blob: ad54ef798109058c6178f5194e8b2329daa168c8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* ST SPEAr ADC driver
*
* Copyright 2012 Stefan Roese <sr@denx.de>
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
/* SPEAR registers definitions */
#define SPEAR600_ADC_SCAN_RATE_LO(x) ((x) & 0xFFFF)
#define SPEAR600_ADC_SCAN_RATE_HI(x) (((x) >> 0x10) & 0xFFFF)
#define SPEAR_ADC_CLK_LOW(x) (((x) & 0xf) << 0)
#define SPEAR_ADC_CLK_HIGH(x) (((x) & 0xf) << 4)
/* Bit definitions for SPEAR_ADC_STATUS */
#define SPEAR_ADC_STATUS_START_CONVERSION BIT(0)
#define SPEAR_ADC_STATUS_CHANNEL_NUM(x) ((x) << 1)
#define SPEAR_ADC_STATUS_ADC_ENABLE BIT(4)
#define SPEAR_ADC_STATUS_AVG_SAMPLE(x) ((x) << 5)
#define SPEAR_ADC_STATUS_VREF_INTERNAL BIT(9)
#define SPEAR_ADC_DATA_MASK 0x03ff
#define SPEAR_ADC_DATA_BITS 10
#define SPEAR_ADC_MOD_NAME "spear-adc"
#define SPEAR_ADC_CHANNEL_NUM 8
#define SPEAR_ADC_CLK_MIN 2500000
#define SPEAR_ADC_CLK_MAX 20000000
struct adc_regs_spear3xx {
u32 status;
u32 average;
u32 scan_rate;
u32 clk; /* Not avail for 1340 & 1310 */
u32 ch_ctrl[SPEAR_ADC_CHANNEL_NUM];
u32 ch_data[SPEAR_ADC_CHANNEL_NUM];
};
struct chan_data {
u32 lsb;
u32 msb;
};
struct adc_regs_spear6xx {
u32 status;
u32 pad[2];
u32 clk;
u32 ch_ctrl[SPEAR_ADC_CHANNEL_NUM];
struct chan_data ch_data[SPEAR_ADC_CHANNEL_NUM];
u32 scan_rate_lo;
u32 scan_rate_hi;
struct chan_data average;
};
struct spear_adc_state {
struct device_node *np;
struct adc_regs_spear3xx __iomem *adc_base_spear3xx;
struct adc_regs_spear6xx __iomem *adc_base_spear6xx;
struct clk *clk;
struct completion completion;
/*
* Lock to protect the device state during a potential concurrent
* read access from userspace. Reading a raw value requires a sequence
* of register writes, then a wait for a completion callback,
* and finally a register read, during which userspace could issue
* another read request. This lock protects a read access from
* ocurring before another one has finished.
*/
struct mutex lock;
u32 current_clk;
u32 sampling_freq;
u32 avg_samples;
u32 vref_external;
u32 value;
};
/*
* Functions to access some SPEAr ADC register. Abstracted into
* static inline functions, because of different register offsets
* on different SoC variants (SPEAr300 vs SPEAr600 etc).
*/
static void spear_adc_set_status(struct spear_adc_state *st, u32 val)
{
__raw_writel(val, &st->adc_base_spear6xx->status);
}
static void spear_adc_set_clk(struct spear_adc_state *st, u32 val)
{
u32 clk_high, clk_low, count;
u32 apb_clk = clk_get_rate(st->clk);
count = DIV_ROUND_UP(apb_clk, val);
clk_low = count / 2;
clk_high = count - clk_low;
st->current_clk = apb_clk / count;
__raw_writel(SPEAR_ADC_CLK_LOW(clk_low) | SPEAR_ADC_CLK_HIGH(clk_high),
&st->adc_base_spear6xx->clk);
}
static void spear_adc_set_ctrl(struct spear_adc_state *st, int n,
u32 val)
{
__raw_writel(val, &st->adc_base_spear6xx->ch_ctrl[n]);
}
static u32 spear_adc_get_average(struct spear_adc_state *st)
{
if (of_device_is_compatible(st->np, "st,spear600-adc")) {
return __raw_readl(&st->adc_base_spear6xx->average.msb) &
SPEAR_ADC_DATA_MASK;
} else {
return __raw_readl(&st->adc_base_spear3xx->average) &
SPEAR_ADC_DATA_MASK;
}
}
static void spear_adc_set_scanrate(struct spear_adc_state *st, u32 rate)
{
if (of_device_is_compatible(st->np, "st,spear600-adc")) {
__raw_writel(SPEAR600_ADC_SCAN_RATE_LO(rate),
&st->adc_base_spear6xx->scan_rate_lo);
__raw_writel(SPEAR600_ADC_SCAN_RATE_HI(rate),
&st->adc_base_spear6xx->scan_rate_hi);
} else {
__raw_writel(rate, &st->adc_base_spear3xx->scan_rate);
}
}
static int spear_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct spear_adc_state *st = iio_priv(indio_dev);
u32 status;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&st->lock);
status = SPEAR_ADC_STATUS_CHANNEL_NUM(chan->channel) |
SPEAR_ADC_STATUS_AVG_SAMPLE(st->avg_samples) |
SPEAR_ADC_STATUS_START_CONVERSION |
SPEAR_ADC_STATUS_ADC_ENABLE;
if (st->vref_external == 0)
status |= SPEAR_ADC_STATUS_VREF_INTERNAL;
spear_adc_set_status(st, status);
wait_for_completion(&st->completion); /* set by ISR */
*val = st->value;
mutex_unlock(&st->lock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = st->vref_external;
*val2 = SPEAR_ADC_DATA_BITS;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->current_clk;
return IIO_VAL_INT;
}
return -EINVAL;
}
static int spear_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct spear_adc_state *st = iio_priv(indio_dev);
int ret = 0;
if (mask != IIO_CHAN_INFO_SAMP_FREQ)
return -EINVAL;
mutex_lock(&st->lock);
if ((val < SPEAR_ADC_CLK_MIN) ||
(val > SPEAR_ADC_CLK_MAX) ||
(val2 != 0)) {
ret = -EINVAL;
goto out;
}
spear_adc_set_clk(st, val);
out:
mutex_unlock(&st->lock);
return ret;
}
#define SPEAR_ADC_CHAN(idx) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
.channel = idx, \
}
static const struct iio_chan_spec spear_adc_iio_channels[] = {
SPEAR_ADC_CHAN(0),
SPEAR_ADC_CHAN(1),
SPEAR_ADC_CHAN(2),
SPEAR_ADC_CHAN(3),
SPEAR_ADC_CHAN(4),
SPEAR_ADC_CHAN(5),
SPEAR_ADC_CHAN(6),
SPEAR_ADC_CHAN(7),
};
static irqreturn_t spear_adc_isr(int irq, void *dev_id)
{
struct spear_adc_state *st = dev_id;
/* Read value to clear IRQ */
st->value = spear_adc_get_average(st);
complete(&st->completion);
return IRQ_HANDLED;
}
static int spear_adc_configure(struct spear_adc_state *st)
{
int i;
/* Reset ADC core */
spear_adc_set_status(st, 0);
__raw_writel(0, &st->adc_base_spear6xx->clk);
for (i = 0; i < 8; i++)
spear_adc_set_ctrl(st, i, 0);
spear_adc_set_scanrate(st, 0);
spear_adc_set_clk(st, st->sampling_freq);
return 0;
}
static const struct iio_info spear_adc_info = {
.read_raw = &spear_adc_read_raw,
.write_raw = &spear_adc_write_raw,
};
static int spear_adc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct spear_adc_state *st;
struct iio_dev *indio_dev = NULL;
int ret = -ENODEV;
int irq;
indio_dev = devm_iio_device_alloc(dev, sizeof(struct spear_adc_state));
if (!indio_dev) {
dev_err(dev, "failed allocating iio device\n");
return -ENOMEM;
}
st = iio_priv(indio_dev);
mutex_init(&st->lock);
st->np = np;
/*
* SPEAr600 has a different register layout than other SPEAr SoC's
* (e.g. SPEAr3xx). Let's provide two register base addresses
* to support multi-arch kernels.
*/
st->adc_base_spear6xx = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(st->adc_base_spear6xx))
return PTR_ERR(st->adc_base_spear6xx);
st->adc_base_spear3xx =
(struct adc_regs_spear3xx __iomem *)st->adc_base_spear6xx;
st->clk = devm_clk_get(dev, NULL);
if (IS_ERR(st->clk)) {
dev_err(dev, "failed getting clock\n");
return PTR_ERR(st->clk);
}
ret = clk_prepare_enable(st->clk);
if (ret) {
dev_err(dev, "failed enabling clock\n");
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto errout2;
}
ret = devm_request_irq(dev, irq, spear_adc_isr, 0, SPEAR_ADC_MOD_NAME,
st);
if (ret < 0) {
dev_err(dev, "failed requesting interrupt\n");
goto errout2;
}
if (of_property_read_u32(np, "sampling-frequency",
&st->sampling_freq)) {
dev_err(dev, "sampling-frequency missing in DT\n");
ret = -EINVAL;
goto errout2;
}
/*
* Optional avg_samples defaults to 0, resulting in single data
* conversion
*/
of_property_read_u32(np, "average-samples", &st->avg_samples);
/*
* Optional vref_external defaults to 0, resulting in internal vref
* selection
*/
of_property_read_u32(np, "vref-external", &st->vref_external);
spear_adc_configure(st);
platform_set_drvdata(pdev, indio_dev);
init_completion(&st->completion);
indio_dev->name = SPEAR_ADC_MOD_NAME;
indio_dev->info = &spear_adc_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = spear_adc_iio_channels;
indio_dev->num_channels = ARRAY_SIZE(spear_adc_iio_channels);
ret = iio_device_register(indio_dev);
if (ret)
goto errout2;
dev_info(dev, "SPEAR ADC driver loaded, IRQ %d\n", irq);
return 0;
errout2:
clk_disable_unprepare(st->clk);
return ret;
}
static int spear_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct spear_adc_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
clk_disable_unprepare(st->clk);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id spear_adc_dt_ids[] = {
{ .compatible = "st,spear600-adc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, spear_adc_dt_ids);
#endif
static struct platform_driver spear_adc_driver = {
.probe = spear_adc_probe,
.remove = spear_adc_remove,
.driver = {
.name = SPEAR_ADC_MOD_NAME,
.of_match_table = of_match_ptr(spear_adc_dt_ids),
},
};
module_platform_driver(spear_adc_driver);
MODULE_AUTHOR("Stefan Roese <sr@denx.de>");
MODULE_DESCRIPTION("SPEAr ADC driver");
MODULE_LICENSE("GPL");