offset; |
| size_t size = sg_dma_len(sg) + sg->offset; |
| |
| ret = ivpu_mmu_context_map_pages(vdev, ctx, vpu_addr, dma_addr, size, prot); |
| if (ret) { |
| ivpu_err(vdev, "Failed to map context pages\n"); |
| mutex_unlock(&ctx->lock); |
| return ret; |
| } |
| ivpu_mmu_context_flush_page_tables(ctx, vpu_addr, size); |
| vpu_addr += size; |
| } |
| |
| mutex_unlock(&ctx->lock); |
| |
| ret = ivpu_mmu_invalidate_tlb(vdev, ctx->id); |
| if (ret) |
| ivpu_err(vdev, "Failed to invalidate TLB for ctx %u: %d\n", ctx->id, ret); |
| return ret; |
| } |
| |
| void |
| ivpu_mmu_context_unmap_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, |
| u64 vpu_addr, struct sg_table *sgt) |
| { |
| struct scatterlist *sg; |
| int ret; |
| u64 i; |
| |
| if (!IS_ALIGNED(vpu_addr, IVPU_MMU_PAGE_SIZE)) |
| ivpu_warn(vdev, "Unaligned vpu_addr: 0x%llx\n", vpu_addr); |
| |
| mutex_lock(&ctx->lock); |
| |
| for_each_sgtable_dma_sg(sgt, sg, i) { |
| size_t size = sg_dma_len(sg) + sg->offset; |
| |
| ivpu_mmu_context_unmap_pages(ctx, vpu_addr, size); |
| ivpu_mmu_context_flush_page_tables(ctx, vpu_addr, size); |
| vpu_addr += size; |
| } |
| |
| mutex_unlock(&ctx->lock); |
| |
| ret = ivpu_mmu_invalidate_tlb(vdev, ctx->id); |
| if (ret) |
| ivpu_warn(vdev, "Failed to invalidate TLB for ctx %u: %d\n", ctx->id, ret); |
| } |
| |
| int |
| ivpu_mmu_context_insert_node_locked(struct ivpu_mmu_context *ctx, |
| const struct ivpu_addr_range *range, |
| u64 size, struct drm_mm_node *node) |
| { |
| lockdep_assert_held(&ctx->lock); |
| |
| if (!ivpu_disable_mmu_cont_pages && size >= IVPU_MMU_CONT_PAGES_SIZE) { |
| if (!drm_mm_insert_node_in_range(&ctx->mm, node, size, IVPU_MMU_CONT_PAGES_SIZE, 0, |
| range->start, range->end, DRM_MM_INSERT_BEST)) |
| return 0; |
| } |
| |
| return drm_mm_insert_node_in_range(&ctx->mm, node, size, IVPU_MMU_PAGE_SIZE, 0, |
| range->start, range->end, DRM_MM_INSERT_BEST); |
| } |
| |
| void |
| ivpu_mmu_context_remove_node_locked(struct ivpu_mmu_context *ctx, struct drm_mm_node *node) |
| { |
| lockdep_assert_held(&ctx->lock); |
| |
| drm_mm_remove_node(node); |
| } |
| |
| static int |
| ivpu_mmu_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 context_id) |
| { |
| u64 start, end; |
| int ret; |
| |
| mutex_init(&ctx->lock); |
| INIT_LIST_HEAD(&ctx->bo_list); |
| |
| ret = ivpu_mmu_pgtable_init(vdev, &ctx->pgtable); |
| if (ret) |
| return ret; |
| |
| if (!context_id) { |
| start = vdev->hw->ranges.global.start; |
| end = vdev->hw->ranges.shave.end; |
| } else { |
| start = vdev->hw->ranges.user.start; |
| end = vdev->hw->ranges.dma.end; |
| } |
| |
| drm_mm_init(&ctx->mm, start, end - start); |
| ctx->id = context_id; |
| |
| return 0; |
| } |
| |
| static void ivpu_mmu_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx) |
| { |
| if (drm_WARN_ON(&vdev->drm, !ctx->pgtable.pgd_dma_ptr)) |
| return; |
| |
| mutex_destroy(&ctx->lock); |
| ivpu_mmu_pgtables_free(vdev, &ctx->pgtable); |
| drm_mm_takedown(&ctx->mm); |
| |
| ctx->pgtable.pgd_dma_ptr = NULL; |
| ctx->pgtable.pgd_dma = 0; |
| } |
| |
| int ivpu_mmu_global_context_init(struct ivpu_device *vdev) |
| { |
| return ivpu_mmu_context_init(vdev, &vdev->gctx, IVPU_GLOBAL_CONTEXT_MMU_SSID); |
| } |
| |
| void ivpu_mmu_global_context_fini(struct ivpu_device *vdev) |
| { |
| return ivpu_mmu_context_fini(vdev, &vdev->gctx); |
| } |
| |
| void ivpu_mmu_user_context_mark_invalid(struct ivpu_device *vdev, u32 ssid) |
| { |
| struct ivpu_file_priv *file_priv; |
| |
| xa_lock(&vdev->context_xa); |
| |
| file_priv = xa_load(&vdev->context_xa, ssid); |
| if (file_priv) |
| file_priv->has_mmu_faults = true; |
| |
| xa_unlock(&vdev->context_xa); |
| } |
| |
| int ivpu_mmu_user_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 ctx_id) |
| { |
| int ret; |
| |
| drm_WARN_ON(&vdev->drm, !ctx_id); |
| |
| ret = ivpu_mmu_context_init(vdev, ctx, ctx_id); |
| if (ret) { |
| ivpu_err(vdev, "Failed to initialize context: %d\n", ret); |
| return ret; |
| } |
| |
| ret = ivpu_mmu_set_pgtable(vdev, ctx_id, &ctx->pgtable); |
| if (ret) { |
| ivpu_err(vdev, "Failed to set page table: %d\n", ret); |
| goto err_context_fini; |
| } |
| |
| return 0; |
| |
| err_context_fini: |
| ivpu_mmu_context_fini(vdev, ctx); |
| return ret; |
| } |
| |
| void ivpu_mmu_user_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx) |
| { |
| drm_WARN_ON(&vdev->drm, !ctx->id); |
| |
| ivpu_mmu_clear_pgtable(vdev, ctx->id); |
| ivpu_mmu_context_fini(vdev, ctx); |
| } |