| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * A memslot-related performance benchmark. |
| * |
| * Copyright (C) 2021 Oracle and/or its affiliates. |
| * |
| * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. |
| */ |
| #include <pthread.h> |
| #include <sched.h> |
| #include <semaphore.h> |
| #include <stdatomic.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/mman.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <linux/compiler.h> |
| #include <linux/sizes.h> |
| |
| #include <test_util.h> |
| #include <kvm_util.h> |
| #include <processor.h> |
| |
| #define MEM_EXTRA_SIZE SZ_64K |
| |
| #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) |
| #define MEM_GPA SZ_256M |
| #define MEM_AUX_GPA MEM_GPA |
| #define MEM_SYNC_GPA MEM_AUX_GPA |
| #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) |
| #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) |
| |
| /* |
| * 32 MiB is max size that gets well over 100 iterations on 509 slots. |
| * Considering that each slot needs to have at least one page up to |
| * 8194 slots in use can then be tested (although with slightly |
| * limited resolution). |
| */ |
| #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) |
| #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) |
| |
| /* |
| * 128 MiB is min size that fills 32k slots with at least one page in each |
| * while at the same time gets 100+ iterations in such test |
| * |
| * 2 MiB chunk size like a typical huge page |
| */ |
| #define MEM_TEST_UNMAP_SIZE SZ_128M |
| #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M |
| |
| /* |
| * For the move active test the middle of the test area is placed on |
| * a memslot boundary: half lies in the memslot being moved, half in |
| * other memslot(s). |
| * |
| * We have different number of memory slots, excluding the reserved |
| * memory slot 0, on various architectures and configurations. The |
| * memory size in this test is calculated by picking the maximal |
| * last memory slot's memory size, with alignment to the largest |
| * supported page size (64KB). In this way, the selected memory |
| * size for this test is compatible with test_memslot_move_prepare(). |
| * |
| * architecture slots memory-per-slot memory-on-last-slot |
| * -------------------------------------------------------------- |
| * x86-4KB 32763 16KB 160KB |
| * arm64-4KB 32766 16KB 112KB |
| * arm64-16KB 32766 16KB 112KB |
| * arm64-64KB 8192 64KB 128KB |
| */ |
| #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) |
| #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) |
| static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, |
| "invalid move test region size"); |
| |
| #define MEM_TEST_VAL_1 0x1122334455667788 |
| #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 |
| |
| struct vm_data { |
| struct kvm_vm *vm; |
| struct kvm_vcpu *vcpu; |
| pthread_t vcpu_thread; |
| uint32_t nslots; |
| uint64_t npages; |
| uint64_t pages_per_slot; |
| void **hva_slots; |
| bool mmio_ok; |
| uint64_t mmio_gpa_min; |
| uint64_t mmio_gpa_max; |
| }; |
| |
| struct sync_area { |
| uint32_t guest_page_size; |
| atomic_bool start_flag; |
| atomic_bool exit_flag; |
| atomic_bool sync_flag; |
| void *move_area_ptr; |
| }; |
| |
| /* |
| * Technically, we need also for the atomic bool to be address-free, which |
| * is recommended, but not strictly required, by C11 for lockless |
| * implementations. |
| * However, in practice both GCC and Clang fulfill this requirement on |
| * all KVM-supported platforms. |
| */ |
| static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); |
| |
| static sem_t vcpu_ready; |
| |
| static bool map_unmap_verify; |
| |
| static bool verbose; |
| #define pr_info_v(...) \ |
| do { \ |
| if (verbose) \ |
| pr_info(__VA_ARGS__); \ |
| } while (0) |
| |
| static void check_mmio_access(struct vm_data *data, struct kvm_run *run) |
| { |
| TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); |
| TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); |
| TEST_ASSERT(run->mmio.len == 8, |
| "Unexpected exit mmio size = %u", run->mmio.len); |
| TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && |
| run->mmio.phys_addr <= data->mmio_gpa_max, |
| "Unexpected exit mmio address = 0x%llx", |
| run->mmio.phys_addr); |
| } |
| |
| static void *vcpu_worker(void *__data) |
| { |
| struct vm_data *data = __data; |
| struct kvm_vcpu *vcpu = data->vcpu; |
| struct kvm_run *run = vcpu->run; |
| struct ucall uc; |
| |
| while (1) { |
| vcpu_run(vcpu); |
| |
| switch (get_ucall(vcpu, &uc)) { |
| case UCALL_SYNC: |
| TEST_ASSERT(uc.args[1] == 0, |
| "Unexpected sync ucall, got %lx", |
| (ulong)uc.args[1]); |
| sem_post(&vcpu_ready); |
| continue; |
| case UCALL_NONE: |
| if (run->exit_reason == KVM_EXIT_MMIO) |
| check_mmio_access(data, run); |
| else |
| goto done; |
| break; |
| case UCALL_ABORT: |
| REPORT_GUEST_ASSERT(uc); |
| break; |
| case UCALL_DONE: |
| goto done; |
| default: |
| TEST_FAIL("Unknown ucall %lu", uc.cmd); |
| } |
| } |
| |
| done: |
| return NULL; |
| } |
| |
| static void wait_for_vcpu(void) |
| { |
| struct timespec ts; |
| |
| TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), |
| "clock_gettime() failed: %d", errno); |
| |
| ts.tv_sec += 2; |
| TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), |
| "sem_timedwait() failed: %d", errno); |
| } |
| |
| static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) |
| { |
| uint64_t gpage, pgoffs; |
| uint32_t slot, slotoffs; |
| void *base; |
| uint32_t guest_page_size = data->vm->page_size; |
| |
| TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); |
| TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, |
| "Too high gpa to translate"); |
| gpa -= MEM_GPA; |
| |
| gpage = gpa / guest_page_size; |
| pgoffs = gpa % guest_page_size; |
| slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); |
| slotoffs = gpage - (slot * data->pages_per_slot); |
| |
| if (rempages) { |
| uint64_t slotpages; |
| |
| if (slot == data->nslots - 1) |
| slotpages = data->npages - slot * data->pages_per_slot; |
| else |
| slotpages = data->pages_per_slot; |
| |
| TEST_ASSERT(!pgoffs, |
| "Asking for remaining pages in slot but gpa not page aligned"); |
| *rempages = slotpages - slotoffs; |
| } |
| |
| base = data->hva_slots[slot]; |
| return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; |
| } |
| |
| static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) |
| { |
| uint32_t guest_page_size = data->vm->page_size; |
| |
| TEST_ASSERT(slot < data->nslots, "Too high slot number"); |
| |
| return MEM_GPA + slot * data->pages_per_slot * guest_page_size; |
| } |
| |
| static struct vm_data *alloc_vm(void) |
| { |
| struct vm_data *data; |
| |
| data = malloc(sizeof(*data)); |
| TEST_ASSERT(data, "malloc(vmdata) failed"); |
| |
| data->vm = NULL; |
| data->vcpu = NULL; |
| data->hva_slots = NULL; |
| |
| return data; |
| } |
| |
| static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, |
| uint64_t pages_per_slot, uint64_t rempages) |
| { |
| if (!pages_per_slot) |
| return false; |
| |
| if ((pages_per_slot * guest_page_size) % host_page_size) |
| return false; |
| |
| if ((rempages * guest_page_size) % host_page_size) |
| return false; |
| |
| return true; |
| } |
| |
| |
| static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) |
| { |
| uint32_t guest_page_size = data->vm->page_size; |
| uint64_t mempages, pages_per_slot, rempages; |
| uint64_t slots; |
| |
| mempages = data->npages; |
| slots = data->nslots; |
| while (--slots > 1) { |
| pages_per_slot = mempages / slots; |
| if (!pages_per_slot) |
| continue; |
| |
| rempages = mempages % pages_per_slot; |
| if (check_slot_pages(host_page_size, guest_page_size, |
| pages_per_slot, rempages)) |
| return slots + 1; /* slot 0 is reserved */ |
| } |
| |
| return 0; |
| } |
| |
| static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, |
| void *guest_code, uint64_t mem_size, |
| struct timespec *slot_runtime) |
| { |
| uint64_t mempages, rempages; |
| uint64_t guest_addr; |
| uint32_t slot, host_page_size, guest_page_size; |
| struct timespec tstart; |
| struct sync_area *sync; |
| |
| host_page_size = getpagesize(); |
| guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; |
| mempages = mem_size / guest_page_size; |
| |
| data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); |
| TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); |
| |
| data->npages = mempages; |
| TEST_ASSERT(data->npages > 1, "Can't test without any memory"); |
| data->nslots = nslots; |
| data->pages_per_slot = data->npages / data->nslots; |
| rempages = data->npages % data->nslots; |
| if (!check_slot_pages(host_page_size, guest_page_size, |
| data->pages_per_slot, rempages)) { |
| *maxslots = get_max_slots(data, host_page_size); |
| return false; |
| } |
| |
| data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); |
| TEST_ASSERT(data->hva_slots, "malloc() fail"); |
| |
| pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", |
| data->nslots, data->pages_per_slot, rempages); |
| |
| clock_gettime(CLOCK_MONOTONIC, &tstart); |
| for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { |
| uint64_t npages; |
| |
| npages = data->pages_per_slot; |
| if (slot == data->nslots) |
| npages += rempages; |
| |
| vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, |
| guest_addr, slot, npages, |
| 0); |
| guest_addr += npages * guest_page_size; |
| } |
| *slot_runtime = timespec_elapsed(tstart); |
| |
| for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { |
| uint64_t npages; |
| uint64_t gpa; |
| |
| npages = data->pages_per_slot; |
| if (slot == data->nslots) |
| npages += rempages; |
| |
| gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); |
| TEST_ASSERT(gpa == guest_addr, |
| "vm_phy_pages_alloc() failed"); |
| |
| data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); |
| memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); |
| |
| guest_addr += npages * guest_page_size; |
| } |
| |
| virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); |
| |
| sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); |
| sync->guest_page_size = data->vm->page_size; |
| atomic_init(&sync->start_flag, false); |
| atomic_init(&sync->exit_flag, false); |
| atomic_init(&sync->sync_flag, false); |
| |
| data->mmio_ok = false; |
| |
| return true; |
| } |
| |
| static void launch_vm(struct vm_data *data) |
| { |
| pr_info_v("Launching the test VM\n"); |
| |
| pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); |
| |
| /* Ensure the guest thread is spun up. */ |
| wait_for_vcpu(); |
| } |
| |
| static void free_vm(struct vm_data *data) |
| { |
| kvm_vm_free(data->vm); |
| free(data->hva_slots); |
| free(data); |
| } |
| |
| static void wait_guest_exit(struct vm_data *data) |
| { |
| pthread_join(data->vcpu_thread, NULL); |
| } |
| |
| static void let_guest_run(struct sync_area *sync) |
| { |
| atomic_store_explicit(&sync->start_flag, true, memory_order_release); |
| } |
| |
| static void guest_spin_until_start(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| |
| while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) |
| ; |
| } |
| |
| static void make_guest_exit(struct sync_area *sync) |
| { |
| atomic_store_explicit(&sync->exit_flag, true, memory_order_release); |
| } |
| |
| static bool _guest_should_exit(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| |
| return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); |
| } |
| |
| #define guest_should_exit() unlikely(_guest_should_exit()) |
| |
| /* |
| * noinline so we can easily see how much time the host spends waiting |
| * for the guest. |
| * For the same reason use alarm() instead of polling clock_gettime() |
| * to implement a wait timeout. |
| */ |
| static noinline void host_perform_sync(struct sync_area *sync) |
| { |
| alarm(2); |
| |
| atomic_store_explicit(&sync->sync_flag, true, memory_order_release); |
| while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) |
| ; |
| |
| alarm(0); |
| } |
| |
| static bool guest_perform_sync(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| bool expected; |
| |
| do { |
| if (guest_should_exit()) |
| return false; |
| |
| expected = true; |
| } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, |
| &expected, false, |
| memory_order_acq_rel, |
| memory_order_relaxed)); |
| |
| return true; |
| } |
| |
| static void guest_code_test_memslot_move(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); |
| uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); |
| |
| GUEST_SYNC(0); |
| |
| guest_spin_until_start(); |
| |
| while (!guest_should_exit()) { |
| uintptr_t ptr; |
| |
| for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; |
| ptr += page_size) |
| *(uint64_t *)ptr = MEM_TEST_VAL_1; |
| |
| /* |
| * No host sync here since the MMIO exits are so expensive |
| * that the host would spend most of its time waiting for |
| * the guest and so instead of measuring memslot move |
| * performance we would measure the performance and |
| * likelihood of MMIO exits |
| */ |
| } |
| |
| GUEST_DONE(); |
| } |
| |
| static void guest_code_test_memslot_map(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); |
| |
| GUEST_SYNC(0); |
| |
| guest_spin_until_start(); |
| |
| while (1) { |
| uintptr_t ptr; |
| |
| for (ptr = MEM_TEST_GPA; |
| ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; |
| ptr += page_size) |
| *(uint64_t *)ptr = MEM_TEST_VAL_1; |
| |
| if (!guest_perform_sync()) |
| break; |
| |
| for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; |
| ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; |
| ptr += page_size) |
| *(uint64_t *)ptr = MEM_TEST_VAL_2; |
| |
| if (!guest_perform_sync()) |
| break; |
| } |
| |
| GUEST_DONE(); |
| } |
| |
| static void guest_code_test_memslot_unmap(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| |
| GUEST_SYNC(0); |
| |
| guest_spin_until_start(); |
| |
| while (1) { |
| uintptr_t ptr = MEM_TEST_GPA; |
| |
| /* |
| * We can afford to access (map) just a small number of pages |
| * per host sync as otherwise the host will spend |
| * a significant amount of its time waiting for the guest |
| * (instead of doing unmap operations), so this will |
| * effectively turn this test into a map performance test. |
| * |
| * Just access a single page to be on the safe side. |
| */ |
| *(uint64_t *)ptr = MEM_TEST_VAL_1; |
| |
| if (!guest_perform_sync()) |
| break; |
| |
| ptr += MEM_TEST_UNMAP_SIZE / 2; |
| *(uint64_t *)ptr = MEM_TEST_VAL_2; |
| |
| if (!guest_perform_sync()) |
| break; |
| } |
| |
| GUEST_DONE(); |
| } |
| |
| static void guest_code_test_memslot_rw(void) |
| { |
| struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; |
| uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); |
| |
| GUEST_SYNC(0); |
| |
| guest_spin_until_start(); |
| |
| while (1) { |
| uintptr_t ptr; |
| |
| for (ptr = MEM_TEST_GPA; |
| ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) |
| *(uint64_t *)ptr = MEM_TEST_VAL_1; |
| |
| if (!guest_perform_sync()) |
| break; |
| |
| for (ptr = MEM_TEST_GPA + page_size / 2; |
| ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { |
| uint64_t val = *(uint64_t *)ptr; |
| |
| GUEST_ASSERT_EQ(val, MEM_TEST_VAL_2); |
| *(uint64_t *)ptr = 0; |
| } |
| |
| if (!guest_perform_sync()) |
| break; |
| } |
| |
| GUEST_DONE(); |
| } |
| |
| static bool test_memslot_move_prepare(struct vm_data *data, |
| struct sync_area *sync, |
| uint64_t *maxslots, bool isactive) |
| { |
| uint32_t guest_page_size = data->vm->page_size; |
| uint64_t movesrcgpa, movetestgpa; |
| |
| movesrcgpa = vm_slot2gpa(data, data->nslots - 1); |
| |
| if (isactive) { |
| uint64_t lastpages; |
| |
| vm_gpa2hva(data, movesrcgpa, &lastpages); |
| if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { |
| *maxslots = 0; |
| return false; |
| } |
| } |
| |
| movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); |
| sync->move_area_ptr = (void *)movetestgpa; |
| |
| if (isactive) { |
| data->mmio_ok = true; |
| data->mmio_gpa_min = movesrcgpa; |
| data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; |
| } |
| |
| return true; |
| } |
| |
| static bool test_memslot_move_prepare_active(struct vm_data *data, |
| struct sync_area *sync, |
| uint64_t *maxslots) |
| { |
| return test_memslot_move_prepare(data, sync, maxslots, true); |
| } |
| |
| static bool test_memslot_move_prepare_inactive(struct vm_data *data, |
| struct sync_area *sync, |
| uint64_t *maxslots) |
| { |
| return test_memslot_move_prepare(data, sync, maxslots, false); |
| } |
| |
| static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) |
| { |
| uint64_t movesrcgpa; |
| |
| movesrcgpa = vm_slot2gpa(data, data->nslots - 1); |
| vm_mem_region_move(data->vm, data->nslots - 1 + 1, |
| MEM_TEST_MOVE_GPA_DEST); |
| vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); |
| } |
| |
| static void test_memslot_do_unmap(struct vm_data *data, |
| uint64_t offsp, uint64_t count) |
| { |
| uint64_t gpa, ctr; |
| uint32_t guest_page_size = data->vm->page_size; |
| |
| for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { |
| uint64_t npages; |
| void *hva; |
| int ret; |
| |
| hva = vm_gpa2hva(data, gpa, &npages); |
| TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); |
| npages = min(npages, count - ctr); |
| ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); |
| TEST_ASSERT(!ret, |
| "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, |
| hva, gpa); |
| ctr += npages; |
| gpa += npages * guest_page_size; |
| } |
| TEST_ASSERT(ctr == count, |
| "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); |
| } |
| |
| static void test_memslot_map_unmap_check(struct vm_data *data, |
| uint64_t offsp, uint64_t valexp) |
| { |
| uint64_t gpa; |
| uint64_t *val; |
| uint32_t guest_page_size = data->vm->page_size; |
| |
| if (!map_unmap_verify) |
| return; |
| |
| gpa = MEM_TEST_GPA + offsp * guest_page_size; |
| val = (typeof(val))vm_gpa2hva(data, gpa, NULL); |
| TEST_ASSERT(*val == valexp, |
| "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", |
| *val, valexp, gpa); |
| *val = 0; |
| } |
| |
| static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) |
| { |
| uint32_t guest_page_size = data->vm->page_size; |
| uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; |
| |
| /* |
| * Unmap the second half of the test area while guest writes to (maps) |
| * the first half. |
| */ |
| test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); |
| |
| /* |
| * Wait for the guest to finish writing the first half of the test |
| * area, verify the written value on the first and the last page of |
| * this area and then unmap it. |
| * Meanwhile, the guest is writing to (mapping) the second half of |
| * the test area. |
| */ |
| host_perform_sync(sync); |
| test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); |
| test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); |
| test_memslot_do_unmap(data, 0, guest_pages / 2); |
| |
| |
| /* |
| * Wait for the guest to finish writing the second half of the test |
| * area and verify the written value on the first and the last page |
| * of this area. |
| * The area will be unmapped at the beginning of the next loop |
| * iteration. |
| * Meanwhile, the guest is writing to (mapping) the first half of |
| * the test area. |
| */ |
| host_perform_sync(sync); |
| test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); |
| test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); |
| } |
| |
| static void test_memslot_unmap_loop_common(struct vm_data *data, |
| struct sync_area *sync, |
| uint64_t chunk) |
| { |
| uint32_t guest_page_size = data->vm->page_size; |
| uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; |
| uint64_t ctr; |
| |
| /* |
| * Wait for the guest to finish mapping page(s) in the first half |
| * of the test area, verify the written value and then perform unmap |
| * of this area. |
| * Meanwhile, the guest is writing to (mapping) page(s) in the second |
| * half of the test area. |
| */ |
| host_perform_sync(sync); |
| test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); |
| for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) |
| test_memslot_do_unmap(data, ctr, chunk); |
| |
| /* Likewise, but for the opposite host / guest areas */ |
| host_perform_sync(sync); |
| test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); |
| for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) |
| test_memslot_do_unmap(data, ctr, chunk); |
| } |
| |
| static void test_memslot_unmap_loop(struct vm_data *data, |
| struct sync_area *sync) |
| { |
| uint32_t host_page_size = getpagesize(); |
| uint32_t guest_page_size = data->vm->page_size; |
| uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? |
| 1 : host_page_size / guest_page_size; |
| |
| test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); |
| } |
| |
| static void test_memslot_unmap_loop_chunked(struct vm_data *data, |
| struct sync_area *sync) |
| { |
| uint32_t guest_page_size = data->vm->page_size; |
| uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; |
| |
| test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); |
| } |
| |
| static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) |
| { |
| uint64_t gptr; |
| uint32_t guest_page_size = data->vm->page_size; |
| |
| for (gptr = MEM_TEST_GPA + guest_page_size / 2; |
| gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) |
| *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; |
| |
| host_perform_sync(sync); |
| |
| for (gptr = MEM_TEST_GPA; |
| gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { |
| uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); |
| uint64_t val = *vptr; |
| |
| TEST_ASSERT(val == MEM_TEST_VAL_1, |
| "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", |
| val, gptr); |
| *vptr = 0; |
| } |
| |
| host_perform_sync(sync); |
| } |
| |
| struct test_data { |
| const char *name; |
| uint64_t mem_size; |
| void (*guest_code)(void); |
| bool (*prepare)(struct vm_data *data, struct sync_area *sync, |
| uint64_t *maxslots); |
| void (*loop)(struct vm_data *data, struct sync_area *sync); |
| }; |
| |
| static bool test_execute(int nslots, uint64_t *maxslots, |
| unsigned int maxtime, |
| const struct test_data *tdata, |
| uint64_t *nloops, |
| struct timespec *slot_runtime, |
| struct timespec *guest_runtime) |
| { |
| uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; |
| struct vm_data *data; |
| struct sync_area *sync; |
| struct timespec tstart; |
| bool ret = true; |
| |
| data = alloc_vm(); |
| if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, |
| mem_size, slot_runtime)) { |
| ret = false; |
| goto exit_free; |
| } |
| |
| sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); |
| if (tdata->prepare && |
| !tdata->prepare(data, sync, maxslots)) { |
| ret = false; |
| goto exit_free; |
| } |
| |
| launch_vm(data); |
| |
| clock_gettime(CLOCK_MONOTONIC, &tstart); |
| let_guest_run(sync); |
| |
| while (1) { |
| *guest_runtime = timespec_elapsed(tstart); |
| if (guest_runtime->tv_sec >= maxtime) |
| break; |
| |
| tdata->loop(data, sync); |
| |
| (*nloops)++; |
| } |
| |
| make_guest_exit(sync); |
| wait_guest_exit(data); |
| |
| exit_free: |
| free_vm(data); |
| |
| return ret; |
| } |
| |
| static const struct test_data tests[] = { |
| { |
| .name = "map", |
| .mem_size = MEM_SIZE_MAP, |
| .guest_code = guest_code_test_memslot_map, |
| .loop = test_memslot_map_loop, |
| }, |
| { |
| .name = "unmap", |
| .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, |
| .guest_code = guest_code_test_memslot_unmap, |
| .loop = test_memslot_unmap_loop, |
| }, |
| { |
| .name = "unmap chunked", |
| .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, |
| .guest_code = guest_code_test_memslot_unmap, |
| .loop = test_memslot_unmap_loop_chunked, |
| }, |
| { |
| .name = "move active area", |
| .guest_code = guest_code_test_memslot_move, |
| .prepare = test_memslot_move_prepare_active, |
| .loop = test_memslot_move_loop, |
| }, |
| { |
| .name = "move inactive area", |
| .guest_code = guest_code_test_memslot_move, |
| .prepare = test_memslot_move_prepare_inactive, |
| .loop = test_memslot_move_loop, |
| }, |
| { |
| .name = "RW", |
| .guest_code = guest_code_test_memslot_rw, |
| .loop = test_memslot_rw_loop |
| }, |
| }; |
| |
| #define NTESTS ARRAY_SIZE(tests) |
| |
| struct test_args { |
| int tfirst; |
| int tlast; |
| int nslots; |
| int seconds; |
| int runs; |
| }; |
| |
| static void help(char *name, struct test_args *targs) |
| { |
| int ctr; |
| |
| pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", |
| name); |
| pr_info(" -h: print this help screen.\n"); |
| pr_info(" -v: enable verbose mode (not for benchmarking).\n"); |
| pr_info(" -d: enable extra debug checks.\n"); |
| pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", |
| targs->nslots); |
| pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", |
| targs->tfirst, NTESTS - 1); |
| pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", |
| targs->tlast, NTESTS - 1); |
| pr_info(" -l: specify the test length in seconds (currently: %i)\n", |
| targs->seconds); |
| pr_info(" -r: specify the number of runs per test (currently: %i)\n", |
| targs->runs); |
| |
| pr_info("\nAvailable tests:\n"); |
| for (ctr = 0; ctr < NTESTS; ctr++) |
| pr_info("%d: %s\n", ctr, tests[ctr].name); |
| } |
| |
| static bool check_memory_sizes(void) |
| { |
| uint32_t host_page_size = getpagesize(); |
| uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; |
| |
| if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { |
| pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", |
| host_page_size, guest_page_size); |
| return false; |
| } |
| |
| if (MEM_SIZE % guest_page_size || |
| MEM_TEST_SIZE % guest_page_size) { |
| pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); |
| return false; |
| } |
| |
| if (MEM_SIZE_MAP % guest_page_size || |
| MEM_TEST_MAP_SIZE % guest_page_size || |
| (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || |
| (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { |
| pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); |
| return false; |
| } |
| |
| if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || |
| MEM_TEST_UNMAP_SIZE % guest_page_size || |
| (MEM_TEST_UNMAP_SIZE / guest_page_size) % |
| (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { |
| pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool parse_args(int argc, char *argv[], |
| struct test_args *targs) |
| { |
| uint32_t max_mem_slots; |
| int opt; |
| |
| while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { |
| switch (opt) { |
| case 'h': |
| default: |
| help(argv[0], targs); |
| return false; |
| case 'v': |
| verbose = true; |
| break; |
| case 'd': |
| map_unmap_verify = true; |
| break; |
| case 's': |
| targs->nslots = atoi_paranoid(optarg); |
| if (targs->nslots <= 1 && targs->nslots != -1) { |
| pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); |
| return false; |
| } |
| break; |
| case 'f': |
| targs->tfirst = atoi_non_negative("First test", optarg); |
| break; |
| case 'e': |
| targs->tlast = atoi_non_negative("Last test", optarg); |
| if (targs->tlast >= NTESTS) { |
| pr_info("Last test to run has to be non-negative and less than %zu\n", |
| NTESTS); |
| return false; |
| } |
| break; |
| case 'l': |
| targs->seconds = atoi_non_negative("Test length", optarg); |
| break; |
| case 'r': |
| targs->runs = atoi_positive("Runs per test", optarg); |
| break; |
| } |
| } |
| |
| if (optind < argc) { |
| help(argv[0], targs); |
| return false; |
| } |
| |
| if (targs->tfirst > targs->tlast) { |
| pr_info("First test to run cannot be greater than the last test to run\n"); |
| return false; |
| } |
| |
| max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); |
| if (max_mem_slots <= 1) { |
| pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); |
| return false; |
| } |
| |
| /* Memory slot 0 is reserved */ |
| if (targs->nslots == -1) |
| targs->nslots = max_mem_slots - 1; |
| else |
| targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; |
| |
| pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", |
| targs->nslots + 1); |
| |
| return true; |
| } |
| |
| struct test_result { |
| struct timespec slot_runtime, guest_runtime, iter_runtime; |
| int64_t slottimens, runtimens; |
| uint64_t nloops; |
| }; |
| |
| static bool test_loop(const struct test_data *data, |
| const struct test_args *targs, |
| struct test_result *rbestslottime, |
| struct test_result *rbestruntime) |
| { |
| uint64_t maxslots; |
| struct test_result result = {}; |
| |
| if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, |
| &result.nloops, |
| &result.slot_runtime, &result.guest_runtime)) { |
| if (maxslots) |
| pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", |
| maxslots); |
| else |
| pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); |
| |
| return false; |
| } |
| |
| pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", |
| result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, |
| result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); |
| if (!result.nloops) { |
| pr_info("No full loops done - too short test time or system too loaded?\n"); |
| return true; |
| } |
| |
| result.iter_runtime = timespec_div(result.guest_runtime, |
| result.nloops); |
| pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", |
| result.nloops, |
| result.iter_runtime.tv_sec, |
| result.iter_runtime.tv_nsec); |
| result.slottimens = timespec_to_ns(result.slot_runtime); |
| result.runtimens = timespec_to_ns(result.iter_runtime); |
| |
| /* |
| * Only rank the slot setup time for tests using the whole test memory |
| * area so they are comparable |
| */ |
| if (!data->mem_size && |
| (!rbestslottime->slottimens || |
| result.slottimens < rbestslottime->slottimens)) |
| *rbestslottime = result; |
| if (!rbestruntime->runtimens || |
| result.runtimens < rbestruntime->runtimens) |
| *rbestruntime = result; |
| |
| return true; |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct test_args targs = { |
| .tfirst = 0, |
| .tlast = NTESTS - 1, |
| .nslots = -1, |
| .seconds = 5, |
| .runs = 1, |
| }; |
| struct test_result rbestslottime = {}; |
| int tctr; |
| |
| if (!check_memory_sizes()) |
| return -1; |
| |
| if (!parse_args(argc, argv, &targs)) |
| return -1; |
| |
| for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { |
| const struct test_data *data = &tests[tctr]; |
| unsigned int runctr; |
| struct test_result rbestruntime = {}; |
| |
| if (tctr > targs.tfirst) |
| pr_info("\n"); |
| |
| pr_info("Testing %s performance with %i runs, %d seconds each\n", |
| data->name, targs.runs, targs.seconds); |
| |
| for (runctr = 0; runctr < targs.runs; runctr++) |
| if (!test_loop(data, &targs, |
| &rbestslottime, &rbestruntime)) |
| break; |
| |
| if (rbestruntime.runtimens) |
| pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", |
| rbestruntime.iter_runtime.tv_sec, |
| rbestruntime.iter_runtime.tv_nsec, |
| rbestruntime.nloops); |
| } |
| |
| if (rbestslottime.slottimens) |
| pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", |
| rbestslottime.slot_runtime.tv_sec, |
| rbestslottime.slot_runtime.tv_nsec); |
| |
| return 0; |
| } |