| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Stress userfaultfd syscall. |
| * |
| * Copyright (C) 2015 Red Hat, Inc. |
| * |
| * This test allocates two virtual areas and bounces the physical |
| * memory across the two virtual areas (from area_src to area_dst) |
| * using userfaultfd. |
| * |
| * There are three threads running per CPU: |
| * |
| * 1) one per-CPU thread takes a per-page pthread_mutex in a random |
| * page of the area_dst (while the physical page may still be in |
| * area_src), and increments a per-page counter in the same page, |
| * and checks its value against a verification region. |
| * |
| * 2) another per-CPU thread handles the userfaults generated by |
| * thread 1 above. userfaultfd blocking reads or poll() modes are |
| * exercised interleaved. |
| * |
| * 3) one last per-CPU thread transfers the memory in the background |
| * at maximum bandwidth (if not already transferred by thread |
| * 2). Each cpu thread takes cares of transferring a portion of the |
| * area. |
| * |
| * When all threads of type 3 completed the transfer, one bounce is |
| * complete. area_src and area_dst are then swapped. All threads are |
| * respawned and so the bounce is immediately restarted in the |
| * opposite direction. |
| * |
| * per-CPU threads 1 by triggering userfaults inside |
| * pthread_mutex_lock will also verify the atomicity of the memory |
| * transfer (UFFDIO_COPY). |
| */ |
| |
| #include "uffd-common.h" |
| |
| #ifdef __NR_userfaultfd |
| |
| #define BOUNCE_RANDOM (1<<0) |
| #define BOUNCE_RACINGFAULTS (1<<1) |
| #define BOUNCE_VERIFY (1<<2) |
| #define BOUNCE_POLL (1<<3) |
| static int bounces; |
| |
| /* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */ |
| #define ALARM_INTERVAL_SECS 10 |
| static char *zeropage; |
| pthread_attr_t attr; |
| |
| #define swap(a, b) \ |
| do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) |
| |
| const char *examples = |
| "# Run anonymous memory test on 100MiB region with 99999 bounces:\n" |
| "./uffd-stress anon 100 99999\n\n" |
| "# Run share memory test on 1GiB region with 99 bounces:\n" |
| "./uffd-stress shmem 1000 99\n\n" |
| "# Run hugetlb memory test on 256MiB region with 50 bounces:\n" |
| "./uffd-stress hugetlb 256 50\n\n" |
| "# Run the same hugetlb test but using private file:\n" |
| "./uffd-stress hugetlb-private 256 50\n\n" |
| "# 10MiB-~6GiB 999 bounces anonymous test, " |
| "continue forever unless an error triggers\n" |
| "while ./uffd-stress anon $[RANDOM % 6000 + 10] 999; do true; done\n\n"; |
| |
| static void usage(void) |
| { |
| fprintf(stderr, "\nUsage: ./uffd-stress <test type> <MiB> <bounces>\n\n"); |
| fprintf(stderr, "Supported <test type>: anon, hugetlb, " |
| "hugetlb-private, shmem, shmem-private\n\n"); |
| fprintf(stderr, "Examples:\n\n"); |
| fprintf(stderr, "%s", examples); |
| exit(1); |
| } |
| |
| static void uffd_stats_reset(struct uffd_args *args, unsigned long n_cpus) |
| { |
| int i; |
| |
| for (i = 0; i < n_cpus; i++) { |
| args[i].cpu = i; |
| args[i].apply_wp = test_uffdio_wp; |
| args[i].missing_faults = 0; |
| args[i].wp_faults = 0; |
| args[i].minor_faults = 0; |
| } |
| } |
| |
| static void *locking_thread(void *arg) |
| { |
| unsigned long cpu = (unsigned long) arg; |
| unsigned long page_nr; |
| unsigned long long count; |
| |
| if (!(bounces & BOUNCE_RANDOM)) { |
| page_nr = -bounces; |
| if (!(bounces & BOUNCE_RACINGFAULTS)) |
| page_nr += cpu * nr_pages_per_cpu; |
| } |
| |
| while (!finished) { |
| if (bounces & BOUNCE_RANDOM) { |
| if (getrandom(&page_nr, sizeof(page_nr), 0) != sizeof(page_nr)) |
| err("getrandom failed"); |
| } else |
| page_nr += 1; |
| page_nr %= nr_pages; |
| pthread_mutex_lock(area_mutex(area_dst, page_nr)); |
| count = *area_count(area_dst, page_nr); |
| if (count != count_verify[page_nr]) |
| err("page_nr %lu memory corruption %llu %llu", |
| page_nr, count, count_verify[page_nr]); |
| count++; |
| *area_count(area_dst, page_nr) = count_verify[page_nr] = count; |
| pthread_mutex_unlock(area_mutex(area_dst, page_nr)); |
| } |
| |
| return NULL; |
| } |
| |
| static int copy_page_retry(int ufd, unsigned long offset) |
| { |
| return __copy_page(ufd, offset, true, test_uffdio_wp); |
| } |
| |
| pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; |
| |
| static void *uffd_read_thread(void *arg) |
| { |
| struct uffd_args *args = (struct uffd_args *)arg; |
| struct uffd_msg msg; |
| |
| pthread_mutex_unlock(&uffd_read_mutex); |
| /* from here cancellation is ok */ |
| |
| for (;;) { |
| if (uffd_read_msg(uffd, &msg)) |
| continue; |
| uffd_handle_page_fault(&msg, args); |
| } |
| |
| return NULL; |
| } |
| |
| static void *background_thread(void *arg) |
| { |
| unsigned long cpu = (unsigned long) arg; |
| unsigned long page_nr, start_nr, mid_nr, end_nr; |
| |
| start_nr = cpu * nr_pages_per_cpu; |
| end_nr = (cpu+1) * nr_pages_per_cpu; |
| mid_nr = (start_nr + end_nr) / 2; |
| |
| /* Copy the first half of the pages */ |
| for (page_nr = start_nr; page_nr < mid_nr; page_nr++) |
| copy_page_retry(uffd, page_nr * page_size); |
| |
| /* |
| * If we need to test uffd-wp, set it up now. Then we'll have |
| * at least the first half of the pages mapped already which |
| * can be write-protected for testing |
| */ |
| if (test_uffdio_wp) |
| wp_range(uffd, (unsigned long)area_dst + start_nr * page_size, |
| nr_pages_per_cpu * page_size, true); |
| |
| /* |
| * Continue the 2nd half of the page copying, handling write |
| * protection faults if any |
| */ |
| for (page_nr = mid_nr; page_nr < end_nr; page_nr++) |
| copy_page_retry(uffd, page_nr * page_size); |
| |
| return NULL; |
| } |
| |
| static int stress(struct uffd_args *args) |
| { |
| unsigned long cpu; |
| pthread_t locking_threads[nr_cpus]; |
| pthread_t uffd_threads[nr_cpus]; |
| pthread_t background_threads[nr_cpus]; |
| |
| finished = 0; |
| for (cpu = 0; cpu < nr_cpus; cpu++) { |
| if (pthread_create(&locking_threads[cpu], &attr, |
| locking_thread, (void *)cpu)) |
| return 1; |
| if (bounces & BOUNCE_POLL) { |
| if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, &args[cpu])) |
| err("uffd_poll_thread create"); |
| } else { |
| if (pthread_create(&uffd_threads[cpu], &attr, |
| uffd_read_thread, |
| (void *)&args[cpu])) |
| return 1; |
| pthread_mutex_lock(&uffd_read_mutex); |
| } |
| if (pthread_create(&background_threads[cpu], &attr, |
| background_thread, (void *)cpu)) |
| return 1; |
| } |
| for (cpu = 0; cpu < nr_cpus; cpu++) |
| if (pthread_join(background_threads[cpu], NULL)) |
| return 1; |
| |
| /* |
| * Be strict and immediately zap area_src, the whole area has |
| * been transferred already by the background treads. The |
| * area_src could then be faulted in a racy way by still |
| * running uffdio_threads reading zeropages after we zapped |
| * area_src (but they're guaranteed to get -EEXIST from |
| * UFFDIO_COPY without writing zero pages into area_dst |
| * because the background threads already completed). |
| */ |
| uffd_test_ops->release_pages(area_src); |
| |
| finished = 1; |
| for (cpu = 0; cpu < nr_cpus; cpu++) |
| if (pthread_join(locking_threads[cpu], NULL)) |
| return 1; |
| |
| for (cpu = 0; cpu < nr_cpus; cpu++) { |
| char c; |
| if (bounces & BOUNCE_POLL) { |
| if (write(pipefd[cpu*2+1], &c, 1) != 1) |
| err("pipefd write error"); |
| if (pthread_join(uffd_threads[cpu], |
| (void *)&args[cpu])) |
| return 1; |
| } else { |
| if (pthread_cancel(uffd_threads[cpu])) |
| return 1; |
| if (pthread_join(uffd_threads[cpu], NULL)) |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int userfaultfd_stress(void) |
| { |
| void *area; |
| unsigned long nr; |
| struct uffd_args args[nr_cpus]; |
| uint64_t mem_size = nr_pages * page_size; |
| |
| memset(args, 0, sizeof(struct uffd_args) * nr_cpus); |
| |
| if (uffd_test_ctx_init(UFFD_FEATURE_WP_UNPOPULATED, NULL)) |
| err("context init failed"); |
| |
| if (posix_memalign(&area, page_size, page_size)) |
| err("out of memory"); |
| zeropage = area; |
| bzero(zeropage, page_size); |
| |
| pthread_mutex_lock(&uffd_read_mutex); |
| |
| pthread_attr_init(&attr); |
| pthread_attr_setstacksize(&attr, 16*1024*1024); |
| |
| while (bounces--) { |
| printf("bounces: %d, mode:", bounces); |
| if (bounces & BOUNCE_RANDOM) |
| printf(" rnd"); |
| if (bounces & BOUNCE_RACINGFAULTS) |
| printf(" racing"); |
| if (bounces & BOUNCE_VERIFY) |
| printf(" ver"); |
| if (bounces & BOUNCE_POLL) |
| printf(" poll"); |
| else |
| printf(" read"); |
| printf(", "); |
| fflush(stdout); |
| |
| if (bounces & BOUNCE_POLL) |
| fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); |
| else |
| fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); |
| |
| /* register */ |
| if (uffd_register(uffd, area_dst, mem_size, |
| true, test_uffdio_wp, false)) |
| err("register failure"); |
| |
| if (area_dst_alias) { |
| if (uffd_register(uffd, area_dst_alias, mem_size, |
| true, test_uffdio_wp, false)) |
| err("register failure alias"); |
| } |
| |
| /* |
| * The madvise done previously isn't enough: some |
| * uffd_thread could have read userfaults (one of |
| * those already resolved by the background thread) |
| * and it may be in the process of calling |
| * UFFDIO_COPY. UFFDIO_COPY will read the zapped |
| * area_src and it would map a zero page in it (of |
| * course such a UFFDIO_COPY is perfectly safe as it'd |
| * return -EEXIST). The problem comes at the next |
| * bounce though: that racing UFFDIO_COPY would |
| * generate zeropages in the area_src, so invalidating |
| * the previous MADV_DONTNEED. Without this additional |
| * MADV_DONTNEED those zeropages leftovers in the |
| * area_src would lead to -EEXIST failure during the |
| * next bounce, effectively leaving a zeropage in the |
| * area_dst. |
| * |
| * Try to comment this out madvise to see the memory |
| * corruption being caught pretty quick. |
| * |
| * khugepaged is also inhibited to collapse THP after |
| * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's |
| * required to MADV_DONTNEED here. |
| */ |
| uffd_test_ops->release_pages(area_dst); |
| |
| uffd_stats_reset(args, nr_cpus); |
| |
| /* bounce pass */ |
| if (stress(args)) { |
| uffd_test_ctx_clear(); |
| return 1; |
| } |
| |
| /* Clear all the write protections if there is any */ |
| if (test_uffdio_wp) |
| wp_range(uffd, (unsigned long)area_dst, |
| nr_pages * page_size, false); |
| |
| /* unregister */ |
| if (uffd_unregister(uffd, area_dst, mem_size)) |
| err("unregister failure"); |
| if (area_dst_alias) { |
| if (uffd_unregister(uffd, area_dst_alias, mem_size)) |
| err("unregister failure alias"); |
| } |
| |
| /* verification */ |
| if (bounces & BOUNCE_VERIFY) |
| for (nr = 0; nr < nr_pages; nr++) |
| if (*area_count(area_dst, nr) != count_verify[nr]) |
| err("error area_count %llu %llu %lu\n", |
| *area_count(area_src, nr), |
| count_verify[nr], nr); |
| |
| /* prepare next bounce */ |
| swap(area_src, area_dst); |
| |
| swap(area_src_alias, area_dst_alias); |
| |
| uffd_stats_report(args, nr_cpus); |
| } |
| uffd_test_ctx_clear(); |
| |
| return 0; |
| } |
| |
| static void set_test_type(const char *type) |
| { |
| if (!strcmp(type, "anon")) { |
| test_type = TEST_ANON; |
| uffd_test_ops = &anon_uffd_test_ops; |
| } else if (!strcmp(type, "hugetlb")) { |
| test_type = TEST_HUGETLB; |
| uffd_test_ops = &hugetlb_uffd_test_ops; |
| map_shared = true; |
| } else if (!strcmp(type, "hugetlb-private")) { |
| test_type = TEST_HUGETLB; |
| uffd_test_ops = &hugetlb_uffd_test_ops; |
| } else if (!strcmp(type, "shmem")) { |
| map_shared = true; |
| test_type = TEST_SHMEM; |
| uffd_test_ops = &shmem_uffd_test_ops; |
| } else if (!strcmp(type, "shmem-private")) { |
| test_type = TEST_SHMEM; |
| uffd_test_ops = &shmem_uffd_test_ops; |
| } |
| } |
| |
| static void parse_test_type_arg(const char *raw_type) |
| { |
| uint64_t features = UFFD_API_FEATURES; |
| |
| set_test_type(raw_type); |
| |
| if (!test_type) |
| err("failed to parse test type argument: '%s'", raw_type); |
| |
| if (test_type == TEST_HUGETLB) |
| page_size = default_huge_page_size(); |
| else |
| page_size = sysconf(_SC_PAGE_SIZE); |
| |
| if (!page_size) |
| err("Unable to determine page size"); |
| if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2 |
| > page_size) |
| err("Impossible to run this test"); |
| |
| /* |
| * Whether we can test certain features depends not just on test type, |
| * but also on whether or not this particular kernel supports the |
| * feature. |
| */ |
| |
| if (userfaultfd_open(&features)) |
| err("Userfaultfd open failed"); |
| |
| test_uffdio_wp = test_uffdio_wp && |
| (features & UFFD_FEATURE_PAGEFAULT_FLAG_WP); |
| |
| close(uffd); |
| uffd = -1; |
| } |
| |
| static void sigalrm(int sig) |
| { |
| if (sig != SIGALRM) |
| abort(); |
| test_uffdio_copy_eexist = true; |
| alarm(ALARM_INTERVAL_SECS); |
| } |
| |
| int main(int argc, char **argv) |
| { |
| size_t bytes; |
| |
| if (argc < 4) |
| usage(); |
| |
| if (signal(SIGALRM, sigalrm) == SIG_ERR) |
| err("failed to arm SIGALRM"); |
| alarm(ALARM_INTERVAL_SECS); |
| |
| parse_test_type_arg(argv[1]); |
| bytes = atol(argv[2]) * 1024 * 1024; |
| |
| if (test_type == TEST_HUGETLB && |
| get_free_hugepages() < bytes / page_size) { |
| printf("skip: Skipping userfaultfd... not enough hugepages\n"); |
| return KSFT_SKIP; |
| } |
| |
| nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); |
| |
| nr_pages_per_cpu = bytes / page_size / nr_cpus; |
| if (!nr_pages_per_cpu) { |
| _err("invalid MiB"); |
| usage(); |
| } |
| |
| bounces = atoi(argv[3]); |
| if (bounces <= 0) { |
| _err("invalid bounces"); |
| usage(); |
| } |
| nr_pages = nr_pages_per_cpu * nr_cpus; |
| |
| printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", |
| nr_pages, nr_pages_per_cpu); |
| return userfaultfd_stress(); |
| } |
| |
| #else /* __NR_userfaultfd */ |
| |
| #warning "missing __NR_userfaultfd definition" |
| |
| int main(void) |
| { |
| printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n"); |
| return KSFT_SKIP; |
| } |
| |
| #endif /* __NR_userfaultfd */ |