blob: 0af4f02669a115f547d33b8ed8261201876dbc57 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2020, Sandipan Das, IBM Corp.
*
* Test if applying execute protection on pages using memory
* protection keys works as expected.
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#include "pkeys.h"
#define PPC_INST_NOP 0x60000000
#define PPC_INST_TRAP 0x7fe00008
#define PPC_INST_BLR 0x4e800020
static volatile sig_atomic_t fault_pkey, fault_code, fault_type;
static volatile sig_atomic_t remaining_faults;
static volatile unsigned int *fault_addr;
static unsigned long pgsize, numinsns;
static unsigned int *insns;
static void trap_handler(int signum, siginfo_t *sinfo, void *ctx)
{
/* Check if this fault originated from the expected address */
if (sinfo->si_addr != (void *) fault_addr)
sigsafe_err("got a fault for an unexpected address\n");
_exit(1);
}
static void segv_handler(int signum, siginfo_t *sinfo, void *ctx)
{
int signal_pkey;
signal_pkey = siginfo_pkey(sinfo);
fault_code = sinfo->si_code;
/* Check if this fault originated from the expected address */
if (sinfo->si_addr != (void *) fault_addr) {
sigsafe_err("got a fault for an unexpected address\n");
_exit(1);
}
/* Check if too many faults have occurred for a single test case */
if (!remaining_faults) {
sigsafe_err("got too many faults for the same address\n");
_exit(1);
}
/* Restore permissions in order to continue */
switch (fault_code) {
case SEGV_ACCERR:
if (mprotect(insns, pgsize, PROT_READ | PROT_WRITE)) {
sigsafe_err("failed to set access permissions\n");
_exit(1);
}
break;
case SEGV_PKUERR:
if (signal_pkey != fault_pkey) {
sigsafe_err("got a fault for an unexpected pkey\n");
_exit(1);
}
switch (fault_type) {
case PKEY_DISABLE_ACCESS:
pkey_set_rights(fault_pkey, 0);
break;
case PKEY_DISABLE_EXECUTE:
/*
* Reassociate the exec-only pkey with the region
* to be able to continue. Unlike AMR, we cannot
* set IAMR directly from userspace to restore the
* permissions.
*/
if (mprotect(insns, pgsize, PROT_EXEC)) {
sigsafe_err("failed to set execute permissions\n");
_exit(1);
}
break;
default:
sigsafe_err("got a fault with an unexpected type\n");
_exit(1);
}
break;
default:
sigsafe_err("got a fault with an unexpected code\n");
_exit(1);
}
remaining_faults--;
}
static int test(void)
{
struct sigaction segv_act, trap_act;
unsigned long rights;
int pkey, ret, i;
ret = pkeys_unsupported();
if (ret)
return ret;
/* Setup SIGSEGV handler */
segv_act.sa_handler = 0;
segv_act.sa_sigaction = segv_handler;
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &segv_act.sa_mask) != 0);
segv_act.sa_flags = SA_SIGINFO;
segv_act.sa_restorer = 0;
FAIL_IF(sigaction(SIGSEGV, &segv_act, NULL) != 0);
/* Setup SIGTRAP handler */
trap_act.sa_handler = 0;
trap_act.sa_sigaction = trap_handler;
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &trap_act.sa_mask) != 0);
trap_act.sa_flags = SA_SIGINFO;
trap_act.sa_restorer = 0;
FAIL_IF(sigaction(SIGTRAP, &trap_act, NULL) != 0);
/* Setup executable region */
pgsize = getpagesize();
numinsns = pgsize / sizeof(unsigned int);
insns = (unsigned int *) mmap(NULL, pgsize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
FAIL_IF(insns == MAP_FAILED);
/* Write the instruction words */
for (i = 1; i < numinsns - 1; i++)
insns[i] = PPC_INST_NOP;
/*
* Set the first instruction as an unconditional trap. If
* the last write to this address succeeds, this should
* get overwritten by a no-op.
*/
insns[0] = PPC_INST_TRAP;
/*
* Later, to jump to the executable region, we use a branch
* and link instruction (bctrl) which sets the return address
* automatically in LR. Use that to return back.
*/
insns[numinsns - 1] = PPC_INST_BLR;
/* Allocate a pkey that restricts execution */
rights = PKEY_DISABLE_EXECUTE;
pkey = sys_pkey_alloc(0, rights);
FAIL_IF(pkey < 0);
/*
* Pick the first instruction's address from the executable
* region.
*/
fault_addr = insns;
/* The following two cases will avoid SEGV_PKUERR */
fault_type = -1;
fault_pkey = -1;
/*
* Read an instruction word from the address when AMR bits
* are not set i.e. the pkey permits both read and write
* access.
*
* This should not generate a fault as having PROT_EXEC
* implies PROT_READ on GNU systems. The pkey currently
* restricts execution only based on the IAMR bits. The
* AMR bits are cleared.
*/
remaining_faults = 0;
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
printf("read from %p, pkey permissions are %s\n", fault_addr,
pkey_rights(rights));
i = *fault_addr;
FAIL_IF(remaining_faults != 0);
/*
* Write an instruction word to the address when AMR bits
* are not set i.e. the pkey permits both read and write
* access.
*
* This should generate an access fault as having just
* PROT_EXEC also restricts writes. The pkey currently
* restricts execution only based on the IAMR bits. The
* AMR bits are cleared.
*/
remaining_faults = 1;
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
printf("write to %p, pkey permissions are %s\n", fault_addr,
pkey_rights(rights));
*fault_addr = PPC_INST_TRAP;
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR);
/* The following three cases will generate SEGV_PKUERR */
rights |= PKEY_DISABLE_ACCESS;
fault_type = PKEY_DISABLE_ACCESS;
fault_pkey = pkey;
/*
* Read an instruction word from the address when AMR bits
* are set i.e. the pkey permits neither read nor write
* access.
*
* This should generate a pkey fault based on AMR bits only
* as having PROT_EXEC implicitly allows reads.
*/
remaining_faults = 1;
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
pkey_set_rights(pkey, rights);
printf("read from %p, pkey permissions are %s\n", fault_addr,
pkey_rights(rights));
i = *fault_addr;
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_PKUERR);
/*
* Write an instruction word to the address when AMR bits
* are set i.e. the pkey permits neither read nor write
* access.
*
* This should generate two faults. First, a pkey fault
* based on AMR bits and then an access fault since
* PROT_EXEC does not allow writes.
*/
remaining_faults = 2;
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
pkey_set_rights(pkey, rights);
printf("write to %p, pkey permissions are %s\n", fault_addr,
pkey_rights(rights));
*fault_addr = PPC_INST_NOP;
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR);
/* Free the current pkey */
sys_pkey_free(pkey);
rights = 0;
do {
/*
* Allocate pkeys with all valid combinations of read,
* write and execute restrictions.
*/
pkey = sys_pkey_alloc(0, rights);
FAIL_IF(pkey < 0);
/*
* Jump to the executable region. AMR bits may or may not
* be set but they should not affect execution.
*
* This should generate pkey faults based on IAMR bits which
* may be set to restrict execution.
*
* The first iteration also checks if the overwrite of the
* first instruction word from a trap to a no-op succeeded.
*/
fault_pkey = pkey;
fault_type = -1;
remaining_faults = 0;
if (rights & PKEY_DISABLE_EXECUTE) {
fault_type = PKEY_DISABLE_EXECUTE;
remaining_faults = 1;
}
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
printf("execute at %p, pkey permissions are %s\n", fault_addr,
pkey_rights(rights));
asm volatile("mtctr %0; bctrl" : : "r"(insns));
FAIL_IF(remaining_faults != 0);
if (rights & PKEY_DISABLE_EXECUTE)
FAIL_IF(fault_code != SEGV_PKUERR);
/* Free the current pkey */
sys_pkey_free(pkey);
/* Find next valid combination of pkey rights */
rights = next_pkey_rights(rights);
} while (rights);
/* Cleanup */
munmap((void *) insns, pgsize);
return 0;
}
int main(void)
{
return test_harness(test, "pkey_exec_prot");
}