| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver |
| * |
| * Copyright (C) 2005 Steven Toth <stoth@linuxtv.org> |
| * |
| * Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc> |
| * |
| * Support for CX24123/CX24113-NIM by Patrick Boettcher <pb@linuxtv.org> |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <asm/div64.h> |
| |
| #include <media/dvb_frontend.h> |
| #include "cx24123.h" |
| |
| #define XTAL 10111000 |
| |
| static int force_band; |
| module_param(force_band, int, 0644); |
| MODULE_PARM_DESC(force_band, "Force a specific band select "\ |
| "(1-9, default:off)."); |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)"); |
| |
| #define info(args...) do { printk(KERN_INFO "CX24123: " args); } while (0) |
| #define err(args...) do { printk(KERN_ERR "CX24123: " args); } while (0) |
| |
| #define dprintk(args...) \ |
| do { \ |
| if (debug) { \ |
| printk(KERN_DEBUG "CX24123: %s: ", __func__); \ |
| printk(args); \ |
| } \ |
| } while (0) |
| |
| struct cx24123_state { |
| struct i2c_adapter *i2c; |
| const struct cx24123_config *config; |
| |
| struct dvb_frontend frontend; |
| |
| /* Some PLL specifics for tuning */ |
| u32 VCAarg; |
| u32 VGAarg; |
| u32 bandselectarg; |
| u32 pllarg; |
| u32 FILTune; |
| |
| struct i2c_adapter tuner_i2c_adapter; |
| |
| u8 demod_rev; |
| |
| /* The Demod/Tuner can't easily provide these, we cache them */ |
| u32 currentfreq; |
| u32 currentsymbolrate; |
| }; |
| |
| /* Various tuner defaults need to be established for a given symbol rate Sps */ |
| static struct cx24123_AGC_val { |
| u32 symbolrate_low; |
| u32 symbolrate_high; |
| u32 VCAprogdata; |
| u32 VGAprogdata; |
| u32 FILTune; |
| } cx24123_AGC_vals[] = |
| { |
| { |
| .symbolrate_low = 1000000, |
| .symbolrate_high = 4999999, |
| /* the specs recommend other values for VGA offsets, |
| but tests show they are wrong */ |
| .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, |
| .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07, |
| .FILTune = 0x27f /* 0.41 V */ |
| }, |
| { |
| .symbolrate_low = 5000000, |
| .symbolrate_high = 14999999, |
| .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0, |
| .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f, |
| .FILTune = 0x317 /* 0.90 V */ |
| }, |
| { |
| .symbolrate_low = 15000000, |
| .symbolrate_high = 45000000, |
| .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180, |
| .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f, |
| .FILTune = 0x145 /* 2.70 V */ |
| }, |
| }; |
| |
| /* |
| * Various tuner defaults need to be established for a given frequency kHz. |
| * fixme: The bounds on the bands do not match the doc in real life. |
| * fixme: Some of them have been moved, other might need adjustment. |
| */ |
| static struct cx24123_bandselect_val { |
| u32 freq_low; |
| u32 freq_high; |
| u32 VCOdivider; |
| u32 progdata; |
| } cx24123_bandselect_vals[] = |
| { |
| /* band 1 */ |
| { |
| .freq_low = 950000, |
| .freq_high = 1074999, |
| .VCOdivider = 4, |
| .progdata = (0 << 19) | (0 << 9) | 0x40, |
| }, |
| |
| /* band 2 */ |
| { |
| .freq_low = 1075000, |
| .freq_high = 1177999, |
| .VCOdivider = 4, |
| .progdata = (0 << 19) | (0 << 9) | 0x80, |
| }, |
| |
| /* band 3 */ |
| { |
| .freq_low = 1178000, |
| .freq_high = 1295999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x01, |
| }, |
| |
| /* band 4 */ |
| { |
| .freq_low = 1296000, |
| .freq_high = 1431999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x02, |
| }, |
| |
| /* band 5 */ |
| { |
| .freq_low = 1432000, |
| .freq_high = 1575999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x04, |
| }, |
| |
| /* band 6 */ |
| { |
| .freq_low = 1576000, |
| .freq_high = 1717999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x08, |
| }, |
| |
| /* band 7 */ |
| { |
| .freq_low = 1718000, |
| .freq_high = 1855999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x10, |
| }, |
| |
| /* band 8 */ |
| { |
| .freq_low = 1856000, |
| .freq_high = 2035999, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x20, |
| }, |
| |
| /* band 9 */ |
| { |
| .freq_low = 2036000, |
| .freq_high = 2150000, |
| .VCOdivider = 2, |
| .progdata = (0 << 19) | (1 << 9) | 0x40, |
| }, |
| }; |
| |
| static struct { |
| u8 reg; |
| u8 data; |
| } cx24123_regdata[] = |
| { |
| {0x00, 0x03}, /* Reset system */ |
| {0x00, 0x00}, /* Clear reset */ |
| {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */ |
| {0x04, 0x10}, /* MPEG */ |
| {0x05, 0x04}, /* MPEG */ |
| {0x06, 0x31}, /* MPEG (default) */ |
| {0x0b, 0x00}, /* Freq search start point (default) */ |
| {0x0c, 0x00}, /* Demodulator sample gain (default) */ |
| {0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */ |
| {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */ |
| {0x0f, 0xfe}, /* FEC search mask (all supported codes) */ |
| {0x10, 0x01}, /* Default search inversion, no repeat (default) */ |
| {0x16, 0x00}, /* Enable reading of frequency */ |
| {0x17, 0x01}, /* Enable EsNO Ready Counter */ |
| {0x1c, 0x80}, /* Enable error counter */ |
| {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */ |
| {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */ |
| {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */ |
| {0x29, 0x00}, /* DiSEqC LNB_DC off */ |
| {0x2a, 0xb0}, /* DiSEqC Parameters (default) */ |
| {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */ |
| {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */ |
| {0x2d, 0x00}, |
| {0x2e, 0x00}, |
| {0x2f, 0x00}, |
| {0x30, 0x00}, |
| {0x31, 0x00}, |
| {0x32, 0x8c}, /* DiSEqC Parameters (default) */ |
| {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */ |
| {0x34, 0x00}, |
| {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */ |
| {0x36, 0x02}, /* DiSEqC Parameters (default) */ |
| {0x37, 0x3a}, /* DiSEqC Parameters (default) */ |
| {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */ |
| {0x44, 0x00}, /* Constellation (default) */ |
| {0x45, 0x00}, /* Symbol count (default) */ |
| {0x46, 0x0d}, /* Symbol rate estimator on (default) */ |
| {0x56, 0xc1}, /* Error Counter = Viterbi BER */ |
| {0x57, 0xff}, /* Error Counter Window (default) */ |
| {0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */ |
| {0x67, 0x83}, /* Non-DCII symbol clock */ |
| }; |
| |
| static int cx24123_i2c_writereg(struct cx24123_state *state, |
| u8 i2c_addr, int reg, int data) |
| { |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { |
| .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2 |
| }; |
| int err; |
| |
| /* printk(KERN_DEBUG "wr(%02x): %02x %02x\n", i2c_addr, reg, data); */ |
| |
| err = i2c_transfer(state->i2c, &msg, 1); |
| if (err != 1) { |
| printk("%s: writereg error(err == %i, reg == 0x%02x, data == 0x%02x)\n", |
| __func__, err, reg, data); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_i2c_readreg(struct cx24123_state *state, u8 i2c_addr, u8 reg) |
| { |
| int ret; |
| u8 b = 0; |
| struct i2c_msg msg[] = { |
| { .addr = i2c_addr, .flags = 0, .buf = ®, .len = 1 }, |
| { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &b, .len = 1 } |
| }; |
| |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) { |
| err("%s: reg=0x%x (error=%d)\n", __func__, reg, ret); |
| return ret; |
| } |
| |
| /* printk(KERN_DEBUG "rd(%02x): %02x %02x\n", i2c_addr, reg, b); */ |
| |
| return b; |
| } |
| |
| #define cx24123_readreg(state, reg) \ |
| cx24123_i2c_readreg(state, state->config->demod_address, reg) |
| #define cx24123_writereg(state, reg, val) \ |
| cx24123_i2c_writereg(state, state->config->demod_address, reg, val) |
| |
| static int cx24123_set_inversion(struct cx24123_state *state, |
| enum fe_spectral_inversion inversion) |
| { |
| u8 nom_reg = cx24123_readreg(state, 0x0e); |
| u8 auto_reg = cx24123_readreg(state, 0x10); |
| |
| switch (inversion) { |
| case INVERSION_OFF: |
| dprintk("inversion off\n"); |
| cx24123_writereg(state, 0x0e, nom_reg & ~0x80); |
| cx24123_writereg(state, 0x10, auto_reg | 0x80); |
| break; |
| case INVERSION_ON: |
| dprintk("inversion on\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x80); |
| cx24123_writereg(state, 0x10, auto_reg | 0x80); |
| break; |
| case INVERSION_AUTO: |
| dprintk("inversion auto\n"); |
| cx24123_writereg(state, 0x10, auto_reg & ~0x80); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_get_inversion(struct cx24123_state *state, |
| enum fe_spectral_inversion *inversion) |
| { |
| u8 val; |
| |
| val = cx24123_readreg(state, 0x1b) >> 7; |
| |
| if (val == 0) { |
| dprintk("read inversion off\n"); |
| *inversion = INVERSION_OFF; |
| } else { |
| dprintk("read inversion on\n"); |
| *inversion = INVERSION_ON; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_set_fec(struct cx24123_state *state, enum fe_code_rate fec) |
| { |
| u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07; |
| |
| if (((int)fec < FEC_NONE) || (fec > FEC_AUTO)) |
| fec = FEC_AUTO; |
| |
| /* Set the soft decision threshold */ |
| if (fec == FEC_1_2) |
| cx24123_writereg(state, 0x43, |
| cx24123_readreg(state, 0x43) | 0x01); |
| else |
| cx24123_writereg(state, 0x43, |
| cx24123_readreg(state, 0x43) & ~0x01); |
| |
| switch (fec) { |
| case FEC_1_2: |
| dprintk("set FEC to 1/2\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x01); |
| cx24123_writereg(state, 0x0f, 0x02); |
| break; |
| case FEC_2_3: |
| dprintk("set FEC to 2/3\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x02); |
| cx24123_writereg(state, 0x0f, 0x04); |
| break; |
| case FEC_3_4: |
| dprintk("set FEC to 3/4\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x03); |
| cx24123_writereg(state, 0x0f, 0x08); |
| break; |
| case FEC_4_5: |
| dprintk("set FEC to 4/5\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x04); |
| cx24123_writereg(state, 0x0f, 0x10); |
| break; |
| case FEC_5_6: |
| dprintk("set FEC to 5/6\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x05); |
| cx24123_writereg(state, 0x0f, 0x20); |
| break; |
| case FEC_6_7: |
| dprintk("set FEC to 6/7\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x06); |
| cx24123_writereg(state, 0x0f, 0x40); |
| break; |
| case FEC_7_8: |
| dprintk("set FEC to 7/8\n"); |
| cx24123_writereg(state, 0x0e, nom_reg | 0x07); |
| cx24123_writereg(state, 0x0f, 0x80); |
| break; |
| case FEC_AUTO: |
| dprintk("set FEC to auto\n"); |
| cx24123_writereg(state, 0x0f, 0xfe); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_get_fec(struct cx24123_state *state, enum fe_code_rate *fec) |
| { |
| int ret; |
| |
| ret = cx24123_readreg(state, 0x1b); |
| if (ret < 0) |
| return ret; |
| ret = ret & 0x07; |
| |
| switch (ret) { |
| case 1: |
| *fec = FEC_1_2; |
| break; |
| case 2: |
| *fec = FEC_2_3; |
| break; |
| case 3: |
| *fec = FEC_3_4; |
| break; |
| case 4: |
| *fec = FEC_4_5; |
| break; |
| case 5: |
| *fec = FEC_5_6; |
| break; |
| case 6: |
| *fec = FEC_6_7; |
| break; |
| case 7: |
| *fec = FEC_7_8; |
| break; |
| default: |
| /* this can happen when there's no lock */ |
| *fec = FEC_NONE; |
| } |
| |
| return 0; |
| } |
| |
| /* Approximation of closest integer of log2(a/b). It actually gives the |
| lowest integer i such that 2^i >= round(a/b) */ |
| static u32 cx24123_int_log2(u32 a, u32 b) |
| { |
| u32 exp, nearest = 0; |
| u32 div = a / b; |
| if (a % b >= b / 2) |
| ++div; |
| if (div < (1 << 31)) { |
| for (exp = 1; div > exp; nearest++) |
| exp += exp; |
| } |
| return nearest; |
| } |
| |
| static int cx24123_set_symbolrate(struct cx24123_state *state, u32 srate) |
| { |
| u64 tmp; |
| u32 sample_rate, ratio, sample_gain; |
| u8 pll_mult; |
| |
| /* check if symbol rate is within limits */ |
| if ((srate > state->frontend.ops.info.symbol_rate_max) || |
| (srate < state->frontend.ops.info.symbol_rate_min)) |
| return -EOPNOTSUPP; |
| |
| /* choose the sampling rate high enough for the required operation, |
| while optimizing the power consumed by the demodulator */ |
| if (srate < (XTAL*2)/2) |
| pll_mult = 2; |
| else if (srate < (XTAL*3)/2) |
| pll_mult = 3; |
| else if (srate < (XTAL*4)/2) |
| pll_mult = 4; |
| else if (srate < (XTAL*5)/2) |
| pll_mult = 5; |
| else if (srate < (XTAL*6)/2) |
| pll_mult = 6; |
| else if (srate < (XTAL*7)/2) |
| pll_mult = 7; |
| else if (srate < (XTAL*8)/2) |
| pll_mult = 8; |
| else |
| pll_mult = 9; |
| |
| |
| sample_rate = pll_mult * XTAL; |
| |
| /* SYSSymbolRate[21:0] = (srate << 23) / sample_rate */ |
| |
| tmp = ((u64)srate) << 23; |
| do_div(tmp, sample_rate); |
| ratio = (u32) tmp; |
| |
| cx24123_writereg(state, 0x01, pll_mult * 6); |
| |
| cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f); |
| cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff); |
| cx24123_writereg(state, 0x0a, ratio & 0xff); |
| |
| /* also set the demodulator sample gain */ |
| sample_gain = cx24123_int_log2(sample_rate, srate); |
| tmp = cx24123_readreg(state, 0x0c) & ~0xe0; |
| cx24123_writereg(state, 0x0c, tmp | sample_gain << 5); |
| |
| dprintk("srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", |
| srate, ratio, sample_rate, sample_gain); |
| |
| return 0; |
| } |
| |
| /* |
| * Based on the required frequency and symbolrate, the tuner AGC has |
| * to be configured and the correct band selected. |
| * Calculate those values. |
| */ |
| static int cx24123_pll_calculate(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| struct cx24123_state *state = fe->demodulator_priv; |
| u32 ndiv = 0, adiv = 0, vco_div = 0; |
| int i = 0; |
| int pump = 2; |
| int band = 0; |
| int num_bands = ARRAY_SIZE(cx24123_bandselect_vals); |
| struct cx24123_bandselect_val *bsv = NULL; |
| struct cx24123_AGC_val *agcv = NULL; |
| |
| /* Defaults for low freq, low rate */ |
| state->VCAarg = cx24123_AGC_vals[0].VCAprogdata; |
| state->VGAarg = cx24123_AGC_vals[0].VGAprogdata; |
| state->bandselectarg = cx24123_bandselect_vals[0].progdata; |
| vco_div = cx24123_bandselect_vals[0].VCOdivider; |
| |
| /* For the given symbol rate, determine the VCA, VGA and |
| * FILTUNE programming bits */ |
| for (i = 0; i < ARRAY_SIZE(cx24123_AGC_vals); i++) { |
| agcv = &cx24123_AGC_vals[i]; |
| if ((agcv->symbolrate_low <= p->symbol_rate) && |
| (agcv->symbolrate_high >= p->symbol_rate)) { |
| state->VCAarg = agcv->VCAprogdata; |
| state->VGAarg = agcv->VGAprogdata; |
| state->FILTune = agcv->FILTune; |
| } |
| } |
| |
| /* determine the band to use */ |
| if (force_band < 1 || force_band > num_bands) { |
| for (i = 0; i < num_bands; i++) { |
| bsv = &cx24123_bandselect_vals[i]; |
| if ((bsv->freq_low <= p->frequency) && |
| (bsv->freq_high >= p->frequency)) |
| band = i; |
| } |
| } else |
| band = force_band - 1; |
| |
| state->bandselectarg = cx24123_bandselect_vals[band].progdata; |
| vco_div = cx24123_bandselect_vals[band].VCOdivider; |
| |
| /* determine the charge pump current */ |
| if (p->frequency < (cx24123_bandselect_vals[band].freq_low + |
| cx24123_bandselect_vals[band].freq_high) / 2) |
| pump = 0x01; |
| else |
| pump = 0x02; |
| |
| /* Determine the N/A dividers for the requested lband freq (in kHz). */ |
| /* Note: the reference divider R=10, frequency is in KHz, |
| * XTAL is in Hz */ |
| ndiv = (((p->frequency * vco_div * 10) / |
| (2 * XTAL / 1000)) / 32) & 0x1ff; |
| adiv = (((p->frequency * vco_div * 10) / |
| (2 * XTAL / 1000)) % 32) & 0x1f; |
| |
| if (adiv == 0 && ndiv > 0) |
| ndiv--; |
| |
| /* control bits 11, refdiv 11, charge pump polarity 1, |
| * charge pump current, ndiv, adiv */ |
| state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | |
| (pump << 14) | (ndiv << 5) | adiv; |
| |
| return 0; |
| } |
| |
| /* |
| * Tuner data is 21 bits long, must be left-aligned in data. |
| * Tuner cx24109 is written through a dedicated 3wire interface |
| * on the demod chip. |
| */ |
| static int cx24123_pll_writereg(struct dvb_frontend *fe, u32 data) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| unsigned long timeout; |
| |
| dprintk("pll writereg called, data=0x%08x\n", data); |
| |
| /* align the 21 bytes into to bit23 boundary */ |
| data = data << 3; |
| |
| /* Reset the demod pll word length to 0x15 bits */ |
| cx24123_writereg(state, 0x21, 0x15); |
| |
| /* write the msb 8 bits, wait for the send to be completed */ |
| timeout = jiffies + msecs_to_jiffies(40); |
| cx24123_writereg(state, 0x22, (data >> 16) & 0xff); |
| while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { |
| if (time_after(jiffies, timeout)) { |
| err("%s: demodulator is not responding, "\ |
| "possibly hung, aborting.\n", __func__); |
| return -EREMOTEIO; |
| } |
| msleep(10); |
| } |
| |
| /* send another 8 bytes, wait for the send to be completed */ |
| timeout = jiffies + msecs_to_jiffies(40); |
| cx24123_writereg(state, 0x22, (data >> 8) & 0xff); |
| while ((cx24123_readreg(state, 0x20) & 0x40) == 0) { |
| if (time_after(jiffies, timeout)) { |
| err("%s: demodulator is not responding, "\ |
| "possibly hung, aborting.\n", __func__); |
| return -EREMOTEIO; |
| } |
| msleep(10); |
| } |
| |
| /* send the lower 5 bits of this byte, padded with 3 LBB, |
| * wait for the send to be completed */ |
| timeout = jiffies + msecs_to_jiffies(40); |
| cx24123_writereg(state, 0x22, (data) & 0xff); |
| while ((cx24123_readreg(state, 0x20) & 0x80)) { |
| if (time_after(jiffies, timeout)) { |
| err("%s: demodulator is not responding," \ |
| "possibly hung, aborting.\n", __func__); |
| return -EREMOTEIO; |
| } |
| msleep(10); |
| } |
| |
| /* Trigger the demod to configure the tuner */ |
| cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2); |
| cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd); |
| |
| return 0; |
| } |
| |
| static int cx24123_pll_tune(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| struct cx24123_state *state = fe->demodulator_priv; |
| u8 val; |
| |
| dprintk("frequency=%i\n", p->frequency); |
| |
| if (cx24123_pll_calculate(fe) != 0) { |
| err("%s: cx24123_pll_calculate failed\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Write the new VCO/VGA */ |
| cx24123_pll_writereg(fe, state->VCAarg); |
| cx24123_pll_writereg(fe, state->VGAarg); |
| |
| /* Write the new bandselect and pll args */ |
| cx24123_pll_writereg(fe, state->bandselectarg); |
| cx24123_pll_writereg(fe, state->pllarg); |
| |
| /* set the FILTUNE voltage */ |
| val = cx24123_readreg(state, 0x28) & ~0x3; |
| cx24123_writereg(state, 0x27, state->FILTune >> 2); |
| cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3)); |
| |
| dprintk("pll tune VCA=%d, band=%d, pll=%d\n", state->VCAarg, |
| state->bandselectarg, state->pllarg); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * 0x23: |
| * [7:7] = BTI enabled |
| * [6:6] = I2C repeater enabled |
| * [5:5] = I2C repeater start |
| * [0:0] = BTI start |
| */ |
| |
| /* mode == 1 -> i2c-repeater, 0 -> bti */ |
| static int cx24123_repeater_mode(struct cx24123_state *state, u8 mode, u8 start) |
| { |
| u8 r = cx24123_readreg(state, 0x23) & 0x1e; |
| if (mode) |
| r |= (1 << 6) | (start << 5); |
| else |
| r |= (1 << 7) | (start); |
| return cx24123_writereg(state, 0x23, r); |
| } |
| |
| static int cx24123_initfe(struct dvb_frontend *fe) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int i; |
| |
| dprintk("init frontend\n"); |
| |
| /* Configure the demod to a good set of defaults */ |
| for (i = 0; i < ARRAY_SIZE(cx24123_regdata); i++) |
| cx24123_writereg(state, cx24123_regdata[i].reg, |
| cx24123_regdata[i].data); |
| |
| /* Set the LNB polarity */ |
| if (state->config->lnb_polarity) |
| cx24123_writereg(state, 0x32, |
| cx24123_readreg(state, 0x32) | 0x02); |
| |
| if (state->config->dont_use_pll) |
| cx24123_repeater_mode(state, 1, 0); |
| |
| return 0; |
| } |
| |
| static int cx24123_set_voltage(struct dvb_frontend *fe, |
| enum fe_sec_voltage voltage) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| u8 val; |
| |
| val = cx24123_readreg(state, 0x29) & ~0x40; |
| |
| switch (voltage) { |
| case SEC_VOLTAGE_13: |
| dprintk("setting voltage 13V\n"); |
| return cx24123_writereg(state, 0x29, val & 0x7f); |
| case SEC_VOLTAGE_18: |
| dprintk("setting voltage 18V\n"); |
| return cx24123_writereg(state, 0x29, val | 0x80); |
| case SEC_VOLTAGE_OFF: |
| /* already handled in cx88-dvb */ |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* wait for diseqc queue to become ready (or timeout) */ |
| static void cx24123_wait_for_diseqc(struct cx24123_state *state) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(200); |
| while (!(cx24123_readreg(state, 0x29) & 0x40)) { |
| if (time_after(jiffies, timeout)) { |
| err("%s: diseqc queue not ready, " \ |
| "command may be lost.\n", __func__); |
| break; |
| } |
| msleep(10); |
| } |
| } |
| |
| static int cx24123_send_diseqc_msg(struct dvb_frontend *fe, |
| struct dvb_diseqc_master_cmd *cmd) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int i, val, tone; |
| |
| dprintk("\n"); |
| |
| /* stop continuous tone if enabled */ |
| tone = cx24123_readreg(state, 0x29); |
| if (tone & 0x10) |
| cx24123_writereg(state, 0x29, tone & ~0x50); |
| |
| /* wait for diseqc queue ready */ |
| cx24123_wait_for_diseqc(state); |
| |
| /* select tone mode */ |
| cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); |
| |
| for (i = 0; i < cmd->msg_len; i++) |
| cx24123_writereg(state, 0x2C + i, cmd->msg[i]); |
| |
| val = cx24123_readreg(state, 0x29); |
| cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | |
| ((cmd->msg_len-3) & 3)); |
| |
| /* wait for diseqc message to finish sending */ |
| cx24123_wait_for_diseqc(state); |
| |
| /* restart continuous tone if enabled */ |
| if (tone & 0x10) |
| cx24123_writereg(state, 0x29, tone & ~0x40); |
| |
| return 0; |
| } |
| |
| static int cx24123_diseqc_send_burst(struct dvb_frontend *fe, |
| enum fe_sec_mini_cmd burst) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int val, tone; |
| |
| dprintk("\n"); |
| |
| /* stop continuous tone if enabled */ |
| tone = cx24123_readreg(state, 0x29); |
| if (tone & 0x10) |
| cx24123_writereg(state, 0x29, tone & ~0x50); |
| |
| /* wait for diseqc queue ready */ |
| cx24123_wait_for_diseqc(state); |
| |
| /* select tone mode */ |
| cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4); |
| msleep(30); |
| val = cx24123_readreg(state, 0x29); |
| if (burst == SEC_MINI_A) |
| cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00)); |
| else if (burst == SEC_MINI_B) |
| cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08)); |
| else |
| return -EINVAL; |
| |
| cx24123_wait_for_diseqc(state); |
| cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb); |
| |
| /* restart continuous tone if enabled */ |
| if (tone & 0x10) |
| cx24123_writereg(state, 0x29, tone & ~0x40); |
| |
| return 0; |
| } |
| |
| static int cx24123_read_status(struct dvb_frontend *fe, enum fe_status *status) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| int sync = cx24123_readreg(state, 0x14); |
| |
| *status = 0; |
| if (state->config->dont_use_pll) { |
| u32 tun_status = 0; |
| if (fe->ops.tuner_ops.get_status) |
| fe->ops.tuner_ops.get_status(fe, &tun_status); |
| if (tun_status & TUNER_STATUS_LOCKED) |
| *status |= FE_HAS_SIGNAL; |
| } else { |
| int lock = cx24123_readreg(state, 0x20); |
| if (lock & 0x01) |
| *status |= FE_HAS_SIGNAL; |
| } |
| |
| if (sync & 0x02) |
| *status |= FE_HAS_CARRIER; /* Phase locked */ |
| if (sync & 0x04) |
| *status |= FE_HAS_VITERBI; |
| |
| /* Reed-Solomon Status */ |
| if (sync & 0x08) |
| *status |= FE_HAS_SYNC; |
| if (sync & 0x80) |
| *status |= FE_HAS_LOCK; /*Full Sync */ |
| |
| return 0; |
| } |
| |
| /* |
| * Configured to return the measurement of errors in blocks, |
| * because no UCBLOCKS value is available, so this value doubles up |
| * to satisfy both measurements. |
| */ |
| static int cx24123_read_ber(struct dvb_frontend *fe, u32 *ber) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| /* The true bit error rate is this value divided by |
| the window size (set as 256 * 255) */ |
| *ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) | |
| (cx24123_readreg(state, 0x1d) << 8 | |
| cx24123_readreg(state, 0x1e)); |
| |
| dprintk("BER = %d\n", *ber); |
| |
| return 0; |
| } |
| |
| static int cx24123_read_signal_strength(struct dvb_frontend *fe, |
| u16 *signal_strength) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| /* larger = better */ |
| *signal_strength = cx24123_readreg(state, 0x3b) << 8; |
| |
| dprintk("Signal strength = %d\n", *signal_strength); |
| |
| return 0; |
| } |
| |
| static int cx24123_read_snr(struct dvb_frontend *fe, u16 *snr) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| /* Inverted raw Es/N0 count, totally bogus but better than the |
| BER threshold. */ |
| *snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) | |
| (u16)cx24123_readreg(state, 0x19)); |
| |
| dprintk("read S/N index = %d\n", *snr); |
| |
| return 0; |
| } |
| |
| static int cx24123_set_frontend(struct dvb_frontend *fe) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| |
| dprintk("\n"); |
| |
| if (state->config->set_ts_params) |
| state->config->set_ts_params(fe, 0); |
| |
| state->currentfreq = p->frequency; |
| state->currentsymbolrate = p->symbol_rate; |
| |
| cx24123_set_inversion(state, p->inversion); |
| cx24123_set_fec(state, p->fec_inner); |
| cx24123_set_symbolrate(state, p->symbol_rate); |
| |
| if (!state->config->dont_use_pll) |
| cx24123_pll_tune(fe); |
| else if (fe->ops.tuner_ops.set_params) |
| fe->ops.tuner_ops.set_params(fe); |
| else |
| err("it seems I don't have a tuner..."); |
| |
| /* Enable automatic acquisition and reset cycle */ |
| cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07)); |
| cx24123_writereg(state, 0x00, 0x10); |
| cx24123_writereg(state, 0x00, 0); |
| |
| if (state->config->agc_callback) |
| state->config->agc_callback(fe); |
| |
| return 0; |
| } |
| |
| static int cx24123_get_frontend(struct dvb_frontend *fe, |
| struct dtv_frontend_properties *p) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| |
| dprintk("\n"); |
| |
| if (cx24123_get_inversion(state, &p->inversion) != 0) { |
| err("%s: Failed to get inversion status\n", __func__); |
| return -EREMOTEIO; |
| } |
| if (cx24123_get_fec(state, &p->fec_inner) != 0) { |
| err("%s: Failed to get fec status\n", __func__); |
| return -EREMOTEIO; |
| } |
| p->frequency = state->currentfreq; |
| p->symbol_rate = state->currentsymbolrate; |
| |
| return 0; |
| } |
| |
| static int cx24123_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| u8 val; |
| |
| /* wait for diseqc queue ready */ |
| cx24123_wait_for_diseqc(state); |
| |
| val = cx24123_readreg(state, 0x29) & ~0x40; |
| |
| switch (tone) { |
| case SEC_TONE_ON: |
| dprintk("setting tone on\n"); |
| return cx24123_writereg(state, 0x29, val | 0x10); |
| case SEC_TONE_OFF: |
| dprintk("setting tone off\n"); |
| return cx24123_writereg(state, 0x29, val & 0xef); |
| default: |
| err("CASE reached default with tone=%d\n", tone); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int cx24123_tune(struct dvb_frontend *fe, |
| bool re_tune, |
| unsigned int mode_flags, |
| unsigned int *delay, |
| enum fe_status *status) |
| { |
| int retval = 0; |
| |
| if (re_tune) |
| retval = cx24123_set_frontend(fe); |
| |
| if (!(mode_flags & FE_TUNE_MODE_ONESHOT)) |
| cx24123_read_status(fe, status); |
| *delay = HZ/10; |
| |
| return retval; |
| } |
| |
| static enum dvbfe_algo cx24123_get_algo(struct dvb_frontend *fe) |
| { |
| return DVBFE_ALGO_HW; |
| } |
| |
| static void cx24123_release(struct dvb_frontend *fe) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| dprintk("\n"); |
| i2c_del_adapter(&state->tuner_i2c_adapter); |
| kfree(state); |
| } |
| |
| static int cx24123_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num) |
| { |
| struct cx24123_state *state = i2c_get_adapdata(i2c_adap); |
| /* this repeater closes after the first stop */ |
| cx24123_repeater_mode(state, 1, 1); |
| return i2c_transfer(state->i2c, msg, num); |
| } |
| |
| static u32 cx24123_tuner_i2c_func(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_I2C; |
| } |
| |
| static const struct i2c_algorithm cx24123_tuner_i2c_algo = { |
| .master_xfer = cx24123_tuner_i2c_tuner_xfer, |
| .functionality = cx24123_tuner_i2c_func, |
| }; |
| |
| struct i2c_adapter * |
| cx24123_get_tuner_i2c_adapter(struct dvb_frontend *fe) |
| { |
| struct cx24123_state *state = fe->demodulator_priv; |
| return &state->tuner_i2c_adapter; |
| } |
| EXPORT_SYMBOL(cx24123_get_tuner_i2c_adapter); |
| |
| static const struct dvb_frontend_ops cx24123_ops; |
| |
| struct dvb_frontend *cx24123_attach(const struct cx24123_config *config, |
| struct i2c_adapter *i2c) |
| { |
| /* allocate memory for the internal state */ |
| struct cx24123_state *state = |
| kzalloc(sizeof(struct cx24123_state), GFP_KERNEL); |
| |
| dprintk("\n"); |
| if (state == NULL) { |
| err("Unable to kzalloc\n"); |
| goto error; |
| } |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| |
| /* check if the demod is there */ |
| state->demod_rev = cx24123_readreg(state, 0x00); |
| switch (state->demod_rev) { |
| case 0xe1: |
| info("detected CX24123C\n"); |
| break; |
| case 0xd1: |
| info("detected CX24123\n"); |
| break; |
| default: |
| err("wrong demod revision: %x\n", state->demod_rev); |
| goto error; |
| } |
| |
| /* create dvb_frontend */ |
| memcpy(&state->frontend.ops, &cx24123_ops, |
| sizeof(struct dvb_frontend_ops)); |
| state->frontend.demodulator_priv = state; |
| |
| /* create tuner i2c adapter */ |
| if (config->dont_use_pll) |
| cx24123_repeater_mode(state, 1, 0); |
| |
| strscpy(state->tuner_i2c_adapter.name, "CX24123 tuner I2C bus", |
| sizeof(state->tuner_i2c_adapter.name)); |
| state->tuner_i2c_adapter.algo = &cx24123_tuner_i2c_algo; |
| state->tuner_i2c_adapter.algo_data = NULL; |
| state->tuner_i2c_adapter.dev.parent = i2c->dev.parent; |
| i2c_set_adapdata(&state->tuner_i2c_adapter, state); |
| if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) { |
| err("tuner i2c bus could not be initialized\n"); |
| goto error; |
| } |
| |
| return &state->frontend; |
| |
| error: |
| kfree(state); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(cx24123_attach); |
| |
| static const struct dvb_frontend_ops cx24123_ops = { |
| .delsys = { SYS_DVBS }, |
| .info = { |
| .name = "Conexant CX24123/CX24109", |
| .frequency_min_hz = 950 * MHz, |
| .frequency_max_hz = 2150 * MHz, |
| .frequency_stepsize_hz = 1011 * kHz, |
| .frequency_tolerance_hz = 5 * MHz, |
| .symbol_rate_min = 1000000, |
| .symbol_rate_max = 45000000, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | |
| FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_RECOVER |
| }, |
| |
| .release = cx24123_release, |
| |
| .init = cx24123_initfe, |
| .set_frontend = cx24123_set_frontend, |
| .get_frontend = cx24123_get_frontend, |
| .read_status = cx24123_read_status, |
| .read_ber = cx24123_read_ber, |
| .read_signal_strength = cx24123_read_signal_strength, |
| .read_snr = cx24123_read_snr, |
| .diseqc_send_master_cmd = cx24123_send_diseqc_msg, |
| .diseqc_send_burst = cx24123_diseqc_send_burst, |
| .set_tone = cx24123_set_tone, |
| .set_voltage = cx24123_set_voltage, |
| .tune = cx24123_tune, |
| .get_frontend_algo = cx24123_get_algo, |
| }; |
| |
| MODULE_DESCRIPTION("DVB Frontend module for Conexant " \ |
| "CX24123/CX24109/CX24113 hardware"); |
| MODULE_AUTHOR("Steven Toth"); |
| MODULE_LICENSE("GPL"); |
| |