| /* |
| * linux/net/sunrpc/gss_krb5_crypto.c |
| * |
| * Copyright (c) 2000-2008 The Regents of the University of Michigan. |
| * All rights reserved. |
| * |
| * Andy Adamson <andros@umich.edu> |
| * Bruce Fields <bfields@umich.edu> |
| */ |
| |
| /* |
| * Copyright (C) 1998 by the FundsXpress, INC. |
| * |
| * All rights reserved. |
| * |
| * Export of this software from the United States of America may require |
| * a specific license from the United States Government. It is the |
| * responsibility of any person or organization contemplating export to |
| * obtain such a license before exporting. |
| * |
| * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and |
| * distribute this software and its documentation for any purpose and |
| * without fee is hereby granted, provided that the above copyright |
| * notice appear in all copies and that both that copyright notice and |
| * this permission notice appear in supporting documentation, and that |
| * the name of FundsXpress. not be used in advertising or publicity pertaining |
| * to distribution of the software without specific, written prior |
| * permission. FundsXpress makes no representations about the suitability of |
| * this software for any purpose. It is provided "as is" without express |
| * or implied warranty. |
| * |
| * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED |
| * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| */ |
| |
| #include <crypto/hash.h> |
| #include <crypto/skcipher.h> |
| #include <crypto/utils.h> |
| #include <linux/err.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/scatterlist.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/random.h> |
| #include <linux/sunrpc/gss_krb5.h> |
| #include <linux/sunrpc/xdr.h> |
| #include <kunit/visibility.h> |
| |
| #include "gss_krb5_internal.h" |
| |
| #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| # define RPCDBG_FACILITY RPCDBG_AUTH |
| #endif |
| |
| /** |
| * krb5_make_confounder - Generate a confounder string |
| * @p: memory location into which to write the string |
| * @conflen: string length to write, in octets |
| * |
| * RFCs 1964 and 3961 mention only "a random confounder" without going |
| * into detail about its function or cryptographic requirements. The |
| * assumed purpose is to prevent repeated encryption of a plaintext with |
| * the same key from generating the same ciphertext. It is also used to |
| * pad minimum plaintext length to at least a single cipher block. |
| * |
| * However, in situations like the GSS Kerberos 5 mechanism, where the |
| * encryption IV is always all zeroes, the confounder also effectively |
| * functions like an IV. Thus, not only must it be unique from message |
| * to message, but it must also be difficult to predict. Otherwise an |
| * attacker can correlate the confounder to previous or future values, |
| * making the encryption easier to break. |
| * |
| * Given that the primary consumer of this encryption mechanism is a |
| * network storage protocol, a type of traffic that often carries |
| * predictable payloads (eg, all zeroes when reading unallocated blocks |
| * from a file), our confounder generation has to be cryptographically |
| * strong. |
| */ |
| void krb5_make_confounder(u8 *p, int conflen) |
| { |
| get_random_bytes(p, conflen); |
| } |
| |
| /** |
| * krb5_encrypt - simple encryption of an RPCSEC GSS payload |
| * @tfm: initialized cipher transform |
| * @iv: pointer to an IV |
| * @in: plaintext to encrypt |
| * @out: OUT: ciphertext |
| * @length: length of input and output buffers, in bytes |
| * |
| * @iv may be NULL to force the use of an all-zero IV. |
| * The buffer containing the IV must be as large as the |
| * cipher's ivsize. |
| * |
| * Return values: |
| * %0: @in successfully encrypted into @out |
| * negative errno: @in not encrypted |
| */ |
| u32 |
| krb5_encrypt( |
| struct crypto_sync_skcipher *tfm, |
| void * iv, |
| void * in, |
| void * out, |
| int length) |
| { |
| u32 ret = -EINVAL; |
| struct scatterlist sg[1]; |
| u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); |
| |
| if (length % crypto_sync_skcipher_blocksize(tfm) != 0) |
| goto out; |
| |
| if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { |
| dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n", |
| crypto_sync_skcipher_ivsize(tfm)); |
| goto out; |
| } |
| |
| if (iv) |
| memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm)); |
| |
| memcpy(out, in, length); |
| sg_init_one(sg, out, length); |
| |
| skcipher_request_set_sync_tfm(req, tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, length, local_iv); |
| |
| ret = crypto_skcipher_encrypt(req); |
| skcipher_request_zero(req); |
| out: |
| dprintk("RPC: krb5_encrypt returns %d\n", ret); |
| return ret; |
| } |
| |
| /** |
| * krb5_decrypt - simple decryption of an RPCSEC GSS payload |
| * @tfm: initialized cipher transform |
| * @iv: pointer to an IV |
| * @in: ciphertext to decrypt |
| * @out: OUT: plaintext |
| * @length: length of input and output buffers, in bytes |
| * |
| * @iv may be NULL to force the use of an all-zero IV. |
| * The buffer containing the IV must be as large as the |
| * cipher's ivsize. |
| * |
| * Return values: |
| * %0: @in successfully decrypted into @out |
| * negative errno: @in not decrypted |
| */ |
| u32 |
| krb5_decrypt( |
| struct crypto_sync_skcipher *tfm, |
| void * iv, |
| void * in, |
| void * out, |
| int length) |
| { |
| u32 ret = -EINVAL; |
| struct scatterlist sg[1]; |
| u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); |
| |
| if (length % crypto_sync_skcipher_blocksize(tfm) != 0) |
| goto out; |
| |
| if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { |
| dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n", |
| crypto_sync_skcipher_ivsize(tfm)); |
| goto out; |
| } |
| if (iv) |
| memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm)); |
| |
| memcpy(out, in, length); |
| sg_init_one(sg, out, length); |
| |
| skcipher_request_set_sync_tfm(req, tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, length, local_iv); |
| |
| ret = crypto_skcipher_decrypt(req); |
| skcipher_request_zero(req); |
| out: |
| dprintk("RPC: gss_k5decrypt returns %d\n",ret); |
| return ret; |
| } |
| |
| static int |
| checksummer(struct scatterlist *sg, void *data) |
| { |
| struct ahash_request *req = data; |
| |
| ahash_request_set_crypt(req, sg, NULL, sg->length); |
| |
| return crypto_ahash_update(req); |
| } |
| |
| /* |
| * checksum the plaintext data and hdrlen bytes of the token header |
| * The checksum is performed over the first 8 bytes of the |
| * gss token header and then over the data body |
| */ |
| u32 |
| make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen, |
| struct xdr_buf *body, int body_offset, u8 *cksumkey, |
| unsigned int usage, struct xdr_netobj *cksumout) |
| { |
| struct crypto_ahash *tfm; |
| struct ahash_request *req; |
| struct scatterlist sg[1]; |
| int err = -1; |
| u8 *checksumdata; |
| unsigned int checksumlen; |
| |
| if (cksumout->len < kctx->gk5e->cksumlength) { |
| dprintk("%s: checksum buffer length, %u, too small for %s\n", |
| __func__, cksumout->len, kctx->gk5e->name); |
| return GSS_S_FAILURE; |
| } |
| |
| checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL); |
| if (checksumdata == NULL) |
| return GSS_S_FAILURE; |
| |
| tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(tfm)) |
| goto out_free_cksum; |
| |
| req = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!req) |
| goto out_free_ahash; |
| |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); |
| |
| checksumlen = crypto_ahash_digestsize(tfm); |
| |
| if (cksumkey != NULL) { |
| err = crypto_ahash_setkey(tfm, cksumkey, |
| kctx->gk5e->keylength); |
| if (err) |
| goto out; |
| } |
| |
| err = crypto_ahash_init(req); |
| if (err) |
| goto out; |
| sg_init_one(sg, header, hdrlen); |
| ahash_request_set_crypt(req, sg, NULL, hdrlen); |
| err = crypto_ahash_update(req); |
| if (err) |
| goto out; |
| err = xdr_process_buf(body, body_offset, body->len - body_offset, |
| checksummer, req); |
| if (err) |
| goto out; |
| ahash_request_set_crypt(req, NULL, checksumdata, 0); |
| err = crypto_ahash_final(req); |
| if (err) |
| goto out; |
| |
| switch (kctx->gk5e->ctype) { |
| case CKSUMTYPE_RSA_MD5: |
| err = krb5_encrypt(kctx->seq, NULL, checksumdata, |
| checksumdata, checksumlen); |
| if (err) |
| goto out; |
| memcpy(cksumout->data, |
| checksumdata + checksumlen - kctx->gk5e->cksumlength, |
| kctx->gk5e->cksumlength); |
| break; |
| case CKSUMTYPE_HMAC_SHA1_DES3: |
| memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength); |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| cksumout->len = kctx->gk5e->cksumlength; |
| out: |
| ahash_request_free(req); |
| out_free_ahash: |
| crypto_free_ahash(tfm); |
| out_free_cksum: |
| kfree(checksumdata); |
| return err ? GSS_S_FAILURE : 0; |
| } |
| |
| /** |
| * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token |
| * @tfm: an initialized hash transform |
| * @header: pointer to a buffer containing the token header, or NULL |
| * @hdrlen: number of octets in @header |
| * @body: xdr_buf containing an RPC message (body.len is the message length) |
| * @body_offset: byte offset into @body to start checksumming |
| * @cksumout: OUT: a buffer to be filled in with the computed HMAC |
| * |
| * Usually expressed as H = HMAC(K, message)[1..h] . |
| * |
| * Caller provides the truncation length of the output token (h) in |
| * cksumout.len. |
| * |
| * Return values: |
| * %GSS_S_COMPLETE: Digest computed, @cksumout filled in |
| * %GSS_S_FAILURE: Call failed |
| */ |
| u32 |
| gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen, |
| const struct xdr_buf *body, int body_offset, |
| struct xdr_netobj *cksumout) |
| { |
| struct ahash_request *req; |
| int err = -ENOMEM; |
| u8 *checksumdata; |
| |
| checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL); |
| if (!checksumdata) |
| return GSS_S_FAILURE; |
| |
| req = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!req) |
| goto out_free_cksum; |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); |
| err = crypto_ahash_init(req); |
| if (err) |
| goto out_free_ahash; |
| |
| /* |
| * Per RFC 4121 Section 4.2.4, the checksum is performed over the |
| * data body first, then over the octets in "header". |
| */ |
| err = xdr_process_buf(body, body_offset, body->len - body_offset, |
| checksummer, req); |
| if (err) |
| goto out_free_ahash; |
| if (header) { |
| struct scatterlist sg[1]; |
| |
| sg_init_one(sg, header, hdrlen); |
| ahash_request_set_crypt(req, sg, NULL, hdrlen); |
| err = crypto_ahash_update(req); |
| if (err) |
| goto out_free_ahash; |
| } |
| |
| ahash_request_set_crypt(req, NULL, checksumdata, 0); |
| err = crypto_ahash_final(req); |
| if (err) |
| goto out_free_ahash; |
| |
| memcpy(cksumout->data, checksumdata, |
| min_t(int, cksumout->len, crypto_ahash_digestsize(tfm))); |
| |
| out_free_ahash: |
| ahash_request_free(req); |
| out_free_cksum: |
| kfree_sensitive(checksumdata); |
| return err ? GSS_S_FAILURE : GSS_S_COMPLETE; |
| } |
| EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum); |
| |
| struct encryptor_desc { |
| u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; |
| struct skcipher_request *req; |
| int pos; |
| struct xdr_buf *outbuf; |
| struct page **pages; |
| struct scatterlist infrags[4]; |
| struct scatterlist outfrags[4]; |
| int fragno; |
| int fraglen; |
| }; |
| |
| static int |
| encryptor(struct scatterlist *sg, void *data) |
| { |
| struct encryptor_desc *desc = data; |
| struct xdr_buf *outbuf = desc->outbuf; |
| struct crypto_sync_skcipher *tfm = |
| crypto_sync_skcipher_reqtfm(desc->req); |
| struct page *in_page; |
| int thislen = desc->fraglen + sg->length; |
| int fraglen, ret; |
| int page_pos; |
| |
| /* Worst case is 4 fragments: head, end of page 1, start |
| * of page 2, tail. Anything more is a bug. */ |
| BUG_ON(desc->fragno > 3); |
| |
| page_pos = desc->pos - outbuf->head[0].iov_len; |
| if (page_pos >= 0 && page_pos < outbuf->page_len) { |
| /* pages are not in place: */ |
| int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT; |
| in_page = desc->pages[i]; |
| } else { |
| in_page = sg_page(sg); |
| } |
| sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length, |
| sg->offset); |
| sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length, |
| sg->offset); |
| desc->fragno++; |
| desc->fraglen += sg->length; |
| desc->pos += sg->length; |
| |
| fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1); |
| thislen -= fraglen; |
| |
| if (thislen == 0) |
| return 0; |
| |
| sg_mark_end(&desc->infrags[desc->fragno - 1]); |
| sg_mark_end(&desc->outfrags[desc->fragno - 1]); |
| |
| skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags, |
| thislen, desc->iv); |
| |
| ret = crypto_skcipher_encrypt(desc->req); |
| if (ret) |
| return ret; |
| |
| sg_init_table(desc->infrags, 4); |
| sg_init_table(desc->outfrags, 4); |
| |
| if (fraglen) { |
| sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen, |
| sg->offset + sg->length - fraglen); |
| desc->infrags[0] = desc->outfrags[0]; |
| sg_assign_page(&desc->infrags[0], in_page); |
| desc->fragno = 1; |
| desc->fraglen = fraglen; |
| } else { |
| desc->fragno = 0; |
| desc->fraglen = 0; |
| } |
| return 0; |
| } |
| |
| int |
| gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf, |
| int offset, struct page **pages) |
| { |
| int ret; |
| struct encryptor_desc desc; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); |
| |
| BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0); |
| |
| skcipher_request_set_sync_tfm(req, tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| |
| memset(desc.iv, 0, sizeof(desc.iv)); |
| desc.req = req; |
| desc.pos = offset; |
| desc.outbuf = buf; |
| desc.pages = pages; |
| desc.fragno = 0; |
| desc.fraglen = 0; |
| |
| sg_init_table(desc.infrags, 4); |
| sg_init_table(desc.outfrags, 4); |
| |
| ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc); |
| skcipher_request_zero(req); |
| return ret; |
| } |
| |
| struct decryptor_desc { |
| u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; |
| struct skcipher_request *req; |
| struct scatterlist frags[4]; |
| int fragno; |
| int fraglen; |
| }; |
| |
| static int |
| decryptor(struct scatterlist *sg, void *data) |
| { |
| struct decryptor_desc *desc = data; |
| int thislen = desc->fraglen + sg->length; |
| struct crypto_sync_skcipher *tfm = |
| crypto_sync_skcipher_reqtfm(desc->req); |
| int fraglen, ret; |
| |
| /* Worst case is 4 fragments: head, end of page 1, start |
| * of page 2, tail. Anything more is a bug. */ |
| BUG_ON(desc->fragno > 3); |
| sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length, |
| sg->offset); |
| desc->fragno++; |
| desc->fraglen += sg->length; |
| |
| fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1); |
| thislen -= fraglen; |
| |
| if (thislen == 0) |
| return 0; |
| |
| sg_mark_end(&desc->frags[desc->fragno - 1]); |
| |
| skcipher_request_set_crypt(desc->req, desc->frags, desc->frags, |
| thislen, desc->iv); |
| |
| ret = crypto_skcipher_decrypt(desc->req); |
| if (ret) |
| return ret; |
| |
| sg_init_table(desc->frags, 4); |
| |
| if (fraglen) { |
| sg_set_page(&desc->frags[0], sg_page(sg), fraglen, |
| sg->offset + sg->length - fraglen); |
| desc->fragno = 1; |
| desc->fraglen = fraglen; |
| } else { |
| desc->fragno = 0; |
| desc->fraglen = 0; |
| } |
| return 0; |
| } |
| |
| int |
| gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf, |
| int offset) |
| { |
| int ret; |
| struct decryptor_desc desc; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); |
| |
| /* XXXJBF: */ |
| BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0); |
| |
| skcipher_request_set_sync_tfm(req, tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| |
| memset(desc.iv, 0, sizeof(desc.iv)); |
| desc.req = req; |
| desc.fragno = 0; |
| desc.fraglen = 0; |
| |
| sg_init_table(desc.frags, 4); |
| |
| ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc); |
| skcipher_request_zero(req); |
| return ret; |
| } |
| |
| /* |
| * This function makes the assumption that it was ultimately called |
| * from gss_wrap(). |
| * |
| * The client auth_gss code moves any existing tail data into a |
| * separate page before calling gss_wrap. |
| * The server svcauth_gss code ensures that both the head and the |
| * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap. |
| * |
| * Even with that guarantee, this function may be called more than |
| * once in the processing of gss_wrap(). The best we can do is |
| * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the |
| * largest expected shift will fit within RPC_MAX_AUTH_SIZE. |
| * At run-time we can verify that a single invocation of this |
| * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE. |
| */ |
| |
| int |
| xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen) |
| { |
| u8 *p; |
| |
| if (shiftlen == 0) |
| return 0; |
| |
| BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE); |
| |
| p = buf->head[0].iov_base + base; |
| |
| memmove(p + shiftlen, p, buf->head[0].iov_len - base); |
| |
| buf->head[0].iov_len += shiftlen; |
| buf->len += shiftlen; |
| |
| return 0; |
| } |
| |
| static u32 |
| gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf, |
| u32 offset, u8 *iv, struct page **pages, int encrypt) |
| { |
| u32 ret; |
| struct scatterlist sg[1]; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher); |
| u8 *data; |
| struct page **save_pages; |
| u32 len = buf->len - offset; |
| |
| if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) { |
| WARN_ON(0); |
| return -ENOMEM; |
| } |
| data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| /* |
| * For encryption, we want to read from the cleartext |
| * page cache pages, and write the encrypted data to |
| * the supplied xdr_buf pages. |
| */ |
| save_pages = buf->pages; |
| if (encrypt) |
| buf->pages = pages; |
| |
| ret = read_bytes_from_xdr_buf(buf, offset, data, len); |
| buf->pages = save_pages; |
| if (ret) |
| goto out; |
| |
| sg_init_one(sg, data, len); |
| |
| skcipher_request_set_sync_tfm(req, cipher); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| skcipher_request_set_crypt(req, sg, sg, len, iv); |
| |
| if (encrypt) |
| ret = crypto_skcipher_encrypt(req); |
| else |
| ret = crypto_skcipher_decrypt(req); |
| |
| skcipher_request_zero(req); |
| |
| if (ret) |
| goto out; |
| |
| ret = write_bytes_to_xdr_buf(buf, offset, data, len); |
| |
| #if IS_ENABLED(CONFIG_KUNIT) |
| /* |
| * CBC-CTS does not define an output IV but RFC 3962 defines it as the |
| * penultimate block of ciphertext, so copy that into the IV buffer |
| * before returning. |
| */ |
| if (encrypt) |
| memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher)); |
| #endif |
| |
| out: |
| kfree(data); |
| return ret; |
| } |
| |
| /** |
| * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS |
| * @cts_tfm: CBC cipher with CTS |
| * @cbc_tfm: base CBC cipher |
| * @offset: starting byte offset for plaintext |
| * @buf: OUT: output buffer |
| * @pages: plaintext |
| * @iv: output CBC initialization vector, or NULL |
| * @ivsize: size of @iv, in octets |
| * |
| * To provide confidentiality, encrypt using cipher block chaining |
| * with ciphertext stealing. Message integrity is handled separately. |
| * |
| * Return values: |
| * %0: encryption successful |
| * negative errno: encryption could not be completed |
| */ |
| VISIBLE_IF_KUNIT |
| int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm, |
| struct crypto_sync_skcipher *cbc_tfm, |
| u32 offset, struct xdr_buf *buf, struct page **pages, |
| u8 *iv, unsigned int ivsize) |
| { |
| u32 blocksize, nbytes, nblocks, cbcbytes; |
| struct encryptor_desc desc; |
| int err; |
| |
| blocksize = crypto_sync_skcipher_blocksize(cts_tfm); |
| nbytes = buf->len - offset; |
| nblocks = (nbytes + blocksize - 1) / blocksize; |
| cbcbytes = 0; |
| if (nblocks > 2) |
| cbcbytes = (nblocks - 2) * blocksize; |
| |
| memset(desc.iv, 0, sizeof(desc.iv)); |
| |
| /* Handle block-sized chunks of plaintext with CBC. */ |
| if (cbcbytes) { |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm); |
| |
| desc.pos = offset; |
| desc.fragno = 0; |
| desc.fraglen = 0; |
| desc.pages = pages; |
| desc.outbuf = buf; |
| desc.req = req; |
| |
| skcipher_request_set_sync_tfm(req, cbc_tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| |
| sg_init_table(desc.infrags, 4); |
| sg_init_table(desc.outfrags, 4); |
| |
| err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc); |
| skcipher_request_zero(req); |
| if (err) |
| return err; |
| } |
| |
| /* Remaining plaintext is handled with CBC-CTS. */ |
| err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes, |
| desc.iv, pages, 1); |
| if (err) |
| return err; |
| |
| if (unlikely(iv)) |
| memcpy(iv, desc.iv, ivsize); |
| return 0; |
| } |
| EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt); |
| |
| /** |
| * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS |
| * @cts_tfm: CBC cipher with CTS |
| * @cbc_tfm: base CBC cipher |
| * @offset: starting byte offset for plaintext |
| * @buf: OUT: output buffer |
| * |
| * Return values: |
| * %0: decryption successful |
| * negative errno: decryption could not be completed |
| */ |
| VISIBLE_IF_KUNIT |
| int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm, |
| struct crypto_sync_skcipher *cbc_tfm, |
| u32 offset, struct xdr_buf *buf) |
| { |
| u32 blocksize, nblocks, cbcbytes; |
| struct decryptor_desc desc; |
| int err; |
| |
| blocksize = crypto_sync_skcipher_blocksize(cts_tfm); |
| nblocks = (buf->len + blocksize - 1) / blocksize; |
| cbcbytes = 0; |
| if (nblocks > 2) |
| cbcbytes = (nblocks - 2) * blocksize; |
| |
| memset(desc.iv, 0, sizeof(desc.iv)); |
| |
| /* Handle block-sized chunks of plaintext with CBC. */ |
| if (cbcbytes) { |
| SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm); |
| |
| desc.fragno = 0; |
| desc.fraglen = 0; |
| desc.req = req; |
| |
| skcipher_request_set_sync_tfm(req, cbc_tfm); |
| skcipher_request_set_callback(req, 0, NULL, NULL); |
| |
| sg_init_table(desc.frags, 4); |
| |
| err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc); |
| skcipher_request_zero(req); |
| if (err) |
| return err; |
| } |
| |
| /* Remaining plaintext is handled with CBC-CTS. */ |
| return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0); |
| } |
| EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt); |
| |
| u32 |
| gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset, |
| struct xdr_buf *buf, struct page **pages) |
| { |
| u32 err; |
| struct xdr_netobj hmac; |
| u8 *ecptr; |
| struct crypto_sync_skcipher *cipher, *aux_cipher; |
| struct crypto_ahash *ahash; |
| struct page **save_pages; |
| unsigned int conflen; |
| |
| if (kctx->initiate) { |
| cipher = kctx->initiator_enc; |
| aux_cipher = kctx->initiator_enc_aux; |
| ahash = kctx->initiator_integ; |
| } else { |
| cipher = kctx->acceptor_enc; |
| aux_cipher = kctx->acceptor_enc_aux; |
| ahash = kctx->acceptor_integ; |
| } |
| conflen = crypto_sync_skcipher_blocksize(cipher); |
| |
| /* hide the gss token header and insert the confounder */ |
| offset += GSS_KRB5_TOK_HDR_LEN; |
| if (xdr_extend_head(buf, offset, conflen)) |
| return GSS_S_FAILURE; |
| krb5_make_confounder(buf->head[0].iov_base + offset, conflen); |
| offset -= GSS_KRB5_TOK_HDR_LEN; |
| |
| if (buf->tail[0].iov_base != NULL) { |
| ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; |
| } else { |
| buf->tail[0].iov_base = buf->head[0].iov_base |
| + buf->head[0].iov_len; |
| buf->tail[0].iov_len = 0; |
| ecptr = buf->tail[0].iov_base; |
| } |
| |
| /* copy plaintext gss token header after filler (if any) */ |
| memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); |
| buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; |
| buf->len += GSS_KRB5_TOK_HDR_LEN; |
| |
| hmac.len = kctx->gk5e->cksumlength; |
| hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; |
| |
| /* |
| * When we are called, pages points to the real page cache |
| * data -- which we can't go and encrypt! buf->pages points |
| * to scratch pages which we are going to send off to the |
| * client/server. Swap in the plaintext pages to calculate |
| * the hmac. |
| */ |
| save_pages = buf->pages; |
| buf->pages = pages; |
| |
| err = gss_krb5_checksum(ahash, NULL, 0, buf, |
| offset + GSS_KRB5_TOK_HDR_LEN, &hmac); |
| buf->pages = save_pages; |
| if (err) |
| return GSS_S_FAILURE; |
| |
| err = krb5_cbc_cts_encrypt(cipher, aux_cipher, |
| offset + GSS_KRB5_TOK_HDR_LEN, |
| buf, pages, NULL, 0); |
| if (err) |
| return GSS_S_FAILURE; |
| |
| /* Now update buf to account for HMAC */ |
| buf->tail[0].iov_len += kctx->gk5e->cksumlength; |
| buf->len += kctx->gk5e->cksumlength; |
| |
| return GSS_S_COMPLETE; |
| } |
| |
| u32 |
| gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len, |
| struct xdr_buf *buf, u32 *headskip, u32 *tailskip) |
| { |
| struct crypto_sync_skcipher *cipher, *aux_cipher; |
| struct crypto_ahash *ahash; |
| struct xdr_netobj our_hmac_obj; |
| u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; |
| u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; |
| struct xdr_buf subbuf; |
| u32 ret = 0; |
| |
| if (kctx->initiate) { |
| cipher = kctx->acceptor_enc; |
| aux_cipher = kctx->acceptor_enc_aux; |
| ahash = kctx->acceptor_integ; |
| } else { |
| cipher = kctx->initiator_enc; |
| aux_cipher = kctx->initiator_enc_aux; |
| ahash = kctx->initiator_integ; |
| } |
| |
| /* create a segment skipping the header and leaving out the checksum */ |
| xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, |
| (len - offset - GSS_KRB5_TOK_HDR_LEN - |
| kctx->gk5e->cksumlength)); |
| |
| ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf); |
| if (ret) |
| goto out_err; |
| |
| our_hmac_obj.len = kctx->gk5e->cksumlength; |
| our_hmac_obj.data = our_hmac; |
| ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj); |
| if (ret) |
| goto out_err; |
| |
| /* Get the packet's hmac value */ |
| ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength, |
| pkt_hmac, kctx->gk5e->cksumlength); |
| if (ret) |
| goto out_err; |
| |
| if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { |
| ret = GSS_S_BAD_SIG; |
| goto out_err; |
| } |
| *headskip = crypto_sync_skcipher_blocksize(cipher); |
| *tailskip = kctx->gk5e->cksumlength; |
| out_err: |
| if (ret && ret != GSS_S_BAD_SIG) |
| ret = GSS_S_FAILURE; |
| return ret; |
| } |
| |
| /** |
| * krb5_etm_checksum - Compute a MAC for a GSS Wrap token |
| * @cipher: an initialized cipher transform |
| * @tfm: an initialized hash transform |
| * @body: xdr_buf containing an RPC message (body.len is the message length) |
| * @body_offset: byte offset into @body to start checksumming |
| * @cksumout: OUT: a buffer to be filled in with the computed HMAC |
| * |
| * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] . |
| * |
| * Caller provides the truncation length of the output token (h) in |
| * cksumout.len. |
| * |
| * Note that for RPCSEC, the "initial cipher state" is always all zeroes. |
| * |
| * Return values: |
| * %GSS_S_COMPLETE: Digest computed, @cksumout filled in |
| * %GSS_S_FAILURE: Call failed |
| */ |
| VISIBLE_IF_KUNIT |
| u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher, |
| struct crypto_ahash *tfm, const struct xdr_buf *body, |
| int body_offset, struct xdr_netobj *cksumout) |
| { |
| unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher); |
| static const u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; |
| struct ahash_request *req; |
| struct scatterlist sg[1]; |
| int err = -ENOMEM; |
| u8 *checksumdata; |
| |
| checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL); |
| if (!checksumdata) |
| return GSS_S_FAILURE; |
| |
| req = ahash_request_alloc(tfm, GFP_KERNEL); |
| if (!req) |
| goto out_free_cksumdata; |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); |
| err = crypto_ahash_init(req); |
| if (err) |
| goto out_free_ahash; |
| |
| sg_init_one(sg, iv, ivsize); |
| ahash_request_set_crypt(req, sg, NULL, ivsize); |
| err = crypto_ahash_update(req); |
| if (err) |
| goto out_free_ahash; |
| err = xdr_process_buf(body, body_offset, body->len - body_offset, |
| checksummer, req); |
| if (err) |
| goto out_free_ahash; |
| |
| ahash_request_set_crypt(req, NULL, checksumdata, 0); |
| err = crypto_ahash_final(req); |
| if (err) |
| goto out_free_ahash; |
| memcpy(cksumout->data, checksumdata, cksumout->len); |
| |
| out_free_ahash: |
| ahash_request_free(req); |
| out_free_cksumdata: |
| kfree_sensitive(checksumdata); |
| return err ? GSS_S_FAILURE : GSS_S_COMPLETE; |
| } |
| EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum); |
| |
| /** |
| * krb5_etm_encrypt - Encrypt using the RFC 8009 rules |
| * @kctx: Kerberos context |
| * @offset: starting offset of the payload, in bytes |
| * @buf: OUT: send buffer to contain the encrypted payload |
| * @pages: plaintext payload |
| * |
| * The main difference with aes_encrypt is that "The HMAC is |
| * calculated over the cipher state concatenated with the AES |
| * output, instead of being calculated over the confounder and |
| * plaintext. This allows the message receiver to verify the |
| * integrity of the message before decrypting the message." |
| * |
| * RFC 8009 Section 5: |
| * |
| * encryption function: as follows, where E() is AES encryption in |
| * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or |
| * 192 bits as described above). |
| * |
| * N = random value of length 128 bits (the AES block size) |
| * IV = cipher state |
| * C = E(Ke, N | plaintext, IV) |
| * H = HMAC(Ki, IV | C) |
| * ciphertext = C | H[1..h] |
| * |
| * This encryption formula provides AEAD EtM with key separation. |
| * |
| * Return values: |
| * %GSS_S_COMPLETE: Encryption successful |
| * %GSS_S_FAILURE: Encryption failed |
| */ |
| u32 |
| krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset, |
| struct xdr_buf *buf, struct page **pages) |
| { |
| struct crypto_sync_skcipher *cipher, *aux_cipher; |
| struct crypto_ahash *ahash; |
| struct xdr_netobj hmac; |
| unsigned int conflen; |
| u8 *ecptr; |
| u32 err; |
| |
| if (kctx->initiate) { |
| cipher = kctx->initiator_enc; |
| aux_cipher = kctx->initiator_enc_aux; |
| ahash = kctx->initiator_integ; |
| } else { |
| cipher = kctx->acceptor_enc; |
| aux_cipher = kctx->acceptor_enc_aux; |
| ahash = kctx->acceptor_integ; |
| } |
| conflen = crypto_sync_skcipher_blocksize(cipher); |
| |
| offset += GSS_KRB5_TOK_HDR_LEN; |
| if (xdr_extend_head(buf, offset, conflen)) |
| return GSS_S_FAILURE; |
| krb5_make_confounder(buf->head[0].iov_base + offset, conflen); |
| offset -= GSS_KRB5_TOK_HDR_LEN; |
| |
| if (buf->tail[0].iov_base) { |
| ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; |
| } else { |
| buf->tail[0].iov_base = buf->head[0].iov_base |
| + buf->head[0].iov_len; |
| buf->tail[0].iov_len = 0; |
| ecptr = buf->tail[0].iov_base; |
| } |
| |
| memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); |
| buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; |
| buf->len += GSS_KRB5_TOK_HDR_LEN; |
| |
| err = krb5_cbc_cts_encrypt(cipher, aux_cipher, |
| offset + GSS_KRB5_TOK_HDR_LEN, |
| buf, pages, NULL, 0); |
| if (err) |
| return GSS_S_FAILURE; |
| |
| hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; |
| hmac.len = kctx->gk5e->cksumlength; |
| err = krb5_etm_checksum(cipher, ahash, |
| buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac); |
| if (err) |
| goto out_err; |
| buf->tail[0].iov_len += kctx->gk5e->cksumlength; |
| buf->len += kctx->gk5e->cksumlength; |
| |
| return GSS_S_COMPLETE; |
| |
| out_err: |
| return GSS_S_FAILURE; |
| } |
| |
| /** |
| * krb5_etm_decrypt - Decrypt using the RFC 8009 rules |
| * @kctx: Kerberos context |
| * @offset: starting offset of the ciphertext, in bytes |
| * @len: |
| * @buf: |
| * @headskip: OUT: the enctype's confounder length, in octets |
| * @tailskip: OUT: the enctype's HMAC length, in octets |
| * |
| * RFC 8009 Section 5: |
| * |
| * decryption function: as follows, where D() is AES decryption in |
| * CBC-CS3 mode, and h is the size of truncated HMAC. |
| * |
| * (C, H) = ciphertext |
| * (Note: H is the last h bits of the ciphertext.) |
| * IV = cipher state |
| * if H != HMAC(Ki, IV | C)[1..h] |
| * stop, report error |
| * (N, P) = D(Ke, C, IV) |
| * |
| * Return values: |
| * %GSS_S_COMPLETE: Decryption successful |
| * %GSS_S_BAD_SIG: computed HMAC != received HMAC |
| * %GSS_S_FAILURE: Decryption failed |
| */ |
| u32 |
| krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len, |
| struct xdr_buf *buf, u32 *headskip, u32 *tailskip) |
| { |
| struct crypto_sync_skcipher *cipher, *aux_cipher; |
| u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; |
| u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; |
| struct xdr_netobj our_hmac_obj; |
| struct crypto_ahash *ahash; |
| struct xdr_buf subbuf; |
| u32 ret = 0; |
| |
| if (kctx->initiate) { |
| cipher = kctx->acceptor_enc; |
| aux_cipher = kctx->acceptor_enc_aux; |
| ahash = kctx->acceptor_integ; |
| } else { |
| cipher = kctx->initiator_enc; |
| aux_cipher = kctx->initiator_enc_aux; |
| ahash = kctx->initiator_integ; |
| } |
| |
| /* Extract the ciphertext into @subbuf. */ |
| xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, |
| (len - offset - GSS_KRB5_TOK_HDR_LEN - |
| kctx->gk5e->cksumlength)); |
| |
| our_hmac_obj.data = our_hmac; |
| our_hmac_obj.len = kctx->gk5e->cksumlength; |
| ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj); |
| if (ret) |
| goto out_err; |
| ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength, |
| pkt_hmac, kctx->gk5e->cksumlength); |
| if (ret) |
| goto out_err; |
| if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { |
| ret = GSS_S_BAD_SIG; |
| goto out_err; |
| } |
| |
| ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf); |
| if (ret) { |
| ret = GSS_S_FAILURE; |
| goto out_err; |
| } |
| |
| *headskip = crypto_sync_skcipher_blocksize(cipher); |
| *tailskip = kctx->gk5e->cksumlength; |
| return GSS_S_COMPLETE; |
| |
| out_err: |
| if (ret != GSS_S_BAD_SIG) |
| ret = GSS_S_FAILURE; |
| return ret; |
| } |