| // SPDX-License-Identifier: GPL-2.0-or-later |
| #include <linux/bug.h> |
| #include <linux/compiler.h> |
| #include <linux/export.h> |
| #include <linux/percpu.h> |
| #include <linux/processor.h> |
| #include <linux/smp.h> |
| #include <linux/topology.h> |
| #include <linux/sched/clock.h> |
| #include <asm/qspinlock.h> |
| #include <asm/paravirt.h> |
| |
| #define MAX_NODES 4 |
| |
| struct qnode { |
| struct qnode *next; |
| struct qspinlock *lock; |
| int cpu; |
| u8 sleepy; /* 1 if the previous vCPU was preempted or |
| * if the previous node was sleepy */ |
| u8 locked; /* 1 if lock acquired */ |
| }; |
| |
| struct qnodes { |
| int count; |
| struct qnode nodes[MAX_NODES]; |
| }; |
| |
| /* Tuning parameters */ |
| static int steal_spins __read_mostly = (1 << 5); |
| static int remote_steal_spins __read_mostly = (1 << 2); |
| #if _Q_SPIN_TRY_LOCK_STEAL == 1 |
| static const bool maybe_stealers = true; |
| #else |
| static bool maybe_stealers __read_mostly = true; |
| #endif |
| static int head_spins __read_mostly = (1 << 8); |
| |
| static bool pv_yield_owner __read_mostly = true; |
| static bool pv_yield_allow_steal __read_mostly = false; |
| static bool pv_spin_on_preempted_owner __read_mostly = false; |
| static bool pv_sleepy_lock __read_mostly = true; |
| static bool pv_sleepy_lock_sticky __read_mostly = false; |
| static u64 pv_sleepy_lock_interval_ns __read_mostly = 0; |
| static int pv_sleepy_lock_factor __read_mostly = 256; |
| static bool pv_yield_prev __read_mostly = true; |
| static bool pv_yield_sleepy_owner __read_mostly = true; |
| static bool pv_prod_head __read_mostly = false; |
| |
| static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes); |
| static DEFINE_PER_CPU_ALIGNED(u64, sleepy_lock_seen_clock); |
| |
| #if _Q_SPIN_SPEC_BARRIER == 1 |
| #define spec_barrier() do { asm volatile("ori 31,31,0" ::: "memory"); } while (0) |
| #else |
| #define spec_barrier() do { } while (0) |
| #endif |
| |
| static __always_inline bool recently_sleepy(void) |
| { |
| /* pv_sleepy_lock is true when this is called */ |
| if (pv_sleepy_lock_interval_ns) { |
| u64 seen = this_cpu_read(sleepy_lock_seen_clock); |
| |
| if (seen) { |
| u64 delta = sched_clock() - seen; |
| if (delta < pv_sleepy_lock_interval_ns) |
| return true; |
| this_cpu_write(sleepy_lock_seen_clock, 0); |
| } |
| } |
| |
| return false; |
| } |
| |
| static __always_inline int get_steal_spins(bool paravirt, bool sleepy) |
| { |
| if (paravirt && sleepy) |
| return steal_spins * pv_sleepy_lock_factor; |
| else |
| return steal_spins; |
| } |
| |
| static __always_inline int get_remote_steal_spins(bool paravirt, bool sleepy) |
| { |
| if (paravirt && sleepy) |
| return remote_steal_spins * pv_sleepy_lock_factor; |
| else |
| return remote_steal_spins; |
| } |
| |
| static __always_inline int get_head_spins(bool paravirt, bool sleepy) |
| { |
| if (paravirt && sleepy) |
| return head_spins * pv_sleepy_lock_factor; |
| else |
| return head_spins; |
| } |
| |
| static inline u32 encode_tail_cpu(int cpu) |
| { |
| return (cpu + 1) << _Q_TAIL_CPU_OFFSET; |
| } |
| |
| static inline int decode_tail_cpu(u32 val) |
| { |
| return (val >> _Q_TAIL_CPU_OFFSET) - 1; |
| } |
| |
| static inline int get_owner_cpu(u32 val) |
| { |
| return (val & _Q_OWNER_CPU_MASK) >> _Q_OWNER_CPU_OFFSET; |
| } |
| |
| /* |
| * Try to acquire the lock if it was not already locked. If the tail matches |
| * mytail then clear it, otherwise leave it unchnaged. Return previous value. |
| * |
| * This is used by the head of the queue to acquire the lock and clean up |
| * its tail if it was the last one queued. |
| */ |
| static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail) |
| { |
| u32 newval = queued_spin_encode_locked_val(); |
| u32 prev, tmp; |
| |
| asm volatile( |
| "1: lwarx %0,0,%2,%7 # trylock_clean_tail \n" |
| /* This test is necessary if there could be stealers */ |
| " andi. %1,%0,%5 \n" |
| " bne 3f \n" |
| /* Test whether the lock tail == mytail */ |
| " and %1,%0,%6 \n" |
| " cmpw 0,%1,%3 \n" |
| /* Merge the new locked value */ |
| " or %1,%1,%4 \n" |
| " bne 2f \n" |
| /* If the lock tail matched, then clear it, otherwise leave it. */ |
| " andc %1,%1,%6 \n" |
| "2: stwcx. %1,0,%2 \n" |
| " bne- 1b \n" |
| "\t" PPC_ACQUIRE_BARRIER " \n" |
| "3: \n" |
| : "=&r" (prev), "=&r" (tmp) |
| : "r" (&lock->val), "r"(tail), "r" (newval), |
| "i" (_Q_LOCKED_VAL), |
| "r" (_Q_TAIL_CPU_MASK), |
| "i" (_Q_SPIN_EH_HINT) |
| : "cr0", "memory"); |
| |
| return prev; |
| } |
| |
| /* |
| * Publish our tail, replacing previous tail. Return previous value. |
| * |
| * This provides a release barrier for publishing node, this pairs with the |
| * acquire barrier in get_tail_qnode() when the next CPU finds this tail |
| * value. |
| */ |
| static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail) |
| { |
| u32 prev, tmp; |
| |
| kcsan_release(); |
| |
| asm volatile( |
| "\t" PPC_RELEASE_BARRIER " \n" |
| "1: lwarx %0,0,%2 # publish_tail_cpu \n" |
| " andc %1,%0,%4 \n" |
| " or %1,%1,%3 \n" |
| " stwcx. %1,0,%2 \n" |
| " bne- 1b \n" |
| : "=&r" (prev), "=&r"(tmp) |
| : "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK) |
| : "cr0", "memory"); |
| |
| return prev; |
| } |
| |
| static __always_inline u32 set_mustq(struct qspinlock *lock) |
| { |
| u32 prev; |
| |
| asm volatile( |
| "1: lwarx %0,0,%1 # set_mustq \n" |
| " or %0,%0,%2 \n" |
| " stwcx. %0,0,%1 \n" |
| " bne- 1b \n" |
| : "=&r" (prev) |
| : "r" (&lock->val), "r" (_Q_MUST_Q_VAL) |
| : "cr0", "memory"); |
| |
| return prev; |
| } |
| |
| static __always_inline u32 clear_mustq(struct qspinlock *lock) |
| { |
| u32 prev; |
| |
| asm volatile( |
| "1: lwarx %0,0,%1 # clear_mustq \n" |
| " andc %0,%0,%2 \n" |
| " stwcx. %0,0,%1 \n" |
| " bne- 1b \n" |
| : "=&r" (prev) |
| : "r" (&lock->val), "r" (_Q_MUST_Q_VAL) |
| : "cr0", "memory"); |
| |
| return prev; |
| } |
| |
| static __always_inline bool try_set_sleepy(struct qspinlock *lock, u32 old) |
| { |
| u32 prev; |
| u32 new = old | _Q_SLEEPY_VAL; |
| |
| BUG_ON(!(old & _Q_LOCKED_VAL)); |
| BUG_ON(old & _Q_SLEEPY_VAL); |
| |
| asm volatile( |
| "1: lwarx %0,0,%1 # try_set_sleepy \n" |
| " cmpw 0,%0,%2 \n" |
| " bne- 2f \n" |
| " stwcx. %3,0,%1 \n" |
| " bne- 1b \n" |
| "2: \n" |
| : "=&r" (prev) |
| : "r" (&lock->val), "r"(old), "r" (new) |
| : "cr0", "memory"); |
| |
| return likely(prev == old); |
| } |
| |
| static __always_inline void seen_sleepy_owner(struct qspinlock *lock, u32 val) |
| { |
| if (pv_sleepy_lock) { |
| if (pv_sleepy_lock_interval_ns) |
| this_cpu_write(sleepy_lock_seen_clock, sched_clock()); |
| if (!(val & _Q_SLEEPY_VAL)) |
| try_set_sleepy(lock, val); |
| } |
| } |
| |
| static __always_inline void seen_sleepy_lock(void) |
| { |
| if (pv_sleepy_lock && pv_sleepy_lock_interval_ns) |
| this_cpu_write(sleepy_lock_seen_clock, sched_clock()); |
| } |
| |
| static __always_inline void seen_sleepy_node(void) |
| { |
| if (pv_sleepy_lock) { |
| if (pv_sleepy_lock_interval_ns) |
| this_cpu_write(sleepy_lock_seen_clock, sched_clock()); |
| /* Don't set sleepy because we likely have a stale val */ |
| } |
| } |
| |
| static struct qnode *get_tail_qnode(struct qspinlock *lock, int prev_cpu) |
| { |
| struct qnodes *qnodesp = per_cpu_ptr(&qnodes, prev_cpu); |
| int idx; |
| |
| /* |
| * After publishing the new tail and finding a previous tail in the |
| * previous val (which is the control dependency), this barrier |
| * orders the release barrier in publish_tail_cpu performed by the |
| * last CPU, with subsequently looking at its qnode structures |
| * after the barrier. |
| */ |
| smp_acquire__after_ctrl_dep(); |
| |
| for (idx = 0; idx < MAX_NODES; idx++) { |
| struct qnode *qnode = &qnodesp->nodes[idx]; |
| if (qnode->lock == lock) |
| return qnode; |
| } |
| |
| BUG(); |
| } |
| |
| /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */ |
| static __always_inline bool __yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt, bool mustq) |
| { |
| int owner; |
| u32 yield_count; |
| bool preempted = false; |
| |
| BUG_ON(!(val & _Q_LOCKED_VAL)); |
| |
| if (!paravirt) |
| goto relax; |
| |
| if (!pv_yield_owner) |
| goto relax; |
| |
| owner = get_owner_cpu(val); |
| yield_count = yield_count_of(owner); |
| |
| if ((yield_count & 1) == 0) |
| goto relax; /* owner vcpu is running */ |
| |
| spin_end(); |
| |
| seen_sleepy_owner(lock, val); |
| preempted = true; |
| |
| /* |
| * Read the lock word after sampling the yield count. On the other side |
| * there may a wmb because the yield count update is done by the |
| * hypervisor preemption and the value update by the OS, however this |
| * ordering might reduce the chance of out of order accesses and |
| * improve the heuristic. |
| */ |
| smp_rmb(); |
| |
| if (READ_ONCE(lock->val) == val) { |
| if (mustq) |
| clear_mustq(lock); |
| yield_to_preempted(owner, yield_count); |
| if (mustq) |
| set_mustq(lock); |
| spin_begin(); |
| |
| /* Don't relax if we yielded. Maybe we should? */ |
| return preempted; |
| } |
| spin_begin(); |
| relax: |
| spin_cpu_relax(); |
| |
| return preempted; |
| } |
| |
| /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */ |
| static __always_inline bool yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt) |
| { |
| return __yield_to_locked_owner(lock, val, paravirt, false); |
| } |
| |
| /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */ |
| static __always_inline bool yield_head_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt) |
| { |
| bool mustq = false; |
| |
| if ((val & _Q_MUST_Q_VAL) && pv_yield_allow_steal) |
| mustq = true; |
| |
| return __yield_to_locked_owner(lock, val, paravirt, mustq); |
| } |
| |
| static __always_inline void propagate_sleepy(struct qnode *node, u32 val, bool paravirt) |
| { |
| struct qnode *next; |
| int owner; |
| |
| if (!paravirt) |
| return; |
| if (!pv_yield_sleepy_owner) |
| return; |
| |
| next = READ_ONCE(node->next); |
| if (!next) |
| return; |
| |
| if (next->sleepy) |
| return; |
| |
| owner = get_owner_cpu(val); |
| if (vcpu_is_preempted(owner)) |
| next->sleepy = 1; |
| } |
| |
| /* Called inside spin_begin() */ |
| static __always_inline bool yield_to_prev(struct qspinlock *lock, struct qnode *node, int prev_cpu, bool paravirt) |
| { |
| u32 yield_count; |
| bool preempted = false; |
| |
| if (!paravirt) |
| goto relax; |
| |
| if (!pv_yield_sleepy_owner) |
| goto yield_prev; |
| |
| /* |
| * If the previous waiter was preempted it might not be able to |
| * propagate sleepy to us, so check the lock in that case too. |
| */ |
| if (node->sleepy || vcpu_is_preempted(prev_cpu)) { |
| u32 val = READ_ONCE(lock->val); |
| |
| if (val & _Q_LOCKED_VAL) { |
| if (node->next && !node->next->sleepy) { |
| /* |
| * Propagate sleepy to next waiter. Only if |
| * owner is preempted, which allows the queue |
| * to become "non-sleepy" if vCPU preemption |
| * ceases to occur, even if the lock remains |
| * highly contended. |
| */ |
| if (vcpu_is_preempted(get_owner_cpu(val))) |
| node->next->sleepy = 1; |
| } |
| |
| preempted = yield_to_locked_owner(lock, val, paravirt); |
| if (preempted) |
| return preempted; |
| } |
| node->sleepy = false; |
| } |
| |
| yield_prev: |
| if (!pv_yield_prev) |
| goto relax; |
| |
| yield_count = yield_count_of(prev_cpu); |
| if ((yield_count & 1) == 0) |
| goto relax; /* owner vcpu is running */ |
| |
| spin_end(); |
| |
| preempted = true; |
| seen_sleepy_node(); |
| |
| smp_rmb(); /* See __yield_to_locked_owner comment */ |
| |
| if (!READ_ONCE(node->locked)) { |
| yield_to_preempted(prev_cpu, yield_count); |
| spin_begin(); |
| return preempted; |
| } |
| spin_begin(); |
| |
| relax: |
| spin_cpu_relax(); |
| |
| return preempted; |
| } |
| |
| static __always_inline bool steal_break(u32 val, int iters, bool paravirt, bool sleepy) |
| { |
| if (iters >= get_steal_spins(paravirt, sleepy)) |
| return true; |
| |
| if (IS_ENABLED(CONFIG_NUMA) && |
| (iters >= get_remote_steal_spins(paravirt, sleepy))) { |
| int cpu = get_owner_cpu(val); |
| if (numa_node_id() != cpu_to_node(cpu)) |
| return true; |
| } |
| return false; |
| } |
| |
| static __always_inline bool try_to_steal_lock(struct qspinlock *lock, bool paravirt) |
| { |
| bool seen_preempted = false; |
| bool sleepy = false; |
| int iters = 0; |
| u32 val; |
| |
| if (!steal_spins) { |
| /* XXX: should spin_on_preempted_owner do anything here? */ |
| return false; |
| } |
| |
| /* Attempt to steal the lock */ |
| spin_begin(); |
| do { |
| bool preempted = false; |
| |
| val = READ_ONCE(lock->val); |
| if (val & _Q_MUST_Q_VAL) |
| break; |
| spec_barrier(); |
| |
| if (unlikely(!(val & _Q_LOCKED_VAL))) { |
| spin_end(); |
| if (__queued_spin_trylock_steal(lock)) |
| return true; |
| spin_begin(); |
| } else { |
| preempted = yield_to_locked_owner(lock, val, paravirt); |
| } |
| |
| if (paravirt && pv_sleepy_lock) { |
| if (!sleepy) { |
| if (val & _Q_SLEEPY_VAL) { |
| seen_sleepy_lock(); |
| sleepy = true; |
| } else if (recently_sleepy()) { |
| sleepy = true; |
| } |
| } |
| if (pv_sleepy_lock_sticky && seen_preempted && |
| !(val & _Q_SLEEPY_VAL)) { |
| if (try_set_sleepy(lock, val)) |
| val |= _Q_SLEEPY_VAL; |
| } |
| } |
| |
| if (preempted) { |
| seen_preempted = true; |
| sleepy = true; |
| if (!pv_spin_on_preempted_owner) |
| iters++; |
| /* |
| * pv_spin_on_preempted_owner don't increase iters |
| * while the owner is preempted -- we won't interfere |
| * with it by definition. This could introduce some |
| * latency issue if we continually observe preempted |
| * owners, but hopefully that's a rare corner case of |
| * a badly oversubscribed system. |
| */ |
| } else { |
| iters++; |
| } |
| } while (!steal_break(val, iters, paravirt, sleepy)); |
| |
| spin_end(); |
| |
| return false; |
| } |
| |
| static __always_inline void queued_spin_lock_mcs_queue(struct qspinlock *lock, bool paravirt) |
| { |
| struct qnodes *qnodesp; |
| struct qnode *next, *node; |
| u32 val, old, tail; |
| bool seen_preempted = false; |
| bool sleepy = false; |
| bool mustq = false; |
| int idx; |
| int iters = 0; |
| |
| BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); |
| |
| qnodesp = this_cpu_ptr(&qnodes); |
| if (unlikely(qnodesp->count >= MAX_NODES)) { |
| spec_barrier(); |
| while (!queued_spin_trylock(lock)) |
| cpu_relax(); |
| return; |
| } |
| |
| idx = qnodesp->count++; |
| /* |
| * Ensure that we increment the head node->count before initialising |
| * the actual node. If the compiler is kind enough to reorder these |
| * stores, then an IRQ could overwrite our assignments. |
| */ |
| barrier(); |
| node = &qnodesp->nodes[idx]; |
| node->next = NULL; |
| node->lock = lock; |
| node->cpu = smp_processor_id(); |
| node->sleepy = 0; |
| node->locked = 0; |
| |
| tail = encode_tail_cpu(node->cpu); |
| |
| /* |
| * Assign all attributes of a node before it can be published. |
| * Issues an lwsync, serving as a release barrier, as well as a |
| * compiler barrier. |
| */ |
| old = publish_tail_cpu(lock, tail); |
| |
| /* |
| * If there was a previous node; link it and wait until reaching the |
| * head of the waitqueue. |
| */ |
| if (old & _Q_TAIL_CPU_MASK) { |
| int prev_cpu = decode_tail_cpu(old); |
| struct qnode *prev = get_tail_qnode(lock, prev_cpu); |
| |
| /* Link @node into the waitqueue. */ |
| WRITE_ONCE(prev->next, node); |
| |
| /* Wait for mcs node lock to be released */ |
| spin_begin(); |
| while (!READ_ONCE(node->locked)) { |
| spec_barrier(); |
| |
| if (yield_to_prev(lock, node, prev_cpu, paravirt)) |
| seen_preempted = true; |
| } |
| spec_barrier(); |
| spin_end(); |
| |
| smp_rmb(); /* acquire barrier for the mcs lock */ |
| |
| /* |
| * Generic qspinlocks have this prefetch here, but it seems |
| * like it could cause additional line transitions because |
| * the waiter will keep loading from it. |
| */ |
| if (_Q_SPIN_PREFETCH_NEXT) { |
| next = READ_ONCE(node->next); |
| if (next) |
| prefetchw(next); |
| } |
| } |
| |
| /* We're at the head of the waitqueue, wait for the lock. */ |
| again: |
| spin_begin(); |
| for (;;) { |
| bool preempted; |
| |
| val = READ_ONCE(lock->val); |
| if (!(val & _Q_LOCKED_VAL)) |
| break; |
| spec_barrier(); |
| |
| if (paravirt && pv_sleepy_lock && maybe_stealers) { |
| if (!sleepy) { |
| if (val & _Q_SLEEPY_VAL) { |
| seen_sleepy_lock(); |
| sleepy = true; |
| } else if (recently_sleepy()) { |
| sleepy = true; |
| } |
| } |
| if (pv_sleepy_lock_sticky && seen_preempted && |
| !(val & _Q_SLEEPY_VAL)) { |
| if (try_set_sleepy(lock, val)) |
| val |= _Q_SLEEPY_VAL; |
| } |
| } |
| |
| propagate_sleepy(node, val, paravirt); |
| preempted = yield_head_to_locked_owner(lock, val, paravirt); |
| if (!maybe_stealers) |
| continue; |
| |
| if (preempted) |
| seen_preempted = true; |
| |
| if (paravirt && preempted) { |
| sleepy = true; |
| |
| if (!pv_spin_on_preempted_owner) |
| iters++; |
| } else { |
| iters++; |
| } |
| |
| if (!mustq && iters >= get_head_spins(paravirt, sleepy)) { |
| mustq = true; |
| set_mustq(lock); |
| val |= _Q_MUST_Q_VAL; |
| } |
| } |
| spec_barrier(); |
| spin_end(); |
| |
| /* If we're the last queued, must clean up the tail. */ |
| old = trylock_clean_tail(lock, tail); |
| if (unlikely(old & _Q_LOCKED_VAL)) { |
| BUG_ON(!maybe_stealers); |
| goto again; /* Can only be true if maybe_stealers. */ |
| } |
| |
| if ((old & _Q_TAIL_CPU_MASK) == tail) |
| goto release; /* We were the tail, no next. */ |
| |
| /* There is a next, must wait for node->next != NULL (MCS protocol) */ |
| next = READ_ONCE(node->next); |
| if (!next) { |
| spin_begin(); |
| while (!(next = READ_ONCE(node->next))) |
| cpu_relax(); |
| spin_end(); |
| } |
| spec_barrier(); |
| |
| /* |
| * Unlock the next mcs waiter node. Release barrier is not required |
| * here because the acquirer is only accessing the lock word, and |
| * the acquire barrier we took the lock with orders that update vs |
| * this store to locked. The corresponding barrier is the smp_rmb() |
| * acquire barrier for mcs lock, above. |
| */ |
| if (paravirt && pv_prod_head) { |
| int next_cpu = next->cpu; |
| WRITE_ONCE(next->locked, 1); |
| if (_Q_SPIN_MISO) |
| asm volatile("miso" ::: "memory"); |
| if (vcpu_is_preempted(next_cpu)) |
| prod_cpu(next_cpu); |
| } else { |
| WRITE_ONCE(next->locked, 1); |
| if (_Q_SPIN_MISO) |
| asm volatile("miso" ::: "memory"); |
| } |
| |
| release: |
| qnodesp->count--; /* release the node */ |
| } |
| |
| void queued_spin_lock_slowpath(struct qspinlock *lock) |
| { |
| /* |
| * This looks funny, but it induces the compiler to inline both |
| * sides of the branch rather than share code as when the condition |
| * is passed as the paravirt argument to the functions. |
| */ |
| if (IS_ENABLED(CONFIG_PARAVIRT_SPINLOCKS) && is_shared_processor()) { |
| if (try_to_steal_lock(lock, true)) { |
| spec_barrier(); |
| return; |
| } |
| queued_spin_lock_mcs_queue(lock, true); |
| } else { |
| if (try_to_steal_lock(lock, false)) { |
| spec_barrier(); |
| return; |
| } |
| queued_spin_lock_mcs_queue(lock, false); |
| } |
| } |
| EXPORT_SYMBOL(queued_spin_lock_slowpath); |
| |
| #ifdef CONFIG_PARAVIRT_SPINLOCKS |
| void pv_spinlocks_init(void) |
| { |
| } |
| #endif |
| |
| #include <linux/debugfs.h> |
| static int steal_spins_set(void *data, u64 val) |
| { |
| #if _Q_SPIN_TRY_LOCK_STEAL == 1 |
| /* MAYBE_STEAL remains true */ |
| steal_spins = val; |
| #else |
| static DEFINE_MUTEX(lock); |
| |
| /* |
| * The lock slow path has a !maybe_stealers case that can assume |
| * the head of queue will not see concurrent waiters. That waiter |
| * is unsafe in the presence of stealers, so must keep them away |
| * from one another. |
| */ |
| |
| mutex_lock(&lock); |
| if (val && !steal_spins) { |
| maybe_stealers = true; |
| /* wait for queue head waiter to go away */ |
| synchronize_rcu(); |
| steal_spins = val; |
| } else if (!val && steal_spins) { |
| steal_spins = val; |
| /* wait for all possible stealers to go away */ |
| synchronize_rcu(); |
| maybe_stealers = false; |
| } else { |
| steal_spins = val; |
| } |
| mutex_unlock(&lock); |
| #endif |
| |
| return 0; |
| } |
| |
| static int steal_spins_get(void *data, u64 *val) |
| { |
| *val = steal_spins; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n"); |
| |
| static int remote_steal_spins_set(void *data, u64 val) |
| { |
| remote_steal_spins = val; |
| |
| return 0; |
| } |
| |
| static int remote_steal_spins_get(void *data, u64 *val) |
| { |
| *val = remote_steal_spins; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_remote_steal_spins, remote_steal_spins_get, remote_steal_spins_set, "%llu\n"); |
| |
| static int head_spins_set(void *data, u64 val) |
| { |
| head_spins = val; |
| |
| return 0; |
| } |
| |
| static int head_spins_get(void *data, u64 *val) |
| { |
| *val = head_spins; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n"); |
| |
| static int pv_yield_owner_set(void *data, u64 val) |
| { |
| pv_yield_owner = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_yield_owner_get(void *data, u64 *val) |
| { |
| *val = pv_yield_owner; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_owner, pv_yield_owner_get, pv_yield_owner_set, "%llu\n"); |
| |
| static int pv_yield_allow_steal_set(void *data, u64 val) |
| { |
| pv_yield_allow_steal = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_yield_allow_steal_get(void *data, u64 *val) |
| { |
| *val = pv_yield_allow_steal; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_allow_steal, pv_yield_allow_steal_get, pv_yield_allow_steal_set, "%llu\n"); |
| |
| static int pv_spin_on_preempted_owner_set(void *data, u64 val) |
| { |
| pv_spin_on_preempted_owner = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_spin_on_preempted_owner_get(void *data, u64 *val) |
| { |
| *val = pv_spin_on_preempted_owner; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_spin_on_preempted_owner, pv_spin_on_preempted_owner_get, pv_spin_on_preempted_owner_set, "%llu\n"); |
| |
| static int pv_sleepy_lock_set(void *data, u64 val) |
| { |
| pv_sleepy_lock = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_sleepy_lock_get(void *data, u64 *val) |
| { |
| *val = pv_sleepy_lock; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock, pv_sleepy_lock_get, pv_sleepy_lock_set, "%llu\n"); |
| |
| static int pv_sleepy_lock_sticky_set(void *data, u64 val) |
| { |
| pv_sleepy_lock_sticky = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_sleepy_lock_sticky_get(void *data, u64 *val) |
| { |
| *val = pv_sleepy_lock_sticky; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_sticky, pv_sleepy_lock_sticky_get, pv_sleepy_lock_sticky_set, "%llu\n"); |
| |
| static int pv_sleepy_lock_interval_ns_set(void *data, u64 val) |
| { |
| pv_sleepy_lock_interval_ns = val; |
| |
| return 0; |
| } |
| |
| static int pv_sleepy_lock_interval_ns_get(void *data, u64 *val) |
| { |
| *val = pv_sleepy_lock_interval_ns; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_interval_ns, pv_sleepy_lock_interval_ns_get, pv_sleepy_lock_interval_ns_set, "%llu\n"); |
| |
| static int pv_sleepy_lock_factor_set(void *data, u64 val) |
| { |
| pv_sleepy_lock_factor = val; |
| |
| return 0; |
| } |
| |
| static int pv_sleepy_lock_factor_get(void *data, u64 *val) |
| { |
| *val = pv_sleepy_lock_factor; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_factor, pv_sleepy_lock_factor_get, pv_sleepy_lock_factor_set, "%llu\n"); |
| |
| static int pv_yield_prev_set(void *data, u64 val) |
| { |
| pv_yield_prev = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_yield_prev_get(void *data, u64 *val) |
| { |
| *val = pv_yield_prev; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_prev, pv_yield_prev_get, pv_yield_prev_set, "%llu\n"); |
| |
| static int pv_yield_sleepy_owner_set(void *data, u64 val) |
| { |
| pv_yield_sleepy_owner = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_yield_sleepy_owner_get(void *data, u64 *val) |
| { |
| *val = pv_yield_sleepy_owner; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_sleepy_owner, pv_yield_sleepy_owner_get, pv_yield_sleepy_owner_set, "%llu\n"); |
| |
| static int pv_prod_head_set(void *data, u64 val) |
| { |
| pv_prod_head = !!val; |
| |
| return 0; |
| } |
| |
| static int pv_prod_head_get(void *data, u64 *val) |
| { |
| *val = pv_prod_head; |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pv_prod_head, pv_prod_head_get, pv_prod_head_set, "%llu\n"); |
| |
| static __init int spinlock_debugfs_init(void) |
| { |
| debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins); |
| debugfs_create_file("qspl_remote_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_remote_steal_spins); |
| debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins); |
| if (is_shared_processor()) { |
| debugfs_create_file("qspl_pv_yield_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_owner); |
| debugfs_create_file("qspl_pv_yield_allow_steal", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_allow_steal); |
| debugfs_create_file("qspl_pv_spin_on_preempted_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_spin_on_preempted_owner); |
| debugfs_create_file("qspl_pv_sleepy_lock", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock); |
| debugfs_create_file("qspl_pv_sleepy_lock_sticky", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_sticky); |
| debugfs_create_file("qspl_pv_sleepy_lock_interval_ns", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_interval_ns); |
| debugfs_create_file("qspl_pv_sleepy_lock_factor", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_factor); |
| debugfs_create_file("qspl_pv_yield_prev", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_prev); |
| debugfs_create_file("qspl_pv_yield_sleepy_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_sleepy_owner); |
| debugfs_create_file("qspl_pv_prod_head", 0600, arch_debugfs_dir, NULL, &fops_pv_prod_head); |
| } |
| |
| return 0; |
| } |
| device_initcall(spinlock_debugfs_init); |