| // SPDX-License-Identifier: GPL-2.0-only |
| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2015 Solarflare Communications Inc. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/tcp.h> |
| #include <linux/ip.h> |
| #include <linux/in.h> |
| #include <linux/ipv6.h> |
| #include <linux/slab.h> |
| #include <net/ipv6.h> |
| #include <linux/if_ether.h> |
| #include <linux/highmem.h> |
| #include <linux/moduleparam.h> |
| #include <linux/cache.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "io.h" |
| #include "nic.h" |
| #include "tx.h" |
| #include "workarounds.h" |
| #include "ef10_regs.h" |
| |
| /* Efx legacy TCP segmentation acceleration. |
| * |
| * Utilises firmware support to go faster than GSO (but not as fast as TSOv2). |
| * |
| * Requires TX checksum offload support. |
| */ |
| |
| #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) |
| |
| /** |
| * struct tso_state - TSO state for an SKB |
| * @out_len: Remaining length in current segment |
| * @seqnum: Current sequence number |
| * @ipv4_id: Current IPv4 ID, host endian |
| * @packet_space: Remaining space in current packet |
| * @dma_addr: DMA address of current position |
| * @in_len: Remaining length in current SKB fragment |
| * @unmap_len: Length of SKB fragment |
| * @unmap_addr: DMA address of SKB fragment |
| * @protocol: Network protocol (after any VLAN header) |
| * @ip_off: Offset of IP header |
| * @tcp_off: Offset of TCP header |
| * @header_len: Number of bytes of header |
| * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload |
| * @header_dma_addr: Header DMA address |
| * @header_unmap_len: Header DMA mapped length |
| * |
| * The state used during segmentation. It is put into this data structure |
| * just to make it easy to pass into inline functions. |
| */ |
| struct tso_state { |
| /* Output position */ |
| unsigned int out_len; |
| unsigned int seqnum; |
| u16 ipv4_id; |
| unsigned int packet_space; |
| |
| /* Input position */ |
| dma_addr_t dma_addr; |
| unsigned int in_len; |
| unsigned int unmap_len; |
| dma_addr_t unmap_addr; |
| |
| __be16 protocol; |
| unsigned int ip_off; |
| unsigned int tcp_off; |
| unsigned int header_len; |
| unsigned int ip_base_len; |
| dma_addr_t header_dma_addr; |
| unsigned int header_unmap_len; |
| }; |
| |
| static inline void prefetch_ptr(struct efx_tx_queue *tx_queue) |
| { |
| unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue); |
| char *ptr; |
| |
| ptr = (char *) (tx_queue->buffer + insert_ptr); |
| prefetch(ptr); |
| prefetch(ptr + 0x80); |
| |
| ptr = (char *)(((efx_qword_t *)tx_queue->txd.addr) + insert_ptr); |
| prefetch(ptr); |
| prefetch(ptr + 0x80); |
| } |
| |
| /** |
| * efx_tx_queue_insert - push descriptors onto the TX queue |
| * @tx_queue: Efx TX queue |
| * @dma_addr: DMA address of fragment |
| * @len: Length of fragment |
| * @final_buffer: The final buffer inserted into the queue |
| * |
| * Push descriptors onto the TX queue. |
| */ |
| static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue, |
| dma_addr_t dma_addr, unsigned int len, |
| struct efx_tx_buffer **final_buffer) |
| { |
| struct efx_tx_buffer *buffer; |
| unsigned int dma_len; |
| |
| EFX_WARN_ON_ONCE_PARANOID(len <= 0); |
| |
| while (1) { |
| buffer = efx_tx_queue_get_insert_buffer(tx_queue); |
| ++tx_queue->insert_count; |
| |
| EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count - |
| tx_queue->read_count >= |
| tx_queue->efx->txq_entries); |
| |
| buffer->dma_addr = dma_addr; |
| |
| dma_len = tx_queue->efx->type->tx_limit_len(tx_queue, |
| dma_addr, len); |
| |
| /* If there's space for everything this is our last buffer. */ |
| if (dma_len >= len) |
| break; |
| |
| buffer->len = dma_len; |
| buffer->flags = EFX_TX_BUF_CONT; |
| dma_addr += dma_len; |
| len -= dma_len; |
| } |
| |
| EFX_WARN_ON_ONCE_PARANOID(!len); |
| buffer->len = len; |
| *final_buffer = buffer; |
| } |
| |
| /* |
| * Verify that our various assumptions about sk_buffs and the conditions |
| * under which TSO will be attempted hold true. Return the protocol number. |
| */ |
| static __be16 efx_tso_check_protocol(struct sk_buff *skb) |
| { |
| __be16 protocol = skb->protocol; |
| |
| EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto != |
| protocol); |
| if (protocol == htons(ETH_P_8021Q)) { |
| struct vlan_ethhdr *veh = skb_vlan_eth_hdr(skb); |
| |
| protocol = veh->h_vlan_encapsulated_proto; |
| } |
| |
| if (protocol == htons(ETH_P_IP)) { |
| EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); |
| } else { |
| EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6)); |
| EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); |
| } |
| EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) + |
| (tcp_hdr(skb)->doff << 2u)) > |
| skb_headlen(skb)); |
| |
| return protocol; |
| } |
| |
| /* Parse the SKB header and initialise state. */ |
| static int tso_start(struct tso_state *st, struct efx_nic *efx, |
| struct efx_tx_queue *tx_queue, |
| const struct sk_buff *skb) |
| { |
| struct device *dma_dev = &efx->pci_dev->dev; |
| unsigned int header_len, in_len; |
| dma_addr_t dma_addr; |
| |
| st->ip_off = skb_network_offset(skb); |
| st->tcp_off = skb_transport_offset(skb); |
| header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u); |
| in_len = skb_headlen(skb) - header_len; |
| st->header_len = header_len; |
| st->in_len = in_len; |
| if (st->protocol == htons(ETH_P_IP)) { |
| st->ip_base_len = st->header_len - st->ip_off; |
| st->ipv4_id = ntohs(ip_hdr(skb)->id); |
| } else { |
| st->ip_base_len = st->header_len - st->tcp_off; |
| st->ipv4_id = 0; |
| } |
| st->seqnum = ntohl(tcp_hdr(skb)->seq); |
| |
| EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg); |
| EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn); |
| EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst); |
| |
| st->out_len = skb->len - header_len; |
| |
| dma_addr = dma_map_single(dma_dev, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| st->header_dma_addr = dma_addr; |
| st->header_unmap_len = skb_headlen(skb); |
| st->dma_addr = dma_addr + header_len; |
| st->unmap_len = 0; |
| |
| return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0; |
| } |
| |
| static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, |
| skb_frag_t *frag) |
| { |
| st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) { |
| st->unmap_len = skb_frag_size(frag); |
| st->in_len = skb_frag_size(frag); |
| st->dma_addr = st->unmap_addr; |
| return 0; |
| } |
| return -ENOMEM; |
| } |
| |
| |
| /** |
| * tso_fill_packet_with_fragment - form descriptors for the current fragment |
| * @tx_queue: Efx TX queue |
| * @skb: Socket buffer |
| * @st: TSO state |
| * |
| * Form descriptors for the current fragment, until we reach the end |
| * of fragment or end-of-packet. |
| */ |
| static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, |
| const struct sk_buff *skb, |
| struct tso_state *st) |
| { |
| struct efx_tx_buffer *buffer; |
| int n; |
| |
| if (st->in_len == 0) |
| return; |
| if (st->packet_space == 0) |
| return; |
| |
| EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0); |
| EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0); |
| |
| n = min(st->in_len, st->packet_space); |
| |
| st->packet_space -= n; |
| st->out_len -= n; |
| st->in_len -= n; |
| |
| efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); |
| |
| if (st->out_len == 0) { |
| /* Transfer ownership of the skb */ |
| buffer->skb = skb; |
| buffer->flags = EFX_TX_BUF_SKB; |
| } else if (st->packet_space != 0) { |
| buffer->flags = EFX_TX_BUF_CONT; |
| } |
| |
| if (st->in_len == 0) { |
| /* Transfer ownership of the DMA mapping */ |
| buffer->unmap_len = st->unmap_len; |
| buffer->dma_offset = buffer->unmap_len - buffer->len; |
| st->unmap_len = 0; |
| } |
| |
| st->dma_addr += n; |
| } |
| |
| |
| #define TCP_FLAGS_OFFSET 13 |
| |
| /** |
| * tso_start_new_packet - generate a new header and prepare for the new packet |
| * @tx_queue: Efx TX queue |
| * @skb: Socket buffer |
| * @st: TSO state |
| * |
| * Generate a new header and prepare for the new packet. Return 0 on |
| * success, or -%ENOMEM if failed to alloc header, or other negative error. |
| */ |
| static int tso_start_new_packet(struct efx_tx_queue *tx_queue, |
| const struct sk_buff *skb, |
| struct tso_state *st) |
| { |
| struct efx_tx_buffer *buffer = |
| efx_tx_queue_get_insert_buffer(tx_queue); |
| bool is_last = st->out_len <= skb_shinfo(skb)->gso_size; |
| u8 tcp_flags_mask, tcp_flags; |
| |
| if (!is_last) { |
| st->packet_space = skb_shinfo(skb)->gso_size; |
| tcp_flags_mask = 0x09; /* mask out FIN and PSH */ |
| } else { |
| st->packet_space = st->out_len; |
| tcp_flags_mask = 0x00; |
| } |
| |
| if (WARN_ON(!st->header_unmap_len)) |
| return -EINVAL; |
| /* Send the original headers with a TSO option descriptor |
| * in front |
| */ |
| tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask; |
| |
| buffer->flags = EFX_TX_BUF_OPTION; |
| buffer->len = 0; |
| buffer->unmap_len = 0; |
| EFX_POPULATE_QWORD_5(buffer->option, |
| ESF_DZ_TX_DESC_IS_OPT, 1, |
| ESF_DZ_TX_OPTION_TYPE, |
| ESE_DZ_TX_OPTION_DESC_TSO, |
| ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags, |
| ESF_DZ_TX_TSO_IP_ID, st->ipv4_id, |
| ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum); |
| ++tx_queue->insert_count; |
| |
| /* We mapped the headers in tso_start(). Unmap them |
| * when the last segment is completed. |
| */ |
| buffer = efx_tx_queue_get_insert_buffer(tx_queue); |
| buffer->dma_addr = st->header_dma_addr; |
| buffer->len = st->header_len; |
| if (is_last) { |
| buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE; |
| buffer->unmap_len = st->header_unmap_len; |
| buffer->dma_offset = 0; |
| /* Ensure we only unmap them once in case of a |
| * later DMA mapping error and rollback |
| */ |
| st->header_unmap_len = 0; |
| } else { |
| buffer->flags = EFX_TX_BUF_CONT; |
| buffer->unmap_len = 0; |
| } |
| ++tx_queue->insert_count; |
| |
| st->seqnum += skb_shinfo(skb)->gso_size; |
| |
| /* Linux leaves suitable gaps in the IP ID space for us to fill. */ |
| ++st->ipv4_id; |
| |
| return 0; |
| } |
| |
| /** |
| * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer |
| * @tx_queue: Efx TX queue |
| * @skb: Socket buffer |
| * @data_mapped: Did we map the data? Always set to true |
| * by this on success. |
| * |
| * Context: You must hold netif_tx_lock() to call this function. |
| * |
| * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if |
| * @skb was not enqueued. @skb is consumed unless return value is |
| * %EINVAL. |
| */ |
| int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, |
| struct sk_buff *skb, |
| bool *data_mapped) |
| { |
| struct efx_nic *efx = tx_queue->efx; |
| int frag_i, rc; |
| struct tso_state state; |
| |
| if (tx_queue->tso_version != 1) |
| return -EINVAL; |
| |
| prefetch(skb->data); |
| |
| /* Find the packet protocol and sanity-check it */ |
| state.protocol = efx_tso_check_protocol(skb); |
| |
| EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count); |
| |
| rc = tso_start(&state, efx, tx_queue, skb); |
| if (rc) |
| goto fail; |
| |
| if (likely(state.in_len == 0)) { |
| /* Grab the first payload fragment. */ |
| EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1); |
| frag_i = 0; |
| rc = tso_get_fragment(&state, efx, |
| skb_shinfo(skb)->frags + frag_i); |
| if (rc) |
| goto fail; |
| } else { |
| /* Payload starts in the header area. */ |
| frag_i = -1; |
| } |
| |
| rc = tso_start_new_packet(tx_queue, skb, &state); |
| if (rc) |
| goto fail; |
| |
| prefetch_ptr(tx_queue); |
| |
| while (1) { |
| tso_fill_packet_with_fragment(tx_queue, skb, &state); |
| |
| /* Move onto the next fragment? */ |
| if (state.in_len == 0) { |
| if (++frag_i >= skb_shinfo(skb)->nr_frags) |
| /* End of payload reached. */ |
| break; |
| rc = tso_get_fragment(&state, efx, |
| skb_shinfo(skb)->frags + frag_i); |
| if (rc) |
| goto fail; |
| } |
| |
| /* Start at new packet? */ |
| if (state.packet_space == 0) { |
| rc = tso_start_new_packet(tx_queue, skb, &state); |
| if (rc) |
| goto fail; |
| } |
| } |
| |
| *data_mapped = true; |
| |
| return 0; |
| |
| fail: |
| if (rc == -ENOMEM) |
| netif_err(efx, tx_err, efx->net_dev, |
| "Out of memory for TSO headers, or DMA mapping error\n"); |
| else |
| netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc); |
| |
| /* Free the DMA mapping we were in the process of writing out */ |
| if (state.unmap_len) { |
| dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr, |
| state.unmap_len, DMA_TO_DEVICE); |
| } |
| |
| /* Free the header DMA mapping */ |
| if (state.header_unmap_len) |
| dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr, |
| state.header_unmap_len, DMA_TO_DEVICE); |
| |
| return rc; |
| } |