| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <linux/efi.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| typedef union efi_rng_protocol efi_rng_protocol_t; |
| |
| union efi_rng_protocol { |
| struct { |
| efi_status_t (__efiapi *get_info)(efi_rng_protocol_t *, |
| unsigned long *, |
| efi_guid_t *); |
| efi_status_t (__efiapi *get_rng)(efi_rng_protocol_t *, |
| efi_guid_t *, unsigned long, |
| u8 *out); |
| }; |
| struct { |
| u32 get_info; |
| u32 get_rng; |
| } mixed_mode; |
| }; |
| |
| /** |
| * efi_get_random_bytes() - fill a buffer with random bytes |
| * @size: size of the buffer |
| * @out: caller allocated buffer to receive the random bytes |
| * |
| * The call will fail if either the firmware does not implement the |
| * EFI_RNG_PROTOCOL or there are not enough random bytes available to fill |
| * the buffer. |
| * |
| * Return: status code |
| */ |
| efi_status_t efi_get_random_bytes(unsigned long size, u8 *out) |
| { |
| efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; |
| efi_status_t status; |
| efi_rng_protocol_t *rng = NULL; |
| |
| status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| return efi_call_proto(rng, get_rng, NULL, size, out); |
| } |
| |
| /** |
| * efi_random_get_seed() - provide random seed as configuration table |
| * |
| * The EFI_RNG_PROTOCOL is used to read random bytes. These random bytes are |
| * saved as a configuration table which can be used as entropy by the kernel |
| * for the initialization of its pseudo random number generator. |
| * |
| * If the EFI_RNG_PROTOCOL is not available or there are not enough random bytes |
| * available, the configuration table will not be installed and an error code |
| * will be returned. |
| * |
| * Return: status code |
| */ |
| efi_status_t efi_random_get_seed(void) |
| { |
| efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; |
| efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW; |
| efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID; |
| struct linux_efi_random_seed *prev_seed, *seed = NULL; |
| int prev_seed_size = 0, seed_size = EFI_RANDOM_SEED_SIZE; |
| unsigned long nv_seed_size = 0, offset = 0; |
| efi_rng_protocol_t *rng = NULL; |
| efi_status_t status; |
| |
| status = efi_bs_call(locate_protocol, &rng_proto, NULL, (void **)&rng); |
| if (status != EFI_SUCCESS) |
| seed_size = 0; |
| |
| // Call GetVariable() with a zero length buffer to obtain the size |
| get_efi_var(L"RandomSeed", &rng_table_guid, NULL, &nv_seed_size, NULL); |
| if (!seed_size && !nv_seed_size) |
| return status; |
| |
| seed_size += nv_seed_size; |
| |
| /* |
| * Check whether a seed was provided by a prior boot stage. In that |
| * case, instead of overwriting it, let's create a new buffer that can |
| * hold both, and concatenate the existing and the new seeds. |
| * Note that we should read the seed size with caution, in case the |
| * table got corrupted in memory somehow. |
| */ |
| prev_seed = get_efi_config_table(rng_table_guid); |
| if (prev_seed && prev_seed->size <= 512U) { |
| prev_seed_size = prev_seed->size; |
| seed_size += prev_seed_size; |
| } |
| |
| /* |
| * Use EFI_ACPI_RECLAIM_MEMORY here so that it is guaranteed that the |
| * allocation will survive a kexec reboot (although we refresh the seed |
| * beforehand) |
| */ |
| status = efi_bs_call(allocate_pool, EFI_ACPI_RECLAIM_MEMORY, |
| struct_size(seed, bits, seed_size), |
| (void **)&seed); |
| if (status != EFI_SUCCESS) { |
| efi_warn("Failed to allocate memory for RNG seed.\n"); |
| goto err_warn; |
| } |
| |
| if (rng) { |
| status = efi_call_proto(rng, get_rng, &rng_algo_raw, |
| EFI_RANDOM_SEED_SIZE, seed->bits); |
| |
| if (status == EFI_UNSUPPORTED) |
| /* |
| * Use whatever algorithm we have available if the raw algorithm |
| * is not implemented. |
| */ |
| status = efi_call_proto(rng, get_rng, NULL, |
| EFI_RANDOM_SEED_SIZE, seed->bits); |
| |
| if (status == EFI_SUCCESS) |
| offset = EFI_RANDOM_SEED_SIZE; |
| } |
| |
| if (nv_seed_size) { |
| status = get_efi_var(L"RandomSeed", &rng_table_guid, NULL, |
| &nv_seed_size, seed->bits + offset); |
| |
| if (status == EFI_SUCCESS) |
| /* |
| * We delete the seed here, and /hope/ that this causes |
| * EFI to also zero out its representation on disk. |
| * This is somewhat idealistic, but overwriting the |
| * variable with zeros is likely just as fraught too. |
| * TODO: in the future, maybe we can hash it forward |
| * instead, and write a new seed. |
| */ |
| status = set_efi_var(L"RandomSeed", &rng_table_guid, 0, |
| 0, NULL); |
| |
| if (status == EFI_SUCCESS) |
| offset += nv_seed_size; |
| else |
| memzero_explicit(seed->bits + offset, nv_seed_size); |
| } |
| |
| if (!offset) |
| goto err_freepool; |
| |
| if (prev_seed_size) { |
| memcpy(seed->bits + offset, prev_seed->bits, prev_seed_size); |
| offset += prev_seed_size; |
| } |
| |
| seed->size = offset; |
| status = efi_bs_call(install_configuration_table, &rng_table_guid, seed); |
| if (status != EFI_SUCCESS) |
| goto err_freepool; |
| |
| if (prev_seed_size) { |
| /* wipe and free the old seed if we managed to install the new one */ |
| memzero_explicit(prev_seed->bits, prev_seed_size); |
| efi_bs_call(free_pool, prev_seed); |
| } |
| return EFI_SUCCESS; |
| |
| err_freepool: |
| memzero_explicit(seed, struct_size(seed, bits, seed_size)); |
| efi_bs_call(free_pool, seed); |
| efi_warn("Failed to obtain seed from EFI_RNG_PROTOCOL or EFI variable\n"); |
| err_warn: |
| if (prev_seed) |
| efi_warn("Retaining bootloader-supplied seed only"); |
| return status; |
| } |